Perinatal Group B Streptococcal Disease

Pierrette Melin

National Reference Centre for GBS
Clinical Microbiology, University Hospital of Liege, University of Liege
Content

- Introduction & burden
 - History and historical context of perinatal GBS disease
 - Early and contemporary epidemiology
 - Pathogenesis and risk factors

- Guidelines - Prevention strategies
 - Maternal intrapartum chemoprophylaxis (IAP)
 - Evolution of policies, effectiveness and concerns
 - Towards European consensus
 - Maternal immunization

- Conclusion
INTRODUCTION & BURDEN
Streptococcus agalactiae or GBS

Gram positive cocci
- Encapsulated
- Catalase -
- β-hemolytic
- CAMP test +
- Hippurate +
- Esculine-Orange pigment

10 capsular serotypes (Ia, Ib, II-IX)
3 pilus types (P1, P2a & P2b) alone or combined

- **1887**, Noccard-Mollereau, bovine mastitis
- **1933**, Group B Antigen
- **1964**, severe neonatal sepsis, *Eickhoff et al N Eng J med*
- **1970**, N°1 in neonatal infections
Streptococcus agalactiae or GBS

Streptococcus agalactiae clones infecting humans were selected and fixed through the extensive use of tetracycline

- Genome-based phylogeny reveals the expansion of a few clones
- Human GBS belong mainly to a small number of TcR clones

V.Dacunha, MR.Davies, ..., C.Poyart and P.Glaser

1887, Noccard-Mollereau, bovine mastitis
1933, Group B Antigen

➤ 1970, N°1 in neonatal infections
Group B streptococcal diseases in neonates

- Since the 1970s, leading cause of life-threatening infections in newborns
 - Neonatal illness/death
 - Long-term disabilities

- Maternal morbidity
 - Along pregnancy
 - Peripartum

- Serious diseases among elderly and adults with underlying diseases
 - Significant mortality

GLOBAL public health major concern!
Also in developing countries
GBS Neonatal Infections

A. Schuchat, Clin Microb Rev 1998;11:497-513
GBS Neonatal Infections

A. Schuchat, Clin Microb Rev 1998;11:497-513

80 % EOD

EOD : 80-90 % occur before 24 h
GBS Neonatal Infections

<table>
<thead>
<tr>
<th></th>
<th>EOD</th>
<th>LOD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incidence per 1,000 live births</td>
<td>0.3 – 3</td>
<td>0.5</td>
</tr>
<tr>
<td>Onset</td>
<td>0 – 6 days (or 0-72 hrs)</td>
<td>1 week – 3 months (up 1 y)</td>
</tr>
<tr>
<td>Mean age at onset</td>
<td>12 hrs</td>
<td>1 month</td>
</tr>
<tr>
<td>Transmission</td>
<td>Vertical</td>
<td>Horizontal (vertical ?)</td>
</tr>
<tr>
<td></td>
<td>Intrapartum</td>
<td>At delivery</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nosocomial</td>
</tr>
<tr>
<td></td>
<td></td>
<td>In the community</td>
</tr>
<tr>
<td>Portal of entry</td>
<td>Inhalation → pneumonia → translocation into bloodstream</td>
<td>Likely intestinal</td>
</tr>
<tr>
<td>Clinical presentation</td>
<td>Respiratory distress with fulminant pneumonia Sepsis (Meningitis 5-15%)</td>
<td>Fever Bacteremia Meningitis (25-70%) (Cellulitis, osteomyelitis)</td>
</tr>
<tr>
<td>Mortality</td>
<td>< 10 %</td>
<td>0 - 6%</td>
</tr>
<tr>
<td></td>
<td>(→ 40 % in very premature)</td>
<td></td>
</tr>
<tr>
<td>Capsular serotypes</td>
<td>All (Ia, III, V)</td>
<td>III, mainly Hypervirulent clone ST17 /meningitis</td>
</tr>
</tbody>
</table>
Distribution (%) of capsular types of GBS isolated in Belgium from different groups of patients (1998-2007)

236 neonatal EOD; 64 neonatal LOD; 721 adults
GBS EOD vertical transmission

GBS colonized mothers

60 - 40 %

Non-colonized newborns

40 - 60 %

Colonized newborns
GBS EOD vertical transmission

GBS colonized mothers

Non-colonized newborns

Colonized newborns

60 - 40 %

40 - 60 %

96 - 98 %

Asymptomatic
GBS EOD vertical transmission

GBS colonized mothers

- Non-colonized newborns: 60 - 40%
- Colonized newborns: 40 - 60%
- GBS EOD: 2 - 4%

Risk factors:
- sepsis
- pneumonia
- meningitis
- long term sequelae

CDC estimate:
- 96 - 98% asymptomatic

bioMérieux 2015 /PM
GBS maternal colonization

Risk factor for early-onset disease (EOD) :

vaginal GBS colonization at delivery

- GBS carriers*
 - 10 - 35 % of women (Be: 20-25%)
 - Clinical signs not predictive
 - Dynamic condition
 - Intestinal reservoir
 - Prenatal cultures late in pregnancy can predict delivery status

*: Carriage not restricted to women!
Additional Risk Factors for Early-Onset GBS Disease

- Obstetric factors*:
 - Prolonged rupture of membranes,
 - Preterm delivery,
 - Intrapartum fever
- GBS bacteriuria*
- Previous infant with GBS disease*
- Immunologic:
 - Low specific IgG to GBS capsular polysaccharide

*: No difference in occurrence either in GBS Positive or Negative women, except intrapartum fever

Lorquet S., Melin P. & al.
J Gynecol Obstet Biol Reprod 2005
GBS EOD - Belgian data

- **Incidence**
 - 1985-1990: 3/1000 live births
 - 1999, estimation: 2/1000 live births
 - 2010, estimation: < 1/1000 live births

- **Meningitis**: 10%
- **Mortality**: 5-10%

- **60% EOD (130 cases)**: WITHOUT any maternal/obstetric risk factor except colonization

- **Prenatal screening**
 - Recto-vaginal cultures: 13-35% GBS Positive

P. Melin - 2001, 2007 - Reference laboratory for GBS.
Burden of neonatal GBS early onset diseases in European countries

<table>
<thead>
<tr>
<th>Location</th>
<th>Incidence per 1,000 live-births</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eastern Europe</td>
<td>0.2 - 4</td>
<td>Trijbergs-Smeulders, Pediatr Infect Dis J 2004</td>
</tr>
<tr>
<td>Western Europe</td>
<td>0.3 - 2</td>
<td></td>
</tr>
<tr>
<td>The Netherlands</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>Scandinavia</td>
<td>0.76 - 2</td>
<td></td>
</tr>
<tr>
<td>Southern Europe</td>
<td>0.57 - 2</td>
<td></td>
</tr>
</tbody>
</table>

Data assessing more accurately the true burden are needed

- Carriage rate?
- Ethnicity?
- Sub-reporting?
- Systematic diagnostic approach?
- Virulence?
Stages in the pathogenesis of GBS

neonatal EOD: **Bacterial & individual factors**

Colonization: adhesion to epithelial cells
- different virulence factors (pili, scpB, ...)

Meningitis
- Brain barrier
- Pili, III ST-17
- β-hemolysin, ...

GBS pathogenesis

Sepsis
- IL1, IL6, TNF α, PGE2, TxA2, ...
- Bacteria
- Peptidoglycan
- β-hemolysin, ...

Resistance to phagocytose
- Capsule
- C5a peptidase
-

Phagocytes cells, CPS
- Antibodies, Complement

β-hemolysin, invasins (pili, ...) (pneumonia)

Ascendant transmission (amnionitis)
Stages in the pathogenesis of GBS neonatal disease (EOD & LOD)

Tozi A et al. 2011 http://dx.doi.org/10.1051/medsci/2011274010
Intrapartum antibioprophylaxis
- Universal prenatal screening-based strategy
- Risk-based strategy
- No guideline

Immunoprophylaxis

GUIDELINES FOR PREVENTION OF GBS PERINATAL DISEASE
Stages in the pathogenesis of GBS neonatal EOD: *Bacterial & individual factors*

Colonization: adhesion to epithelial cells different virulence factors (pili, scpB, ...)

Intrapartum antibioprophylaxis

> 4 (2) hours before delivery

Highly effective in preventing GBS EOD *(1st clinical trials in late 80s)*
Stages in the pathogenesis of GBS neonatal EOD: *Bacterial & individual factors*

GBS vaccine
« nearly within reach »

Colonization: adhesion to epithelial cells
different virulence factors (pili, scpB, …)

GBS pathogenesis

- Resistance to phagocytosis
 - C5a peptidase
 - …
- Ascendant transmission (amnionitis)
- β-hemolysin, invasins (pneumonia)

Help for clearing bacteria and preventing development of EOD

Phagocytes cells, CPS Antibodies, Complement

Help for clearing bacteria and preventing development of EOD
Prevention of perinatal GBS EOD

- **Intrapartum antibiotics**
 - Highly effective at preventing EOD in women at risk of transmitting GBS to their newborns (> 4 h)
 - (*clinical trials in late 80s*)

Who is the women at risk?

Risk-based strategy or Screening-based strategy
Prevention of perinatal GBS EOD

- Screening-based strategy

INTRAPARTUM ANTIMICROBIAL PROPHYLAXIS

Main goal:
- To prevent 70 to 80% of GBS EO cases

Secondary:
- To reduce peripartum maternal morbidity
Impact of prevention practices Early- and Late-onset GBS Diseases in the 1990s, U.S.

S. Schrag, New Engl J Med 2000
Why is Screening more protective than the risk-based approach?

Broader coverage of « at-risk » population

- Captures colonized women without obstetric RF
- High level of compliance with recommendations
- Enhanced compliance with risk-based approach cannot prevent as many cases as universal screening
Impact of prevention practices
Early- and Late-onset GBS Diseases, U.S.

Incidence of early- and late-onset invasive group B streptococcal disease in selective Active Bacterial Core surveillance areas, 1989-2008 (CDC 2010)
Prevention of Perinatal Group B Streptococcal Disease
Revised Guidelines from CDC, 2010

Continuing Education Examination available at http://www.cdc.gov/mmwr/cme/conted.htm
European strategies for prevention of GBS EOD

- Intrapartum antibiotic prophylaxis recommended
 - Screening-based strategy
 - France, 2001
 - Belgium, 2003, revision ongoing
 - Germany, 1996, revised 2008
 - Switzerland, 2007
 - Risk-based strategy
 - UK, the Netherlands, Denmark

- No guidelines
 - Bulgaria, ...
Universal screening-based strategy for prevention of GBS perinatal disease

Vagino-rectal GBS screening culture at 35-37 weeks of gestation

For ALL pregnant women

Unless patient had a previous infant with GBS invasive disease or GBS bacteriuria during current pregnancy or delivery occurs < 37 weeks’ gestation

GBS Neg

Not done, incomplete or unknown GBS result

GBS POS

! Facultative! Intrapartum rapid GBS test**

> 1 Risk factor:
- Intrapartum fever ≥ 38°C***
- ROM ≥ 18 hrs

if NO

Intrapartum prophylaxis NOT indicated

if YES

INTRAPARTUM ANTIBIOPROPHYLAXIS INDICATED

bioMérieux 2015 /PM
Adhesion to a common protocol is a key of success
Multidisciplinary collaboration is mandatory
INTRODUCTION & BURDEN
GUIDELINES
IAP - SCREENING
VACCINE
CONCLUSION
Intrapartum IV Antibio-Prophylaxis
(CDC 2010, Belgian SHC 2003)

- **Penicillin G**
 - 5 millions U, IV initial dose, then 2.5 to 3 millions U IV every 4 hours until delivery.

- **Ampicilline**
 - 2 g IV initial dose, then 1 g IV every 4 h until delivery.
 - Acceptable alternative, but broader spectrum, potential selection of R bacteria

- **If penicillin allergy**
 - Patients at low risk for anaphylaxis
 - Cefazolin, 2 g IV initial dose, then 1g IV every 8 h until delivery.
 - Patients at high risk for anaphylaxis
 - Clindamycin, 900 mg IV every 8 hours until delivery.
 - If GBS resistant to clindamycin: use vancomycin, 1 g IV q12h
Intrapartum IV Antibio-Prophylaxis & antibiotherapy

- **Intrapartum antimicrobial prophylaxis (IAP)**
 - Penicillins = first line drugs
 - In case of IgE mediated allergy (risk of anaphylaxis)
 - Clindamycin, if susceptible
 - Vancomycin, if clindamycin resistant or unknown status

- **Treatment of infections**
 - Penicillins = first line drugs
 - +/- combination with aminoglycosides in severe infections
 - According to site of infections
 - Macrolides, clindamycine, fluoroquinolones
Concerns: Clinically relevant antimicrobial resistance

- **Susceptibility to penicillin**
 - Very few « not S » isolates recently characterized in Japan
 - Mutation in pbp genes, especially pbp2x
 - MIC = 0.25 - 1 mg/L
 - No clinical impact?
 - Very few in the U.S.
 - All labs should send to reference lab
 - Any « non-S » isolate for confirmation
 - All invasive isolates for resistance surveillance

Noriyuki Nagano et al, AAC 2008
Will penicillins remain the gold standard?
GBS and non-S to β-lactams

- Existence and molecular mechanisms of clinical isolates with reduced Penicillin susceptibility (PRGBS)
 - First report in Japan by Kimura K et al, AAC 2008
 - Following reports from Japan, USA, Canada

- Penicillin MIC 0.25-1 mg/L
- Ceftizoxime MIC 4-128 mg/L

Acquisition of amino-acid substitutions in PBP2X and in PBP1A
→ elevation of cephalosporins’ MICs
PR GBS versus PR *S. pneumoniae*

- **PR *S. pneumoniae***
 - Penicillin MICs increased by acquiring various amino-acid substitutions in PBPs, including PBP1A and PBP2X

- **Why should we not see the same in GBS?**
 - Risk of highly resistant cephalosporin GBS
 - Risk of increase of MICs to penicillin
PR GBS detection

→ possibly unrecognized by standard antimicrobial susceptibility methods !!

- Recommended methods for initial screening
 - 3-Disk diffusion
 - Oxacillin, ceftizoxime,
 - Ceftibuten (no zone)
 - MICs to oxacillin and ceftizoxime
 - Usually high for PR GBS

Kimura et al, J Clin Microbiol 2009
What do we know today about macrolide - lincosamide Resistance?
Resistance to macrolides/lincosamides
Wide geographical variation of rates
Resistance to macrolides/lincosamides
Wide geographical variation of rates

Resistance to clindamycin:
Constitutive or Inducible R
→ D-Test recommended
Resistance to macrolides/lincosamides on the rise (Invasive isolates of GBS Belgium 1999-2012)
MLS acquired Resistance Phenotypes and genotypes

- **Target modification** (*erm* family genes)
 - Constitutive MLS resistance
 - Inducible MLS resistance (D-zone test)
 - Serotype associated (higher rates: IV, V > III > others)

Cross resistance to macrolides, lincosamides and streptogramin B

- **Active efflux** (*mefA* gene) → M phenotype

 Resistance to 14- & 15-membered ring macrolides (as erythromycin and azithromycin)
MLS acquired Resistance Phenotypes and genotypes

- Target modification (erm family genes)
 - Constitutive MLS resistance
 - Inducible MLS resistance
 Cross resistance to macrolides, lincosamides and streptogramin B

- Active efflux (mefA gene)
 Resistance to 14- & 15- membered ring macrolides (as erythromycin and azithromycin)

- Enzymatic inactivation or ? (Inu genes, Isa genes)
 - Clindamycin resistance
Phenotypes L

- **L phenotype**
 - Inactivation by lincosamide nucleotidyltransférase (lnu(B) and lnu(C) genes)
 - New Zealand, Canada, USA, Asia, Argentina

- **LS_A or LS_A P phenotype**
 - Cross resistance to lincosamides, streptogramin A and pleuromutilin
 - *lsa(C) gene*
 - New Zealand (*Malbruny et al.*, AAC, 2011)
 - Belgium (*J.Descy et al.* LISSSD abstract 100)
 - 0.6% from 1329 isolates (2008-2013)
Emergence of resistance is unavoidable
- But how fast?

Transmission of Resistant genes « in package »!
- Risk of increase of multi-resistance
- Threat for both prophylaxis and therapy

Emphasize the need for
- careful epidemiologic monitoring
- good clinical laboratory AST practice
Antibiotics

<table>
<thead>
<tr>
<th>Antibiotics</th>
<th>About Resistance</th>
<th>Epidemiology surveillance by Nat.Ref.C.</th>
<th>AST - Routine lab methods</th>
</tr>
</thead>
</table>
| Penicillin and other β-lactams | • Still very rare
• Possibly unrecognized | Mandatory | Initial screening by with 3-disks diffusion
To implement in clinical labs worldwide? |
| Erythromycin – Clindamycin | • Globally on the rise
• National differences
• Evolution of genetic supports
• L phenotype emerging | Mandatory | • AST for E & C
• D-zone Test synergy testing if E R
Already recommended |
| Gentamicin | • Emerging in some countries
• Not routinely screened | Mandatory | HLR determination for severe infections
Method ??? |
| Fluoroquinolones | • Emerging in Asia
• Rare elsewhere | Mandatory | No special trick |
Concerns about potential adverse / unintended consequences of prophylaxis

Management of the neonate at risk for early onset Group B streptococcal disease (GBS EOD): new paediatric guidelines in Belgium

- **Management of neonates**
 - Increase of unnecessary evaluation
 - Increase of unnecessary antimicrobial treatments

→ **Algorithm for secondary prevention of EOD among newborns**
 - Symptoms; maternal chorioamnionitis; prophylaxis; gestational age; time of rupture of membrane

Rem.:
80-90 % of GBS EOD are symptomatic < 24 h of live
Remaining burden of GBS EOD
Missed opportunities

In spite of universal screening prevention strategy
In spite the great progress
Cases still occur

- Among remaining cases of EOD
 - Some may be preventable cases
 - Missed opportunities for (appropriate) IAP
 - False negative screening

CDC revised guidelines 2010
DEVANI project, unpublished data 2011
SCREENING
FOR GBS COLONIZATION
Antenatal GBS culture-based screening

Goal of GBS screening
To predict GBS vaginal (rectal) colonization at the time of delivery

- Critical factors influencing accuracy
 - Swabbed anatomic sites
 - Timing of sampling
 - Screening methods
 - Culture
 - *Procedure*
 - *Media*
 - Non-culture
Optimal time for screening
35-37 weeks gestation

Culture-based screening done 1 to 5 or ≥ 6 weeks before delivery (Yancey, 860 cases; Melin, 531 cases)

Not 100% as colonization is dynamic

Optimal time for screening
35-37 weeks gestation

Culture-based screening done 1 to 5 or > 6 weeks before delivery (Yancey, 860 cases; Melin, 531 cases)

Melin, 13-16% GBS Pos
PPV= 56%
NPV= 95%
or 5% False negative
or 30% of GBS pos in labor not detected with prenatal screening!

Crucial conditions to optimize SCREENING

- **WHEN** 35-37 weeks
- **WHO** ALL the pregnant women
- **Specimen** Vaginal + rectal swab(s)
- **Collection** WITHOUT speculum
- **Transport** Transport/collection device/condition (non nutritive medium: Amies/Stuart or Granada like tube) (type of swab)(Length and T°)
- **Request form** To specify prenatal « GBS » screening
- **Laboratory procedure**

(CDC 2010 - Belgian SCH 2003)
From direct plating on blood agar
Evolution of culture methods

Use of selective enrichment broth
- To maximize the isolation of GBS
- To avoid overgrowth of other organisms

Use of differential agar media
Recommended by some European guidelines (+ CDC 2010)

1983, 1992
Pigment-based

2005
Streptob ID

2007
Streptob B Select

2012
Brilliance StrepB

GRANADA
(M.de la Rosa, JCM)
Which agar or which combination?

+/- Blood agar

Workload - costs - extra-testing - non β-hemolytic GBS detection to be considered
Standard procedure

Vagino-rectal swab or
Vaginal & rectal swabs

Inoculate swab(s) in 1 Lim broth

LIM broth

Overnight
And subculture following
at 35-37°C
to one of the
media
INTRODUCTION & BURDEN | GUIDELINES | SCREENING | VACCINE | CONCLUSION

LIM broth

Overnight
And subculture
following
at 35-37°C
to one of the
media

Granada
agar
Anaero

StrepB
Select
Ambient air

ID
StreptoB
Ambient air

48 h at 35-37°C
Optional procedure

Vagino-rectal swab or Vaginal & rectal swabs

Inoculate swab and streak to at least one of the following media

- ID StreptoB
- StrepB Select
- Blood agar ± CNA

ID StreptoB

18 h at 35-37°C in appropriate atmosphere

And

LIM broth

Overnight at 35-37°C

If no GBS identified on direct plate(s):
proceed as in standard procedure.
Reading and processing of the cultures

Identification: Group B Antigen or MALDI-TOF MS
Crucial conditions to optimize SCREENING

- **WHEN**: 35-37 weeks
- **WHO**: ALL the pregnant women
- **Specimen**: Vaginal + rectal swab(s)
- **Collection**: WITHOUT speculum
- **Transport**: Transport/collection device/condition
 - (non nutritive medium: Amies/Stuart or Granada like tube) (type of swab)(Length and T°)
- **Request form**: To specify prenatal « GBS » screening
- **Laboratory procedure**

(CDC 2010 - Belgian SCH 2003)
Crucial conditions to optimize SCREENING

Transport-collection system & transport-storage condition

- Specimen storage in transport medium and detection of group B streptococci by culture.

Recovery of group B streptococci (GBS) was assessed in 1,204 vaginorectal swabs stored in Amies transport medium at 4 or 21°C for 1 to 4 days either by direct inoculation onto Granada agar (GA) or by culture in blood. These data indicate that viability of GBS is not fully preserved by storage of vaginorectal swabs in Amies transport medium, mainly if they are not stored under refrigeration.

➢ Belgian Guidelines (2003, SHC)

“Specimens should be placed in a non-nutritive transport medium (e.g., Amies or Stuart's without charcoal). In these conditions, viability of GBS is warranted for at least 48 h at room temperature or in a fridge (2 - 8°C).

Specimen labels should clearly identify that specimens are for group B streptococcal culture. Swabs should reach the lab within 48 h of collection.”
IMPROVEMENT OF TRANSPORT CONDITION OF SWABS FOR GROUP B STREPTOCOCCAL (GBS) SCREENING

National Reference Centre for GBS, University Hospital of Liège, Liège, Belgium

To sustain viability
Whatever is storage T° for a few days

Use of a selective enrichment Lim broth as transport media
Results:
Recovery of GBS in Lim BD at 4°C, RT and 35°C

Granada tube: not shown, dramatic drop at 48-72h
Transport conditions to be recommended for optimizing GBS antenatal screening
Belgian Health Superior Council, 2015

- **Transport system**
 - Use of a selective enrichment Lim broth with a flocked swab (*BD*, *Copan*, *bioMérieux*, i.e.)

- **Transport and storage condition**
 - At RT° (up to 35°C)
 - As soon as possible
 - Viability sustained at least 4 days

- **Remark**
 - If use of Amies or Stuart medium (non nutritive medium)
 - To be processed as soon as possible within 24 hours (max 48 h)
Prenatal culture-based screening: Limiting factors

- Positive and negative predictive values
 - False-negative results
 - Failure of GBS culture (oral ATB, feminine hygiene) or new acquisition
 - Up to 1/3 of GBS positive women at time of delivery
 - Continuing occurrence of EO GBS cases
 - False-positive
 - Positive prenatal screening /negative at time of delivery
 - Unnecessary IAP

Need for more accurate predictor of intrapartum GBS vaginal colonization
Prenatal culture-based screening: Limiting factors

- **Unknown GBS status at presentation for delivery**
 - Screening performed but result not available
 - Women with no prenatal care

Risk based strategy

- 60% at GBS risk not identified
- > 10% of unnecessary IAP

Need for rapid accurate predictor of intrapartum GBS vaginal colonization
Alternative to GBS prenatal screening: intrapartum screening
Theranostic approach

Turnaround time
collect specimen at admission

Cost-effective

Optimal management of patient

30-45 minutes, 24 hrs/7 d. robust

Benitz et al. 1999, Pediatrics, Vol 183 (6)

Results

€€€

- Full automation
- With internal QC
- Easy to perform, to interpret
- TRAINING!

- Sensitivity > 90%
- Specificity > 95%

€€€

- Effective

• Sensitivity -effective
- Specificity > 95%
GUIDELINES

Intrapartum GBS screening and antibiotic prophylaxis: a European consensus conference

Towards « European Consensus »

Decision taken by a European working party (Neonatologists, obstetricians, microbiologists) including countries with screening-based IAP, with risk-based IAP strategies or nothing (June 2013, Florence, Italy)

Main guidelines

- Universal screening at time of delivery
 - POCT with high PPV and NPV
 - Real time PCR or other methods
 - TAT < 1 hour
- IAP for all GBS positive pregnant women
 - documented by intrapartum testing (or late pregnancy test if performed)
- Late pregnancy prenatal screening in known penicillin allergic women
 - Determination of clindamycin susceptibility if GBS positive screening
Intrapartum screening theranostic approach: expected advantages

- Inclusion of women without prenatal screening/care
- Identification of women with change of GBS status after 35-37 wks gestation
- Increased accuracy of vaginal GBS colonization status at time of labor & delivery
- No antimicrobial susceptibility results (in case of penicillin IgE mediated allergy)

IAP addressed to right target
- Reduction of inappropriate/unnecessary IAP
- Broader coverage of « at GBS risk women »

Improvement of prevention
Real Time PCR for intrapartum screening

- Advance in PCR techniques & development of platforms
 - BD GeneOhm™ Strep B Assay (+/- 1 hr) (in laboratory)
 - Xpert GBS, Cepheid (35-45 min) (can be performed as a POCT)
Required analytical specification for rapid intrapartum test

- High sensitivity and specificity
 - Minimum 90% and 95% respectively
- Full automation with integrated internal controls
- Easy to perform and interpret by nurses
- Time to result: < 1 hour
- 24 h / 7 days availability

Xpert® GBS for intrapartum screening

- Real Time PCR on GeneXpert system
 - Amplification of a conserved region adjacent to the cfb gene of GBS
- On vaginal or vagino/rectal swab
- Fully automated
- Easy handling (*2 min hands on time*)
- Result in 35-45 minutes

- A sample-processing control (SPC)
 - To monitor processing conditions
- Internal control (IC)
 - To monitor PCR conditions and the absence of reaction in...
Xpert® GBS for intrapartum screening

(Selected paper amongst many others)

Diagnostic Accuracy of a Rapid Real-Time Polymerase Chain Reaction Assay for Universal Intrapartum Group B Streptococcus Screening

Najoua El Helali, Jean-Claude Nguyen, Aïcha Ly, Yves Giovangrandi and Ludovic Trinquart

Clinical Infectious Diseases 2009;49:417–23

- 968 Pregnant women
- Intrapartum Xpert GBS, Cepheid (performed in lab)
 - vs intrapartum culture
 - Sensitivity 98.5%
 - Specificity 99.6%
 - PPV 97.8%
 - NPV 99.7%
 - antenatal culture (French recom.)
 - (vaginal swab/CNA-BA)
 - Sensitivity
 - Specificity
 - PPV 58.3%
 - NPV 92.1%
Cost and effectiveness of intrapartum group B streptococcus polymerase chain reaction screening for term deliveries.

El Helali N, Giovangrandi Y, Guyot K, Chevet K, Gutmann L, Durand-Zaleski I

Obstet Gynecol 2012 Apr;119 (4):822-9

<table>
<thead>
<tr>
<th>2009</th>
<th>2010</th>
</tr>
</thead>
<tbody>
<tr>
<td>Antenatal screening</td>
<td>Xpert GBS intrapartum screening</td>
</tr>
<tr>
<td>11.7% GBS POS</td>
<td>16.7% GBS POS</td>
</tr>
<tr>
<td></td>
<td>Less GBS EOD & less severe</td>
</tr>
</tbody>
</table>

Cost neutral per delivery
Xpert® GBS
POC test in the delivery room study

Objectives

1. To assess the practical aspects and analytical performances
 - Tests performed by midwives
 - *Evolving team of +/- 50 midwives*
 - For screening all women at onset of labor

2. To evaluate the cost-effectiveness of the intrapartum screening strategy

→ To consolidate the proposal of the European Expert Group
Real-time PCR, very promising, BUT ...

- Rapid, robust & accurate technology
- Still an expensive technology (specific equipment)
 - Cost effective ?
 - Need for more cost-effective clinical study → 2014-2015 CHULg & UIA
- Logistic
 - 24 hours 7 days
 - In the lab?
 - In the obstetrical department as a POCT ?
- In combination with prenatal screening strategy ?
 - CDC 2010 : for women with premature delivery or no prenatal care
- No antimicrobial result
 - In the future detection of R genes, but mixed microbiota !
Real-time PCR, very promising, BUT ...

Xpert® GBS POCT in the delivery room

- Theoretical superior clinical value
 - *versus* antenatal screening

- Looks like easy to perform, BUT ...
 - Careful training of midwives
 - High turn-over in midwives team
 - Performances to be verified on EACH site!
 - To be supervised closely by the lab
 - Need for an internal specimen control
 - Role of excess of mucus?
Real-time PCR, very promising, BUT ...

Xpert® GBS POCT in the delivery room

Not ready as a standalone screening

- High specificity but varying sensitivities!
- Could be combined with risk factor strategy ??
- Some expected improvements to secure the result AND the patient management
Prevention of GBS EOD and LOD
Prevention of maternal diseases

VACCINE
Maternal GBS immunization

Could maternal immunization be an alternative?

- Protection against both EOD & LOD?
- Bypassing concerns related to antimicrobial resistance?
- Cost-effectiveness?
- Adjunctive to screening & IAP?
Background

Long-standing data supports protection of maternal anti-CPS Ab

Lancefield’s observations

- Demonstration of protection against lethal GBS infection in a mouse model by antibodies to the CPS of GBS
- Passive transfer of anti-CPS Ab protects newborn mice
Background

Long-standing data supports protection of maternal anti-CPS Ab

- Correlate between maternal low level of CPS type Ab (III, Ia & Ib) at time of delivery and risk for development of GBS EOD

- Human serum containing sufficient concentrations of Ia, Ib, II, III and V CPS-specific IgG promotes efficient opsonization & phagocytosis of homologous strain in vitro and protection from experimental infection in vivo.

Baker C et Kasper D, 1976, NEJM
Background
First generation of CPS vaccine

- Disappointment from studies of uncoupled first generation purified native GBS CPS vaccines in healthy adults
- Demonstration of feasibility of vaccine prevention of GBS disease
- Need for improvement of immunogens
- Success story of polysaccharide-protein conjugate vaccine technology in preventing *Hi b* and *S. pneumoniae* infections in infants
Background

- Expectation of polysaccharide-protein glycoconjugates
 - T cell-dependent response
 - Immunological memory & long term protection
 - Predominantly IgG1 subclass → improved transplacental transport
 - Increase likelihood of protection of mother and infant
Maternal vaccination allows infant protection

- Placental transfer increases markedly > 32 weeks

Vaccine for pregnant women:
Likely the most effective, sustainable and cost effective approach
CPS
Conjugate CPS
Surface proteins
Pili proteins
NN fusion protein

CANDIDATE VACCINES
GBS Vaccines, since the 1980s
Challenges

Native capsular polysaccharide vaccines (1st gen)

- 10 serotypes
 - Different distributions
 - EOD, LOD, invasives infections in adults
 - Geographically, along time, ATB pressure

![Graph showing distribution of serotypes across different groups](image-url)
GBS Vaccines, since the 1980s
Challenges

Native capsular polysaccharide vaccines (1st gen)
- 10 serotypes
 - Different distributions
 - EOD, LOD, invasives infections in adults
 - Geographically, along time, ATB pressure

Conjugated vaccines (2nd gen)
(Channing laboratory, Harvard medical school, Boston)
- CPS III-Tetanus Toxoid
- Monovalent Ia, Ib, II and V CPS –TT
- Tested for immunogenicity in healthy adults
- Multivalent conjugated vaccines Ia, Ib, (II), III (and V)
GBS Vaccines, since the 1980s
Challenges

Capsular polysaccharide - TT vaccines
Capsular polysaccharide – CRM₁₉₇ vaccines
(Second generation)

- Dosage and route of administration
- Immune response
- Duration of immunity and protection
- Safety studies
GBS Vaccines, since the 1980s Challenges

GBS Protein-based Vaccine

- Ag = Surface proteins
 - Cross protection against different serotypes
 - Better immunogenicity
 - Humoral response T-cell dependent
 = long lasting immunity
Protein-based Vaccines

<table>
<thead>
<tr>
<th>Protein</th>
<th>Protective Ab (in mouse)</th>
<th>associated serotypes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alpha-like proteins</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alpha</td>
<td>Yes</td>
<td>Ia, Ib et II</td>
</tr>
<tr>
<td>Alp1</td>
<td></td>
<td>Ia</td>
</tr>
<tr>
<td>Rib</td>
<td>Yes</td>
<td>III</td>
</tr>
<tr>
<td>Alp2</td>
<td>Yes</td>
<td>V, VIII</td>
</tr>
<tr>
<td>Alp3</td>
<td>Yes</td>
<td>V, VIII</td>
</tr>
<tr>
<td>Beta C protein</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C5a peptidase</td>
<td>Yes</td>
<td>All</td>
</tr>
<tr>
<td>Sip (1999)</td>
<td>Yes</td>
<td>All</td>
</tr>
<tr>
<td>BPS</td>
<td>Yes</td>
<td>All</td>
</tr>
</tbody>
</table>

Sip = Surface Immunogenic Protein (Brodeur, Martin, Québec)

BPS = Groupe B Protective surface Protein
Protein-based Vaccines

Reverse vaccinology approach
Knowledge of complete GBS genome

- Comparaison of genomes from 8 different GBS serotypes (Novartis)

 - 312 surface proteins were cloned
 - 4 provide a high protective humoral response in mouse
 - Sip and 3 others
 - The 3 other proteins = « pilus like structures »
 - PI 1, PI 2a & 2b

D.Maione et al, Science 2006
GBS « pilus like structure »

- Highly immunogenic proteins
- Elicit protective and functional (opsonophagocytosis) antibodies
- Virulence factor
 - Adhesion
 - Transcytose through cells
Protein-based Vaccines

GBS-NN fusion protein
From Rib and AlphaC surface proteins of GBS

- Based on novel vaccine epitopes identified in the N-terminal regions of the Rib and AlphaC surface-proteins of GBS
- Vaccine candidate is a non-glycosylated fusion protein

Rib and AlphaC surface proteins of GBS

<table>
<thead>
<tr>
<th>Rib</th>
<th>GBS-NN Fusion protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>174</td>
<td>N R R R R R R R R R R</td>
</tr>
<tr>
<td>170</td>
<td>N R R R R R R R R R R</td>
</tr>
</tbody>
</table>

Non-immunodominant Immunodominant Repeats

Cell Host & Microbes 2, 427-434, 2007

Highly Immunogenic
Protein-based Vaccines

GBS-NN fusion protein
From Rib and AlphaC surface proteins of GBS

- Based on novel vaccine epitopes identified in the N-terminal regions of the Rib and AlphaC surface-proteins of GBS
- Vaccine candidate is a non-glycosylated fusion protein
- Highly immunogenic and anti-GBS-NN antibodies more protective than antibodies to full-length proteins

A novel protein-only, single component, GBS vaccine covering 95% of clinical isolates
CRM-Conjugate CPS
NN Fusion protein
Cost effectiveness studies

CANDIDATE VACCINES
What is ongoing in 2015?
Novartis GBS Vaccine
Trivalent glycoconjugate vaccine

- CRM conjugated CPS Ia, Ib and III
- Trivalent conjugate coverage: 79 % globally
- Phase I completed, and Phase II ongoing

- Phase III study: (EU/US/Global)
 - Size: >10,000 mothers → >10,000 infants

Planned start 2015

- Eligibility: women between 28-35 wks gestation
- End-points: Mother/infant safety; vaccine immunogenicity (efficacy); infant response to CRM-containing vaccines
Minervax GBS Vaccine
Single component NN fusion protein

- Anticipated coverage: 95% of isolates
- Clinical trial in healthy adults: Q2-2015
- EU funding FP7 Programme HEALTH for the development of a novel innovative GBS vaccine candidate
- Other sources of funding
Editorial

Introduction: Addressing the challenge of group B streptococcal disease

- **Introduction**, Rappuoli & Black
- **GBS Review**, Carol Baker
- **Overview GBS epidemiology**, Paul Heath
- **GBS epidemiology and vaccine needs**, Melin & Efstratiou
- **GBS epidemiology in developing countries**
- **IAP in USA et Vaccine implications**, S.Schrag & Verani
- **GBS maternal vaccines Past Present and Future**, Chen & Kasper
- **GBS Public awareness** etc
- **Prevention through Vaccination**, M. Edwards
- **GBS Vaccination in pregnancy**, P. Ferrieri
- **GBS vaccine Phase III trial**
GBS vaccine - Conclusion

- CPS-glycoconjugate vaccine
 - 3 to 5-valent glycoconjugate vaccine (Ia, Ib, II, III and V)
- CPS-CRM$_{197}$/Pili vaccine
- NN-fusion protein vaccine

- Immunogenicity
- Safety
- Efficacy determination ongoing
- Impact on colonization: unknown
Maternal GBS immunization Conclusion

- Immunization at 28-32 weeks
- Prevention at least 85% of invasive GBS disease in neonates and young infants
- Potential reduction
 - of incidence of maternal invasive GBS infection
 - of premature births, stillbirths related to GBS infection
- Cost-effective in high and low income countries
CONCLUSION
Take home messages
In Europe, as globally

Neonatal GBS diseases

- EOD and LOD, a public health concern
- IAP efficient for prevention of EOD
 - Best strategy still a matter of debate
 - Not 100% efficient
 - No effect on LOD
- IAP not widely recommended
- Towards European consensus
- Need better data assessing more accurately the true burden

GBS vaccine eagerly expected
- Appears to be within reach
Summary

“Screening” Prevention strategies

- **Culture-based GBS prenatal screening**
 - To optimize critical factors
 - Improved by selective differential agars
 - False +/- False - !
 - Expected improvement from transport system

- **Rapid intrapartum screening**
 - Real time PCR
 - Yes but costs, logistic, …
 - Need for more clinical and cost effectiveness trials