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q.louveaux@ulg.ac.be, axel.mathei@gmail.com, sebastien.mathieu@ulg.ac.be

December 15, 2015

Abstract

To increase their competitiveness, many industrial companies moni-

tor their production process, collecting large amount of measurements.

This paper describes a technique using this data to improve the perfor-

mance of a monitored process. In particular we wish to find a set of rules,

i.e. intervals on a reduced number of parameters, for which an output

value is maximized. The model-free optimization problem to solve is to

find a box, restricted on a limited amount of dimensions, with the maxi-

mum mean value of the included points. This article compares a machine

learning-based heuristic to the solution computed by a mixed-integer lin-

ear program on real-life databases from steel and glass manufacturing.

Computational results show that the heuristic obtains comparable solu-

tions to the mixed integer linear approach. However, the exact approach

is computationally too expensive to tackle real life databases. Results

show that the restriction of five process parameters, on these databases,

may improve the quality of the process by 50%.
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cess, Quality management
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1 Introduction

Competitiveness is a key element to ensure the prosperity of an industry. Nu-

merous factors may influence the success of a product. To identify these factors,

industrial companies invest more and more in sensors to retrieve information

on their processes. The measurements are commonly stored in large databases

containing millions of tuples with hundreds parameters. Once in possession of

these measurements, possibly cleaned to remove the most obvious errors, there

is still the need of efficient and robust techniques to extract useful information

from this big data. In this paper, our aim is to use the data in order to handle

one of the following questions. Can we analyze the data in order to find a setting

that improves the quality or the production costs of the industrial process, is

it possible to identify on a batch of flawed products, the parameters that were

badly tuned or on the contrary given a batch of exceptionally good products,

was there a set of key parameters that were well tuned?

These data analysis questions can be mathematically formulated as follows.

We assume that for each produced item i, a series of measurements are re-

trieved in a D-dimensional vector xi of input parameters. These coordinates

of the vector may be either continuous or categorical. Examples of continuous

coordinates are temperature, pressure, flow of gas, etc. Categorical coordinates

may represent types of raw material, gas composition, etc. The output value

of the item i is given by ci ∈ R and might be either positive or negative. ci

may represents the production cost of product i, its quality, etc. The question

addressed in this paper is to find a box, i.e. for each continuous dimension t,

an interval [lt, ut] and for each categorical dimension a list of categories, which

maximizes the mean values of the points included in the box. The purpose

of a box is its simplicity and robustness. Robustness is further increased by

imposing a minimal number of points in the box and a minimum interval for
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each dimension. Finally, we restrict ourselves to constrain the box on only N

dimensions. As the databases may include many coordinates, the control of all

parameters is difficult to apply in practice. This restriction also provides the

key parameters that condition the output value and therefore provide a more

intuitive solution. The challenge is to find, from the data analysis, a reduced

set among a large set of parameters which, once controlled, leads to the least

amount of downgraded products.

The algorithm proposed in this paper is tested a set of real databases from

steel and glass manufacturing provided by industrial partners. Galvanization is

the covering up of a piece of metal by zinc or a zinc alloy in order to protect the

piece from corrosion. Galvanized steel is highly used in the automotive industry.

Succeeding a good galvanization requires that the final galvanized metal sheets

meet technical and aesthetic quality criteria. Among these criteria, one can

name the yield stress, the thickness of the zinc layer, etc. For instance, if this

thickness is below client’s requirement, the product is downgraded to be sold

ten to twenty percent cheaper. Other flaws are also monitored for instance by

camera or manual inspection. These monitorings allow the manufacturer to

quantify numerically the quality of its final products. This quality depends on

the parameters of the process. In the databases at our disposal, the settings

of up to 272 parameters are provided, such as the decreasing quality of the

metal sheets, pollution in the zinc bath, cleanliness of some mechanical parts,

temperatures of the furnaces, cooling temperature, etc.

The production of glass panes is also a process which can benefit from the

optimization of its parameters. Basics of glass production can be summarized in

a few steps. Silica sand is first melted and stirred with various ingredients such

as sodium carbonate and calcium oxide to ease the process. Additives are added

to the mixture to control special properties from the glass like the heat resistance
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or the taint. Once the mixture is turned into a homogeneous liquid with as few

bubbles as possible, the molten glass is brought onto a surface of molten tin and

cooled down progressively. The next step is the annealing phase which aims to

heat-treat the glass to strengthen it. The whole process is very sensitive to the

temperature set points and to external pollutants. The databases analyzed in

this article includes settings of 40 to 120 parameters depending on the type of

glass pane produced. Among the quality criterion, one can cite the number of

bubbles in the final product, the number and size of scratches and spot defects,

the tightness, etc.

The outline is as follows. Section 3 states the problem and defines the nota-

tions used along the paper. The problem is modeled as a mixed-integer linear

program in Section 4. A heuristic method to address the problem is presented in

Section 5. Both methods are compared in Section 6 on real industrial databases

from steel and glass manufacturing. Finally, Section 7 concludes.

2 Related work

Data mining has been extensively applied to this kind of problem. Köksal,

Batmaz, and Testik present a large review of data mining methods to describe,

predict, classify or optimize the quality of a manufacturing processes [1]. Among

these methods, the model-free method PRIM (Patient Rule Induction Method)

[2] appeared to be well tailored to address robustly this kind of problem. Appli-

cation to the improvement of steel making processes using PRIM is investigated

in [3]. Chong, Albin, and Jun compare the application of the classic PRIM

algorithm to a database with a reduced number of parameters, taking some

linear combination of them. They apply PRIM on the modified database and

projecting back the resulting box on the initial set of parameters [3]. Clustering

is a problem close to the one considered in the paper. Some clustering algorithm
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provides multiple boxes, dividing the data into clusters [4]. The problem tack-

led in the paper is different as we aim to find only a single box optimizing the

process. Providing multiple boxes would increase the complexity of application

of the result to the industrial process.

In this article, we compare the box obtained by a mixed integer linear pro-

gram (MILP) to the solution given by a heuristic algorithm using PRIM as a

main component. Combinatorial approaches have been proposed to obtain a so-

lution with a guarantee of optimality for the logical analysis of data [5], [6]. In

these articles, the authors present a method to obtain the box which maximizes

the number of points of a given set while excluding every point from another

set of points. In [5], the authors provide a mixed-integer linear formulation

for the problem and use it on medical databases. Eckstein, Hammer, Liu, et

al. propose an alternative branch and bound algorithm to solve this problem

to optimality [6]. A combinatorial algorithm is proposed in [7] for a general-

ized version of the maximum box problem which maximizes the weighted sum

over a set of points with positive and negative objective values. We extend the

best formulation of [7] to account for the three following criteria: (i) categorical

values, (ii) restriction of the box on a limited number of dimensions and (iii)

missing values.

An important issue when considering automatically generated data is to

tackle missing values. Various approaches have been proposed to handle miss-

ing data in the field of statistics [8]. Some techniques simply ignore records

with missing values. Others replace the missing values by a random value or

the mean value of the record. A more sophisticated technique is to complete

the data sets by multiple imputation [9]. The method consists in creating mul-

tiple data sets by filling in alternative values for the missing data which may

require computationally intensive and complex algorithms. In this paper, we
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adopt a conservative approach detailed in Section 3 and adapt the algorithms

in consequence.

3 Problem statement

We consider that there is a set D of D input parameters, which may influence

the output. Each produced item i is represented by a D-dimensional vector xi

of the input parameters. Missing values are represented by the symbol ∅. The

output value of the item i is given by ci ∈ R and might be either positive or

negative. The set of all M produced items is denotedM. The D dimensions are

split into two sets: the set of continuous dimensions L and the set of categorical

dimensions G. Accepting two values α and γ in a continuous dimension implies

that each values in the range [α, γ] are also accepted. Assume a categorical

dimension which includes the values α, β and γ. The final box may reject

the category β while accepting categories α and γ. The set of categories in

dimension t is denoted Gt. The domain of all categorical dimensions is given by

G =
∏
t∈G Gt.

The problem addressed in this paper is to find a box restricted on only N

dimensions which maximizes the sum of the values ci of each point i included

in the box. A box which defines the limits on the input parameters of a setup

is easy to understand and to implement in an industrial process. Depending on

the input parameter type, we now define a box.

Definition 1. A box is a set b such that

b =

x ∈ RL ×G :

xt ∈ [lt(b), ut(b)], ∀t ∈ L

xt ∈ St(b), ∀t ∈ G

 (1)

where St(b) ⊆ Gt is the set of selected categories in dimension t ∈ G and
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[lt(b), ut(b)] is the projection of the box in dimension t ∈ L.

The box b is restricted only on N dimensions if there are N dimensions such

that St 6= Gt if t ∈ G, or lt(b) 6= −∞ or ut(b) 6= +∞ if t ∈ L.

The objective is to maximize the mean of the points included in the box b,

fµ(b) =

∑
i∈M:xi∈b c

i

|b|
(2)

where |b| is the number of points inM included in the box b. The optimization

of problems with nonlinear objective function often leads to computationally

hard problems. State of the art nonlinear solvers are only able to solve problems

of limited size. To make our problem easier to solve, we propose to optimize

on a new database whose output values are shifted by the mean output c̄, i.e.

ci ← ci − c̄ for every setting i. On this new database, one could maximize the

sum of the output values of the points in the candidate box. This provides

us with a linear objective function and allows us to use powerful MILP solvers

able to handle problems with thousands of variables. A comparison of the two

modeling approaches is provided in Section 6. The corresponding value of the

box with this sum version objective function is given by

fΣ(b) =
∑

i∈M:xi∈b

(
ci − c̄

)
(3)

where c̄ is the mean output value over every point of the database. Note that

fΣ(b) and fµ(b) take values of different orders of magnitudes. They should be

seen as distinct modeling approaches with the same goal: to model the problem

of optimizing an industrial process.

A point is inside a box if it is included in all dimensions. A special attention is

required for missing values. Consider a missing value xit = ∅. Directly excluding

the point i in dimension t is equivalent to removing it from the database and
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therefore losing the information provided by this point. Therefore, we choose to

always consider point i to be included in dimension t. This is motivated by the

following argument. The point still needs to be included in all other dimensions

to be in the box. If ci > 0, the algorithm tries to include the point by including

it in all other dimensions. If ci < 0, this conservative approach gives incentives

to the algorithms to try to exclude the point. By default, all the missing values

are considered in the box. To be sure to exclude the point, it has to be excluded

in a dimension for which the value is known. Figure 1 provides an example of a

database with one point x∅ which data x∅2 is missing and with a very negative

output value. The other points are considered positive. If x∅ is removed from

the database, the optimal box would be given by box 1 including all points.

Assume that the actual coordinates of x∅ are given by the non-filled circle. Box

1 is worse than box 2, including only the five points on the left hand side. Box

2 is the optimal solution which is obtained if we consider that x∅ is included in

dimension 2 as suggested in this paper.

To statistically make sense, we impose that a box includes at least βM

points. A further restriction is imposed on the length of the intervals of the

box.

Definition 2. The length of a box b in dimension t is given by:

dt(b) =

ut(b)− lt(b), if t ∈ L

|St(b)|, if t ∈ G
(4)

For a continuous dimension t ∈ L, we impose the length on the box on this

dimension to be greater than a user-defined parameter ∆t. For a categorical

dimension t ∈ G, ∆t define the minimum number of categories covered by the

box.
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4 Integer programming model

We explore a D-dimensional space with a set of M points,M. The coordinates

of a point i are denoted xi with xi ∈ [0, 1]D. The value of a point i is ci ∈ R.

Those points are partitioned into two sets: the set of positive points P = {i ∈

M|ci > 0} and the set of negative points N = {i ∈ M|ci < 0}. Points such

that ci = 0 can be ignored.

We apply the following transformation to the coordinates of the points. The

coordinates of the points are sorted along each dimension t ∈ L. As some

points have the same coordinate in dimension t, the sorted list of coordinates

has Kt ≤ M distinct values. For categorical dimensions t ∈ L, we define

Kt = |Gt|. In the following formulation, each point i is encoded by rit, its index

in the sorted list corresponding to dimension t. If xit = ∅, we define rit = ∅.

The inclusion of a point i in the candidate box is modeled by a binary

variable zi. The point i is included in the box if zi = 1 and 0 otherwise.

We introduce for each dimension t, Kt binary variables ykt for k ∈ {1, . . . ,Kt}

where k corresponds to all distinct values in dimension t. The additional binary

variable ut is equal to one if dimension t is constrained, else ut = 0.

To impose the constraint on the minimum length of dimension t of the box

we define, for each k ∈ {1, ...,Kt}, a parameter akt equal to the length of the

interval associated to value k on dimension t ∈ L. This length is defined as

half the distance between the previous and the next point in the ordered list. If

t ∈ G, akt = 1 .

We restrict ourselves to the sum version of the objective function (3). Adapt-

ing the formulation to the mean version of the objective function (2) is trivial

but gives rise to a mixed integer non-linear program which would be too com-

putationally intensive to solve. The MILP formulation of the problem is the
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following:

max
∑
i∈M

(
ci − c̄

)
zi (5)

subject to:

zi ≤ yr
i
t
t ∀i ∈M, t ∈ D : rit 6= ∅ (6)

zi +
∑

t∈D:rit 6=∅

(1− yr
i
t
t ) ≥ 1 ∀i ∈ N (7)

ykt = pkt − qkt ∀t ∈ L, k ∈ {1, ...,Kt} (8)

pkt ≤ pk+1
t ∀t ∈ L, k ∈ {1, ...,Kt − 1} (9)

qkt ≤ qk+1
t ∀t ∈ L, k ∈ {1, ...,Kt − 1} (10)∑

t∈D
ut ≤ N (11)

ykt ≥ (1− ut) ∀t ∈ D, k ∈ {1, ...,Kt} (12)∑
i∈M

zi ≥ dβ|M|e (13)

dt =
∑

k∈{1,...,Kt}

akt y
k
t ≥ ∆t ∀t ∈ D (14)

Inequality (6) expresses that a point i is excluded if one of its coordinate

does not lie in the projection of the box. Constraint (7) imposes that a negative

point is included if all of its coordinates lie within the box boundaries. Observe

that for positive points, this constraint is enforced by the objective function.

For a continuous dimension t ∈ L, the values that are included must represent a

continuous interval and therefore be consecutive. This consecutivity property is

modeled by (8)-(10) with the auxiliary variables pkt and qkt . The variable pkt = 1

if there is at least one ykτ = 1 for τ ≤ t. Similarly, qkt = 1 if there is at least one

transition ykτ = 1 for τ ≤ t. Fig. 2 illustrates the values taken by these auxiliary

variables.
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The total number of constrained dimensions is imposed to be less than N

by (11). If the dimension is unconstrained, ykt = 1 for all k, which is enforced

by (12). Constraints (13) and (14) impose respectively the minimal number of

points in the box and the minimal box length in each dimension.

This mixed integer linear program includes (3D+1)M +D binary variables.

This number can be used to obtain an order of magnitude of the worst cast

complexity of the algorithm. In the worst case scenario, the branch and bound

algorithm, solving the discrete part of the problem, enumerates the whole set of

solutions, leading to a maximum complexity of O(2(3D+1)M+D). However, the

practical complexity is far lower.

5 Heuristic method

This section proposes a heuristic method to find a good candidate box b with

a complexity of O(M2D). This heuristic is decomposed in two steps. First,

a rule induction method provides a list B of good boxes constrained on every

dimension. This rule induction method is decomposed in a peeling and a pasting

phase described later. This is an adaptation of the original PRIM algorithm [2]

which considers only a single box instead of a list of boxes. Second, the heuristic

performs a deconstraint operation which relaxes the box until it is constrained

on only N dimensions. The whole heuristic is summarized in Algorithm 1.

Algorithm 1 Heuristic algorithm

1: B ← peeling phase

2: for all b ∈ B do
3: b← pasting phase(b)
4: b← deconstraint(b)
5: end for
6: return arg maxb∈B f(b)

The first phase of the algorithm is a slightly modified version of PRIM [2].
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This phase consists in two steps: a peeling step, shrinking an initial box, followed

by a pasting step, expanding a given box. The algorithm is independent of the

form of the objective function and can therefore be applied to the mean version

(2) and to the sum version (3) objective function.

The peeling step starts from a list I of all points of the database. The

algorithm removes at each iteration a fraction α of the current points in the

dimension that improves the most the score, until it remains a fraction β of

points from the original set. Each iteration generates one box added to the list

of boxes B. In the case in which we restrict ourselves to a single box, we choose

the last one generated as in the original PRIM algorithm [2]. Each of these

boxes is built using the procedure mkbox(I) defined in the following.

Definition 3. The limits of a box b = mkbox(I), built from a set of included

points I, are given by St(b) = {c ∈ Gt : ∃i ∈ I : xit = c} in dimensions t ∈ G;

lt(b) = mini∈I x
i
t and ut(b) = maxi∈I x

i
t in dimensions t ∈ L.

Note that mkbox(I) can include more than |I| points of M.

The method depends on a parameter α which defines the amount of points

removed at each iteration of the peeling step. To be effective, α must be set to

a small value, typically 5% ≤ α ≤ 10%. Such small values allow each peeling to

be less important and gives opportunity to the algorithm to mitigate an early

bad peeling. These small peelings are the reason why this strategy is called

“patient” compared to other algorithms (e.g. decision trees like CART [10]).

The peeling step is summarized in Algorithm 2. In instruction lines 1 to 3, the

algorithm starts by considering that all points in the corresponding box. Lines

6 to 15 are dedicated to building the list of sets of candidate included points

P. Starting from the list of included point in the last candidate box, I, the

algorithm removes at each iteration α|I| points in each continuous dimension

and adds the resulting sets of points to P a list of sets of candidate included
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points. If the dimension is categorical, the algorithm removes one category and

adds the resulting set of included points to P. This list is filtered in instruction

16 to remove set of points which are not large enough or leading to too small

boxes. Finally, instruction 17 selects the list of points leading to the best score

and stores it in I. Finally, the candidate box is added to the list of candidate

boxes B in instruction 18. The worst-case complexity of this step is O(M2D).

Note that in the original PRIM algorithm [2], the missing values are considered

to belong to a special category. Our implementation is simplified as we consider

that missing values always belong to the box.

Algorithm 2 Rule induction method : Peeling step

1: I ←M, the set of included points in the last peeling
2: B ← ∅, the list of peeled boxes
3: P ← {I}, list of sets of candidate included points at each iteration.
4: while P 6= ∅ do
5: P ← ∅
6: for all t ∈ D do
7: if t ∈ L then
8: P ← P ∪

{
I \ {at most α|I| points ∈ I with the smallest xit 6= ∅}

}
9: P ← P ∪

{
I \ {at most α|I| points ∈ I with the largest xit 6= ∅}

}
10: else if t ∈ G then
11: for all c ∈ xt do
12: P ← P ∪ {{i ∈ I : xt 6= c}}
13: end for
14: end if
15: end for
16: P ← {I ′ ∈ P : |I ′| ≥ β|M| and ∀t ∈ D, dt(mkbox(I ′)) ≥ ∆t}
17: I ← arg maxI′∈P f(mkbox(I ′))
18: B ← B ∪ {mkbox(I)}
19: end while
20: return B

Each box b ∈ B is expanded in the pasting step. This step expands iter-

atively an initial box b on one dimension per iteration until the score cannot

be improved on any dimension. The pasting step is detailed in Algorithm 3.

In each iteration, the algorithm starts from the list of initially included points

I and creates for each dimension t a new list of included points It if the box
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is expanded in dimension t. Continuous dimensions are processed in instruc-

tions 4-7 and categorical dimensions in instructions 8-12. The best expansion

is selected in instruction 15 and accepted in instructions 17-18 if this expan-

sion improves the score, else the algorithm terminates with instruction 20. The

worst-case complexity of the pasting step is O(M2D). Note that one may sort

the database in each dimension at the beginning of the algorithm and exploit

this preprocessing to implement the algorithm efficiently. One may also compute

the score and the inclusion/exclusion of a point in each dimension iteratively.

Algorithm 3 Rule induction method: Pasting step of an initial box b

1: I ←M∩ b, the set of included points in the last pasting step
2: while True do
3: for all t ∈ D do
4: if t ∈ L then
5: It− ← I ∪ {at most α|I| points ∈ M \ I with the largest xit : xit ≤

lt(b) and xiτ ∈ [b.lτ ,b.uτ ] ∀τ ∈ L \ {t}}
6: It+ ← I ∪ {at most α|I| points ∈ M \ I with the smallest xit : xit ≥

ut(b) and xiτ ∈ [b.lτ ,b.uτ ] ∀τ ∈ L \ {t}}
7: It ← arg maxI′∈{It−,It+} f(mkbox(I)′)

8: else if t ∈ G then
9: for all c ∈ Gt \ xt do

10: Itc ← {i ∈M \ I : xt = c and ∀τ ∈ D \ {t}, xτ ∈ b.Sτ}
11: end for
12: It ← arg maxI′∈{Ict :c∈Gt} f(mkbox(I ′))
13: end if
14: end for
15: Ic ← arg maxI′∈{It:t∈D} f(mkbox(I ′))
16: if f(mkbox(Ic)) < f(mkbox(I)) then
17: I ← Ic
18: b← mkbox(I)
19: else
20: return b
21: end if
22: end while

The last step simplifies the box definition and selects the N most important

dimensions. This final step is given in Algorithm 4. In each iteration, the

algorithm expands the candidate box b in each dimension in instructions 3 to
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10. The dimension which decreases the less f(b) is selected in instruction 11 and

this dimension is removed from the list of dimensions to relax Q with instruction

12. This expansion is carried out on the remaining dimensions until the box is

constrained on only N dimensions.

Algorithm 4 Rule induction method: Deconstraint on an initial box b

1: Q ← D
2: while |Q| > N do
3: for all t ∈ Q do
4: bt ← b
5: if t ∈ L then
6: bt.lt ← −∞,bt.ut ← +∞
7: else if t ∈ G then
8: bt.St ← Gt
9: end if

10: end for
11: b← arg maxb′∈{bt:t∈D} f(b′)
12: Q ← Q \ {t}
13: end while
14: return b

Note that the parameter N is only used in the deconstraint phase. Each

iteration of the main loop of Algorithm 4 provides a box with one dimension

less constrained. Running this algorithm with N = 1 can provide in a single

run the evolution of the quality of the process in function of the number of

constrained dimensions.

6 Results

In this section, the previous algorithms are applied to randomly generated

databases and industrial databases. We compare the MILP model with four

versions of the heuristic presented in Section 5. We use the notation OBS (Op-

erational Box Search) to refer to the heuristic presented in Section 5 applied

to a single box with the sum score (3) as objective function. The variant with

the mean version objective function (2) is denoted by OBS Mean. The heuristic
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applied to a list of boxes is denoted by OBS - Multiple Boxes and OBS Mean -

Multiple Boxes. If not said otherwise, the tests are conducted with the arbitrar-

ily chosen parameters: N = 5, α = 5% and β = 20%. The influence of the α and

β parameters have been investigated in the original PRIM article [2]. We choose

to restrict only five dimensions since it seems a reasonable number of controlled

parameters for an industrial process. We impose that the width of the box is

larger than 10% of the initial parameter range for continuous dimensions and

to select at least one category for categorical dimensions.

Independently of the score function, every algorithm outputs a valid box on

the original database (i.e. non centered). The two scores associated with the

box, fµ(b) and fΣ(b) are computed using respectively (2) and (3). In the fol-

lowing results, we compare the improvement with respect to the unconstrained

box including every point of the database. This score improvement provides

an order of magnitude of the expected improvement of the process that can be

achieved using the restriction of the parameters given by the candidate box.

This score improvement is given by

MSI(b) =
fµ(b)− fµ(b0)

fµ(b0)
(15)

where b is the box provided as the solution by the algorithm which is evaluated

and b0 is the box including all points in the database.

The results are organized as follows. A typical run on one industrial database

is detailed in Section 6.1. The algorithms are compared on randomly generated

databases in Section 6.2 and on industrial databases in Section 6.3. All results

have been obtained on two Intel Core i7 with a clock rate of 3.47 GHz and

24 GB of RAM. The mixed-integer linear programs are solved using CPLEX

12.6 with default parameters (including presolve, cutting planes, etc.) using

up to eight threads. The mean values provided in these results are geometric
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means, shifted if required.

6.1 Typical run and influence of the number of uncon-

strained dimensions

Hereafter are discussed results obtained on one of the galvanized steel manu-

facturing database with 101 points, 6 categorical dimensions and 262 numerical

dimensions. Results provided by the five algorithms are given in Table 1. Solv-

ing the problems took 19 seconds with the MILP while the heuristics delivers

their solutions in less than a second. As expected, each algorithm performs bet-

ter on the score function it is optimizing. Since the MILP terminates, it obtains

the optimal solution with respect to the sum score objective function. One can

compare the results given by the heuristic using the sum objective function (3)

to see that it provides a 30% suboptimal solution. Using multiple boxes reduces

the suboptimality to 26%.

The MSI shows that restricting the parameters of the process may increase

the quality between 82.75% using the box provided by the PRIM-based heuris-

tic and 99.55% using the MILP solution. The heuristic using the sum score

function provides lower improvements but a larger box which might be easier

to implement in practice. Note that the MILP obtains a better solution from

the MSI point of view even though the objective function of the MILP is not to

optimize the mean.

Figs. 3, 4, 5 and 6 show the influence of the number of constrained dimen-

sions on the solution. Restricting only a few dimensions has a large impact on

the solution as highlighted by Figs. 3 and 5. The MILP naturally dominates the

other algorithms on the sum score. The MILP requires only four dimensions to

provide a solution with 100% MSI. Following Figs. 3 and 5, the OBS algorithms

should constrain 15 parameters to provide good results for this database. The
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MILP formulation finds a better solution only constraining 4 parameters.

Fig. 4 shows that the sum score for OBS decreases as the number of con-

strained dimensions, N , increases. This behavior is caused by the peeling step

of Algorithm 2. This step imposes to start from a box with only βM points.

The pasting step of Algorithm 3 increases the box size using a greedy method.

This step is known to have little effect on the solution [2]. Consequently, the

OBS algorithm misses easily boxes of intermediate sizes. As the number of con-

strained dimension decreases, the deconstraint phase provides larger boxes with

more positive points and better scores which correct the over-shrinking effect

of the peeling steps. This effect is less important for OBS Multiple Boxes as

the pasting and deconstraint phase may be performed on boxes with more than

βM points.

In Figure 6, the MILP dominates the other algorithms on the MSI as long

as N ≤ 8. For 8 < N ≥ 157, mean OBS obtains better results and for N > 157,

the basic OBS with the sum score function find an even better box. The mean

OBS algorithm may miss this solution since it is a greedy algorithm and the

problem, formulated with the mean version, has many local optima which trap

the greedy algorithm.

6.2 Randomly generated databases

The aim of this section is to present results on randomly generated databases

which are tractable to solve to optimality by the MILP formulation. The follow-

ing tests are conducted on 100 randomly generated databases with 100 points

on 2 categorical and 8 continuous dimensions. The value of the points are gen-

erated following a uniform distribution between 10 and 110. Table 2 provides a

comparison of the algorithms.

As expected, each algorithm performs better on the score function it is opti-
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mizing. Comparing the sum score, the heuristic using the sum objective function

(3) provides a 16% suboptimal solution. Using multiple boxes reduces the sub-

optimality to 8%. The best mean score is obtained using the OBS algorithm

with the mean score objective function. One can note from the results that us-

ing the sum score objective functions, using MILP or OBS, provides only 10%

less MSI but doubles the size of the box. The box obtained has therefore wider

ranges in the constrained dimension which might be, in function of the process,

easier to implement in practice.

6.3 Industrial databases

The following tests are performed on 5 glass manufacturing databases and 25

galvanized-steel manufacturing databases provided by industrial partners. Ta-

ble 3 presents the results with a time limit of two hours. The complete table of

results can be found in the appendix, in Table 5.

On a total of 30 tests, only one test with the OBS heuristic required the two

hours. Most of the tests are completed by the heuristics in less than three min-

utes. The MILP algorithm obtains a feasible solution for 28 problems. Among

these tests, 19 have a guarantee of optimality on the sum score. The mean gap

for the 9 remaining tests is 36.44%. On these tests, OBS multiple boxes obtains

the best sum score since the MILP cannot reach optimality. Surprisingly, the

best MSI is obtained by the heuristic using the sum score objective function.

This motivates the approach of the sum score which in this case performs even

better than using the mean objective function fµ. The sum score provides boxes

twice larger than with the mean score objective function. The results also con-

firm that using the multiple box variant provides substantial improvement of

the quality while requiring in most cases less than twice the computation time.

The ratio of the time taken by the single box version and the multiple box ver-
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sion of the OBS Mean algorithm can be observed on Figure 7. As the number

of dimensions increases, the time taken to test multiple boxes decreases down to

25% of additional time with respect to the obtention of a single box. However,

increasing the number of points increases the time to test multiple boxes.

Table 4 provides the summary results for N = 15. Changing N = 5 to

N = 15 has a larger effect on the MILP algorithm which MSI changes from

29.81% to 40.85%. With this setting, 22 problems where solved by the MILP

algorithm to optimality. The best MSI is given now by the OBS algorithm

using the mean score objective function with an improvement of 5.34% with

respect to the case where N = 5. In practice, we advice to run the heuristic

simultaneously with the sum version and the mean version.

7 Conclusion

This paper describes a technique to optimize the parameters of an industrial

process. An industrial process may be dependent on a substantial amount of

parameters and selecting few of them, impacting the most the process, is a

challenging data analysis task. In particular we wish to find a set of rules, i.e.

intervals on a reduced number of parameters, for which an output value is maxi-

mized. The model-free optimization problem to solve is to find a box, restricted

on a limited amount of dimensions, with the maximum mean value of the in-

cluded points. We compare a machine learning-based heuristic to the optimal

solution computed by a mixed-integer linear program on real-life databases from

steel and glass manufacturing. Computational results show that the heuristic

achieves comparable solutions with respect to the exact approach. However, the

exact approach is computationally too expensive to tackle real life databases.

In such cases, the heuristic delivers better results. Results show that the restric-

tion of five process parameters, on these databases, may improve the quality by
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50%.

The work presented in this paper could be extended along several lines.

Advanced preprocessing may improve the computation times. For example, a

preprocessing algorithm could consider skewness and kurtosis to scale or dis-

card some dimensions of the initial database. Other algorithms could be im-

plemented to tackle this box search problem. For instance, topographic map,

a two-dimensional, nonlinear approximation of a potentially high-dimensional

data manifold, is known to help with the visualizion and exploration of high-

dimensional data [11]. One could use this technique to identify interesting re-

gions of the multidimensional space using self-organized maps and translating

the regions into a box. Another idea would be to learn a decision tree from the

data and to combine interesting zone identified by the tree model to build a

box.
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xi1
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x∅1

?

Box 1Box 2

Figure 1: Example of database with one very negative point x∅ given by the
non-filled circle with its missing coordinate. Other points are positives. If x∅

is removed from the database, the candidate box is box 1. The optimal box is
box 2 which is obtained if we consider x∅ included in dimension 2.
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Figure 2: Example of values of the variable ykt , qkt and pkt for a box in a dimension
t including the third to the fifth point in this dimension.
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Figure 3: Influence of the number of dimension constrained (1 to 20) on the
sum score for one galvanized steel database.

26



0 50 100 150 200 250 300

20
0

25
0

30
0

35
0

40
0

45
0

50
0

55
0

N

S
um

 S
co

re

OBS
OBS Multiple Boxes
OBS Mean
OBS Mean Multiple Boxes
MILP

Figure 4: Influence of the number of dimension constrained (10 to 268) on the
sum score for one galvanized steel database.
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Figure 5: Influence of the number of dimension constrained (1 to 20) on the
MSI for one galvanized steel database.

28



0 50 100 150 200 250 300

70
80

90
10

0
11

0
12

0

N

M
S

I [
%

]

OBS
OBS Multiple Boxes
OBS Mean
OBS Mean Multiple Boxes
MILP

Figure 6: Influence of the number of dimension constrained (10 to 268) on the
MSI for one galvanized steel database.
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Figure 7: Heatmap of the ratio of the time taken by the single box version and
the multiple box version of the OBS Mean algorithm.
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OBS
OBS

Multiple Boxes
OBS Mean

OBS Mean
Multiple Boxes

MILP

Time [s] 0.24 0.48 0.17 0.34 19.00
Sum Score 368.14 392.33 324.65 324.65 527.80
Mean Score 5.58 5.69 8.77 8.77 10.56
MSI [%] 52.60 53.62 82.75 82.75 99.55

Box size [%] 65.35 68.32 36.63 36.63 49.50

Table 1: Comparison of the five algorithms for one galvanized steel database.
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OBS
OBS

Multiple Boxes
OBS Mean

OBS Mean
Multiple Boxes

MILP

Time [s] 0.0034 0.008 0.0005 0.0037 28.77
Sum Score 620.5 676.37 480.13 482.13 736.32
Mean Score 17.41 15.89 22.15 22.24 18.03

MSI [%] 29.92 27.38 37.67 37.8 31.05
Box Size [%] 35.23 42.19 21.41 21.42 39.91

Table 2: Comparison of the algorithms for random databases (M = 100, C = 2,
L = 8).
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OBS
OBS

Multiple Boxes
OBS Mean

OBS Mean
Multiple Boxes

MILP

Mean
time [s]

12.46 17.69 2.21 3.13 669.02

Mean
Sum Score

1009.53 1236.25 608.37 623.06 758.55

Mean
MSI [%]

36.81 44.95 37.90 39.89 29.81

Mean
box size [%]

44.27 41.69 29.40 28.59 40.58

Table 3: Results obtained on the industrial databases (N = 5).
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OBS
OBS

Multiple Boxes
OBS Mean

OBS Mean
Multiple Boxes

MILP

Mean
time [s]

12.51 17.72 2.21 3.11 465.32

Mean
Sum Score

1118.60 1274.93 641.22 643.95 1069.97

Mean
MSI [%]

47.95 48.43 50.14 50.29 40.85

Mean
box size [%]

37.25 41.02 23.13 23.12 45.10

Table 4: Results obtained on the industrial databases (N = 15).
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Name OBS
OBS

Multiple Boxes
OBS Mean

OBS Mean

Multiple Boxes
MILP

Time [s] Time [s] Time [s] Time [s] Time [s]

D Sum Score Sum Score Sum Score Sum Score Sum Score

M MSI [%] MSI [%] MSI [%] MSI [%] MSI [%]

Box size [%] Box size [%] Box size [%] Box size [%] Box size [%]

Gap [%]

Glass 1 0.93 1.53 0.56 1.04 7213.00

70.48 71.63 61.75 62.47 75.78

109 114.95 113.03 142.79 143.50 105.99

1100 38.55 40.36 27.55 27.73 45.36

62.9264

Glass 2 0.06 0.14 0.05 0.14 7201.00

92.51 92.51 90.31 90.31 12.63

53 41.42 41.42 52.26 52.26 2.47

738 41.33 41.33 31.98 31.98 94.72

901.358

Glass 3 0.25 0.49 0.61 1.56 7208.00

−1360.74 −1360.74 −1058.11 −1058.11 −

78 −32.07 −32.07 140.56 140.56 −

9137 20.04 20.04 20.09 20.09 −

−

Glass 4 0.06 0.13 0.04 0.09 7201.00

46.73 46.73 38.79 38.79 44.26

80 47.65 47.65 108.84 108.84 43.84

712 58.01 58.01 20.08 20.08 57.02

133.132

Glass 5 0.09 0.18 0.08 0.17 7201.00

52439.50 52439.50 17944.03 17944.03 35913.80

47 173.63 173.63 144.37 144.37 20.47

1373 21.05 21.05 20.10 20.10 45.45

53.4726

Steel 1 4.85 8.53 0.77 1.28 7240.00

771.04 814.96 456.14 474.46 1443.01
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Name OBS
OBS

Multiple Boxes
OBS Mean

OBS Mean

Multiple Boxes
MILP

Time [s] Time [s] Time [s] Time [s] Time [s]

D Sum Score Sum Score Sum Score Sum Score Sum Score

M MSI [%] MSI [%] MSI [%] MSI [%] MSI [%]

Box size [%] Box size [%] Box size [%] Box size [%] Box size [%]

Gap [%]

265 7.09 20.09 8.30 11.07 16.77

394 72.84 27.16 36.80 28.68 57.61

7.81987

Steel 2 17.78 28.02 0.95 1.43 1419.00

660.10 874.16 422.43 422.43 1159.33

266 8.24 15.96 7.45 7.45 15.14

488 60.25 41.19 42.62 42.62 57.58

0.00127451

Steel 3 0.45 0.86 0.28 0.55 6767.00

395.82 468.34 415.74 421.98 538.98

244 25.83 29.86 29.99 30.85 39.40

154 54.55 55.84 49.35 48.70 48.70

0.0

Steel 4 7162.41 7213.08 730.62 1385.27 7211.00

20227.80 20265.50 10912.81 10912.81 −

250 18.65 18.72 23.43 23.43 −

10954 46.71 46.63 20.07 20.07 −

−

Steel 5 82.07 164.72 2.95 4.53 5404.00

765.74 1482.14 512.78 512.78 2020.40

260 3.31 10.46 8.08 8.08 10.58

1066 74.95 45.87 20.54 20.54 61.82

0.00153221

Steel 6 2035.33 3013.35 57.93 76.93 7204.00

5621.40 6914.04 2740.40 2740.40 10296.50

250 40.90 31.49 19.96 19.96 29.07

4287 20.04 32.00 20.01 20.01 51.64
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Name OBS
OBS

Multiple Boxes
OBS Mean

OBS Mean

Multiple Boxes
MILP

Time [s] Time [s] Time [s] Time [s] Time [s]

D Sum Score Sum Score Sum Score Sum Score Sum Score

M MSI [%] MSI [%] MSI [%] MSI [%] MSI [%]

Box size [%] Box size [%] Box size [%] Box size [%] Box size [%]

Gap [%]

0.0971005

Steel 7 10.34 18.66 1.47 2.35 7201.00

539.25 572.76 321.77 353.57 136.57

259 20.51 14.88 7.68 7.85 1.54

681 20.56 30.10 32.75 35.24 69.46

700.167

Steel 8 2592.65 3502.61 36.18 51.19 2136.00

4855.74 5812.27 2642.59 2642.59 8137.03

249 60.03 43.77 32.63 32.63 41.00

4418 20.01 32.84 20.03 20.03 49.09

0.00614475

Steel 9 3.10 5.27 0.81 1.31 107.00

1147.86 1310.38 850.96 834.72 1777.79

266 15.12 20.74 16.39 18.32 24.04

325 47.69 39.69 32.62 28.62 46.46

0.0

Steel 10 1.13 2.12 0.48 0.87 11.00

474.50 614.87 417.78 463.30 742.90

247 40.61 80.78 45.85 45.98 77.86

218 50.00 32.57 38.99 43.12 40.83

0.0

Steel 11 71.38 102.92 3.99 5.41 217.00

3285.19 4517.21 2659.27 2659.27 5644.89

249 18.53 43.81 45.18 45.18 37.94

1247 60.38 35.12 20.05 20.05 50.68

0.0

Steel 12 0.78 1.57 0.27 0.46 7201.00

37



Name OBS
OBS

Multiple Boxes
OBS Mean

OBS Mean

Multiple Boxes
MILP

Time [s] Time [s] Time [s] Time [s] Time [s]

D Sum Score Sum Score Sum Score Sum Score Sum Score

M MSI [%] MSI [%] MSI [%] MSI [%] MSI [%]

Box size [%] Box size [%] Box size [%] Box size [%] Box size [%]

Gap [%]

998.45 1076.91 701.21 813.21 361.56

264 1.67 1.83 1.57 1.82 1.69

371 65.50 64.69 49.06 49.06 23.45

372.441

Steel 13 235.58 322.02 6.14 8.20 1102.00

3030.93 3375.06 1455.60 1455.60 4727.62

266 46.52 35.41 22.28 22.28 30.99

1684 20.01 29.28 20.07 20.07 46.85

0.00705913

Steel 14 0.24 0.48 0.17 0.34 19.00

368.14 392.33 324.65 324.65 527.80

245 52.60 53.62 82.75 82.75 99.55

101 65.35 68.32 36.63 36.63 49.50

0.0

Steel 15 1.48 2.57 0.55 0.95 12.00

130.87 143.23 115.22 118.22 231.81

266 6.48 6.68 6.42 6.59 9.89

138 58.70 62.32 52.17 52.17 68.12

0.0

Steel 16 48.47 71.70 3.58 4.99 50.00

1796.76 2586.74 1096.97 1315.33 3191.03

266 16.62 35.34 15.04 18.65 33.42

695 64.17 43.45 43.31 41.87 56.69

0.0

Steel 17 75.52 117.52 3.06 4.60 156.00

1993.82 2626.25 818.90 836.64 3799.56

248 49.30 33.59 13.24 13.94 33.03
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Name OBS
OBS

Multiple Boxes
OBS Mean

OBS Mean

Multiple Boxes
MILP

Time [s] Time [s] Time [s] Time [s] Time [s]

D Sum Score Sum Score Sum Score Sum Score Sum Score

M MSI [%] MSI [%] MSI [%] MSI [%] MSI [%]

Box size [%] Box size [%] Box size [%] Box size [%] Box size [%]

Gap [%]

1121 20.07 38.80 30.69 29.79 57.09

0.0

Steel 18 113.81 162.80 6.03 8.54 179.00

4479.98 6390.55 3199.88 3199.88 7979.68

267 108.08 74.80 76.86 76.86 72.27

1144 20.02 41.26 20.10 20.10 53.32

0.0

Steel 19 3.12 5.53 0.74 1.31 7201.00

1133.31 1272.21 865.81 900.88 1546.78

257 273.54 460.60 289.76 448.47 380.25

319 51.72 34.48 37.30 25.08 50.78

1.41818

Steel 20 83.01 122.57 6.55 9.58 135.00

2862.39 3693.37 1860.70 1860.70 4904.25

268 20.19 41.87 42.84 42.84 40.13

964 65.35 40.66 20.02 20.02 56.33

0.0

Steel 21 1.24 2.33 0.40 0.72 16.00

331.61 451.44 394.65 394.65 593.13

264 14.23 27.12 17.92 17.92 30.08

138 65.94 47.10 62.32 62.32 55.80

0.0

Steel 22 0.58 1.09 0.21 0.43 8.00

409.14 476.14 391.70 391.70 630.40

248 854.93 994.93 1548.49 1548.49 1676.50

98 71.43 71.43 37.76 37.76 56.12

0.0

39



Name OBS
OBS

Multiple Boxes
OBS Mean

OBS Mean

Multiple Boxes
MILP

Time [s] Time [s] Time [s] Time [s] Time [s]

D Sum Score Sum Score Sum Score Sum Score Sum Score

M MSI [%] MSI [%] MSI [%] MSI [%] MSI [%]

Box size [%] Box size [%] Box size [%] Box size [%] Box size [%]

Gap [%]

Steel 23 2.73 4.73 0.32 0.52 345.00

548.72 1002.92 397.44 380.52 1103.50

257 360.33 1033.10 453.90 547.69 1017.05

228 70.18 44.74 40.35 32.02 50.00

0.0

Steel 24 84.96 131.16 4.25 6.02 135.00

6303.90 7692.69 2990.58 2990.58 8971.56

267 43.49 67.93 72.70 72.70 68.44

826 70.82 55.33 20.10 20.10 64.04

0.0

Steel 25 3.92 7.12 1.23 2.45 266.00

1022.33 1157.13 491.85 531.46 1688.35

246 50.67 44.75 71.89 72.75 81.34

287 60.63 77.70 20.56 21.95 62.37

0.0

Mean

time [s]
12.46 17.69 2.21 3.13 669.02

Mean

Sum Score
1009.53 1236.25 608.37 623.06 758.55

Mean

MSI [%]
36.81 44.95 37.90 39.89 29.81

Mean

box size [%]
44.27 41.69 29.40 28.59 40.58

Table 5: Results obtained on the industrial databases.
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