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Abstract

We build upon recent advances on the distributional aspect of Stein’s method to propose a novel
and flexible technique for computing Stein operators for random variables that can be written as
products of independent random variables. We show that our results are valid for a wide class of
distributions including normal, beta, variance-gamma, generalized gamma and many more. Our
operators are kth degree differential operators with polynomial coefficients; they are easy to obtain
even when the target density bears no explicit handle. We apply our toolkit to derive a new formula
for the density of the product of k independent symmetric variance-gamma distributed random
variables, and to study the asymptotic behaviour of the K-distribution under different regimes; this
has implications in the analysis of radar signal data.
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1 Introduction

1.1 Motivation

Let X and Y be real random variables with respective laws L(X) and L(Y ) which are expected to be
close in some sense. Non asymptotic assessments of the closeness of L(X) and L(Y ) are often performed
in terms of probability metrics such as the total variation distance supA∈B(IR) |IP(X ∈ A)− IP(Y ∈ A)|,
the Kolmogorov distance supx∈IR |IP(X ≤ x)− IP(Y ≤ x)| or the Wasserstein (a.k.a. Kantorovitch)
distance

∫
IR |IP(X ≤ x)− IP(Y ≤ x)| dx. Except in the simplest cases, the distribution functions of X

and Y can not both be written in closed-form, thus providing exact evaluation of such metrics is not
tractable. The most classical approach to the estimation of probabilistic discrepancies relies on the
study of characterizing integral operators of the form φX(T ) = IE [T (X)], leading to the comparison of
characteristic functions, of moment generating functions, etc. The gist of the approach, pioneered in
[5], is to use inversion formulas to transfer the problem of estimating the chosen metric into that of
estimating the differences between φX(T ) and φY (T ).

One of the main contenders to the classical characteristic function approach is due to [40] and rests
implicitly on a comparison of well-chosen characterizing differential operators generally referred to
as Stein operators. Informally, if X has density p with respect to some dominating measure µ and if
there exists a linear operator L such that L(p) = 0 then a Stein operator for X is any linear operator
A which is a dual to L with respect to integration in L2(pdµ) (a precise definition will be given in
Section 1.3). If X and Y have operators AX and AY , respectively, then one can assess the difference
between L(X) and L(Y ) by estimating the difference between the actions of AX and AY over well
chosen classes of functions. Stein’s masterstroke of insight provides a way of using this difference in
order to derive estimates on the above mentioned probability metrics by using the representation

dH(X,Y ) = sup
h∈H
|IEh(X)− IEh(Y )| = sup

f∈F(H)
|IE [AXf(X)]− IE [AY f(X)]| (1)
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with H = {IA, A ∈ B(IR)} (for the total variation distance), H =
{
I(−∞,x], x ∈ IR

}
(for the Kolmogorov

distance) or H = {h : IR→ IR Lipschitz with constant 1} (for the Wasserstein distance) and F(H) a
well-chosen class of functions (see, for example, [30, Chapter 3] for details when L(X) = N (0, 1), the
standard normal distribution).

The first key to setting up Stein’s method for a target X is of course to identify the operator
AX . A general canonical theory is available in [25], upon which we shall dwell in Section 1.3. Many
general theories have been proposed in recent years. These are relatively easy to setup under specific
assumptions on the target density, see https://sites.google.com/site/steinsmethod/ for an overview of
the quite large literature on this topic. In the case where the target has a density with respect to the
Lebesgue measure, an assumption which we impose from here onwards, then adhoc duality arguments
are easy to apply for targets X whose densities satisfy explicit differential equations. For instance
the p.d.f. γ(x) = (2π)−1/2e−x

2/2 of the standard normal distribution satisfies the first order ODE
γ′(x) + xγ(x) = 0 leading, by integration by parts, to the well-known operator Af(x) = f ′(x)− xf(x).
By a similar reasoning, natural first order operators are easy to devise for target distributions which
belong to the Pearson family [37] or which satisfy a diffusive assumption [8, 23]. There is a priori no
reason for which the characterizing operator should be of first order and a very classical example is
the above mentioned standard normal operator which is often viewed as Af(x) = f ′′(x)− xf ′(x), the
generator of an Ornstein-Uhlenbeck process (see, for example, [3]). Higher order operators whose order
can not be trivially reduced are also available : [14] obtains a second order operator for the entire
family of variance-gamma distributions (see also [16]), [35] obtain a second order Stein operator for the
Laplace distribution, and [33] obtain a second order operator for the PRR distribution, which has a
density that can be expressed in terms of the Kummer U function. More generally, if the p.d.f. of X is
defined in terms of special functions (Kummer U , Meijer G, Bessel, etc.) which are themselves defined
as solutions to explicit dth order differential equations then the duality approach shall yield a tractable
differential operator with explicit coefficients.

In many cases the target distribution is not defined analytically in terms of its distribution but
rather probabilistically, as a statistic (sum, product, quotient) of independent contributions. Applying
a direct duality argument or requiring in any way explicit knowledge of the density in order to obtain
Stein operators for such objects is generally not tractable, and new approaches must be devised. In [2],
a Fourier-based approach is developed for identifying appropriate operators for arbitrary combinations
of independent chi-square distributed random variables

Xsum
L
=

q∑
i=1

αi(X
2
i − 1) (2)

where (Xn)n≥1 is a sequence of i.i.d. standard normal random variable; this includes for instance
the chi-square as well as several particular instances of the variance-gamma class. In [17, 15], an
iterative conditioning argument is provided for obtaining operators for random variables which can be
represented as

Xprod
L
=

q∏
i=1

Xi (3)

where (Xn)n≥1 is a sequence of i.i.d. beta, gamma or mean-zero normal random variables.
In spite of the increasing body of literature devoted to the topic of Stein operators, there is still an

inherent vagueness even at the very core of their construction. Indeed such operators are not unique
and, moreover, given any operator AX for X then one can churn out infinitely many more operators
of the form f 7→ AX(T (f)) by choosing any suitable transformation T . Hence it is not a priori clear
which operator one should use for any given target, or even what characteristics one needs to seek in
order to construct a “good” Stein operator. In view of the current state of literature, the consensus
seems to be that the following three constraints are most desirable.

1. The operator is characterizing : there exists a collection of functions F such that IE [AXf(Y )] = 0
for all f ∈ F if and only if L(Y ) = L(X).

2. The operator is generic : the collection F contains all infinitely differentiable functions with compact
support.
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3. The operator is elementary and differential : there exist d ≥ 1 an integer and (aj)j=1,...,d a sequence
of polynomials such that

AXf(x) =

d∑
j=1

aj(x)f (j)(x) (4)

with f (j)(x) the jth derivative of f at x (recall that we are in the absolutely continuous setting).

The first two constraints are not essential and several authors have worked with operators which violate
either (or even both), see, for example, [6] when the target is exponentially distributed. Throughout
the literature the third constraint is crucial for the operator to be of use for applications. In this paper,
we pursue the work started in [17, 15] and identify the appropriate format for the An by which one
can easily deduce an explicit operator for any random variable of the form (3). Our approach will be
shown to provide operators satisfying Constraints 2 and 3.

1.2 Operators for functionals

Formally, the following easy-to-prove result (see, for instance, [31]) provides an answer to all our queries
on the topic of Stein operators for random variables which can be written as functionals of independent
contributions.

Proposition 1.1. Let X be a random variable with Stein operator AX acting on F(X) some class
functions. Let T : IR2 → IR be non constant in its first coordinate, and let Y be a random variable
independent of X. Then

AT (X,Y )g(z) = IE

[
AX

(
g(T (X,Y ))

∂xT (X,Y )

) ∣∣T (X,Y ) = z

]
(5)

is a (weak) Stein operator for T (X,Y ) on F(X) (see Definition 1.2).

This means that if we know the operator for one of the contributions then we can, in principle,
deduce an operator for the statistic (and Proposition 1.1 is easy to generalize to statistics of an arbitrary
number of independent contributions). For example if X,Y are independent standard normal then
AXg(x) = g′(x)− xg(x) and, choosing T (x, y) = x+ y, we immediately obtain by independence and
equality in distribution of X and Y that

AX+Y g(z) = IE
[
g′(X + Y )−Xg(X + Y )

∣∣X + Y = z
]

= g′(z)− z

2
g(z)

which is none other than the operator for Z ∼ N (0, 2) a centered normal random variable with variance
2, as expected. Such a simple argument breaks down if T (X,Y ) = XY because then (5) becomes (still
under the assumption that X,Y are i.i.d. standard normal)

AXY g(z) = IE

[
Y g′(XY )−Xg(XY )

Y

∣∣XY = z

]
= g′(z)− IE

[
X

Y

∣∣XY = z

]
g(z).

This first order operator is uneasy to handle and the more appropriate operator is known from [17] to
be

AXY g(z) = zg′′(z) + g′(z)− zg(z),

a second order operator. The passage from the former to the latter permits to satisfy Constraint 3 at
the cost of a higher degree in the characterizing operator. In the sequel we will see that such changes in
the order of the operator are far from anecdotal and rather reflect deeply on the inherent randomness
of the target distribution. For instance, if X and Y are independent normal with variance 1 and mean
1 then we will prove in Section 3.2.1 that a polynomial Stein operator (i.e. a Stein operator with
polynomial coefficients) is now

AXY g(z) = zg′′′(z) + (1− z)g′′(z)− (z + 2)g′(z) + (z − 1)g(z),

a third order operator. Similarly, if X and Y do not have the same mean then the resulting operator
will have still a different order, depending on whether or not one of them is centered or not.
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1.3 Stein operators

The following is the basic definition of the Stein operator of a random variable X.

Definition 1.1 (The Stein operator, [25]). Let X be a random variable on some measure space (X ,F , µ)
and let D be a linear operator on X ? the collection of real valued functions on X . Let X have density p
with respect to µ. The D-Stein pair for X is (TX ,F(X)) where F(X) =

{
f : X → IR | D(fp) ∈ L1(µ)

and
∫
D(fp)dµ = 0

}
is the D-Stein class and TXf = D(fp)/p is the corresponding D-Stein operator.

In this paper, we fix Df = f ′, the usual strong derivative, and consider random variables that
are absolutely continuous with respect to the Lebesgue measure, with density p which we suppose
to be differentiable with interval support I, say. We suppose that F(X) is not empty and define
dom(X) the collection of functions g such that (i) x 7→ |g(x)(f(x)p(x))′|, x 7→ |g′(x)(f(x)p(x))| are
both integrable on I for all f ∈ F(X); (ii) [g(x) f(x) p(x)]ba = 0. Under these conditions we have the
generalized covariance identity

IE [TXf(X)g(X)] = −IE
[
f(X)g′(X)

]
(6)

for all (f, g) ∈ F(X)× dom(X). The collection dom(X) is not empty (it contains at least the constant
functions) and it is shown in [25] that if Y is a random variable such that for some f ∈ F(X)
(respectively for some g ∈ dom(X)) (6) holds for all g ∈ dom(X) (respectively for all f ∈ F(X)) then
necessarily Y and X have the same distribution.

While the (differential) Stein operator is unique it is, as explained above, generally intractable
and one rather seeks particularizations of it that are obtained by considering the action of TX over
well-chosen subclasses of F(X). By metonymy we call these Stein operators as well. Among the target
distributions which shall be concerned with the theory that we shall develop in the sequel are those
which admit Stein operators of the form

A = a1Tα1 − a2M
pTα2 , (7)

with ai, αi, i = 1, 2 real numbers, p > 0, M the multiplication operator Mf(x) = xf(x) and Trf(x) =
xf ′(x) + rf(x) (by convention, we also denote by T∞ the identity operator). We deliberately choose to
keep F , the class of functions over which A acts, unspecified although here and throughout we require
that Constraint 2 be satisfied : no border conditions are required on f ∈ F . Using Definition 1.1 it is
not hard to provide a characterization for the score function of the entire family of target densities
with operators of the form (7).

Lemma 1.1. If a random variable X with p.d.f. γ has Stein operator of the form (7) over a generic
class F then

(ln γ(x))′ =
a1(α1 − 1) + a2x

p(α2 + p+ 1)

x(a1 − a2xp)
(8)

for all x in the support of γ.

Proof. By duality, γ is solution of the ODE

(−a1x+ a2x
p+1)γ′(x) + [a1(α1 − 1) + a2x

p(p+ 1 + α2)]γ(x) = 0,

yielding the result.

Example 1.1. Many classical probability distributions have p.d.f. which can be written in the form
(7) with well-chosen coefficients, see Appendix A for a list. In particular, Lemma 1.1 applies to the
following distributions :

1. normal distribution with a1 = 1 = α1 = a2, α2 =∞ and p = 2;

2. gamma distribution with a1 = 1, α1 = r, a2 = λ, α2 =∞ and p = 1;

3. beta distribution with a1 = b1 = 1, α1 = a, α2 = a+ b and p = 1.
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Remark 1.1. In the sequel we will extend the scope of our theory to consider the more general class of
distributions with Stein operators of the form (14); this class encompasses most classical distributions
as well as their products, a wealth examples being provided in Appendix A.

Definition 1.1 is in many cases hard to fathom and in the sequel we will often adopt the following
much less demanding

Definition 1.2 (Weak Stein operators). A linear differential operator A is a weak Stein operator for
X on a class F of test functions if A is non-zero and IE [Af(X)] = 0 for all f ∈ F .

Note that we do not request the operators provided by Definition 1.2 to be characterizing; this
property depends entirely on the richness of the class of test functions F . In the remainder of this paper
we will simply refer to the “Weak Stein operators” provided by Definition 1.2 as “Stein operators”;
this is in any case more in line with the current literature.

1.4 Purpose and outline of the paper

The purpose of this paper is to provide a new collection of tools allowing to derive Stein operators
with polynomial coefficients for random objects which can be written as

X
L
= Xα1

1 · · ·X
αn
n

for any real numbers α1, . . . , αn, when the underlying random variables have a Stein operator of a
particular form. More precisely, we show how to easily obtain a Stein operator for such a product
when each Xi has a Stein operator of the type of (7), which is the case for a large number of classical
distributions. Such results are of importance for a series of reasons. First, as will be briefly outlined in
Section 4.1, our technology provides new tractable handles on a large class of target distributions whose
densities are entirely out of reach of classical ODE or characteristic function approaches. Second, and
this we shall put into practice in Section 4.2, we are in a position to provide quantitative assessments
via Stein’s method for stochastic approximation for a new range of distributions : for instance, we
give quantitative bounds between the so-called K-distribution, which is of importance in radar signal
analysis, and a gamma distribution.

Finally, we stress that the theory of Stein operators to which this paper contributes is of importance
also in its own right. Indeed, there are now a wide variety of techniques which allow to obtain useful
bounds on solutions to the resulting Stein equations (see, for example, [24, 9]) and which can be
adapted to the operators that we derive. Also, and this has now been demonstrated in several papers
such as [2, 31], Stein operators can be used for comparison of probability distributions directly without
the need of solving Stein equations; such an area is also the object of much interest. Finally, the
characteristics of the operators open new and deep questions on the very nature of the objects that we
are working with; see Conjecture 1.

The outline of the paper is as follows. In Section 2, we provide the main result of this paper,
namely a series of tools for deriving differential Stein operators with polynomial coefficients for product
random variables. Several applications are already discussed in this same Section. In Section 3, we
provide extensions to cases not covered by the general results from Section 2. In Section 4.1, we discuss
the duality between our Stein operators and finally in Section 4.2 we provide several applications of
our theory. Appendix A contains a list of classical Stein operators for continuous distributions, written
in terms of the Tr operators, as well as some examples of Stein operators for product distributions. In
Appendix B, we collect some basic properties of the Meijer G-function that are used in this paper.

2 General results

Let us recall some notation regarding the different operators that will be used throughout the paper.

• F is a space of smooth functions, stable under multiplication and differentiation. We assume
that F satisfies Constraint 2.
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• M is the multiplication operator : M(f) = (x 7→ xf(x)),

• D the differentiation operator D(f) = f ′,

• I identity of F ,

• For a ∈ IR \ {0}, τa(f) = (x 7→ f(ax)),

• ∀r ∈ IR, Tr = MD + rI. By convention, we set T∞ = I.

Using the fact that DM = MD + I, one can easily check that ∀r ∈ IR ∪ {∞}, ∀n ∈ IN,

TrM
n = MnTr+n, (9)

and
TrD

n = DnTr−n, (10)

with the usual convention that r +∞ =∞. It is also direct to see that

τaM = aMτa,

and
Dτa = a τaD.

Note also that Tr and Tr′ always commute (since they are polynomials, of degree 1, in MD), and that
every Tr commutes with every τa.

In this entire section, we assume the random variables we deal with admit a Stein operator of the
form

A = L−MpK,

where p ∈ IN and that for every a ∈ IR, the operators L, K and τa commute. Actually, in all applications
considered, L and K will be products of the operators Tr (and in this case the commutativity hypothesis
is verified).

2.1 Product of distributions

We give now a general result giving the Stein operator for the product of two independent random
variables whose Stein operators have a particular form. We will see that a large class of classical
distributions admit a Stein operator of this form.

Proposition 2.1. Assume X,Y are random variables with respective Stein operators

AX = LX −MpKX , (11)

AY = LY −MpKY , (12)

where p ∈ IN and where the operators LX ,KX , LY ,KY commute with each other and with every τa,
a ∈ IR\{0}. Then, if X and Y are independent,

LXLY −MpKXKY (13)

is a Stein operator for XY .

Proof. Let f ∈ F . Using a conditioning argument and the commutative property between the different
operators, we have that

IE[LXLY f(XY )] = IE[IE[τY LXLY f(X) |Y ]]

= IE[IE[LXτY LY f(X) |Y ]]

= IE[IE[MpKXτY LY f(X) |Y ]]

= IE[IE[XpτYKXLY f(X) |Y ]]

= IE[XpKXLY f(XY )]

= IE[XpIE[τXKXLY f(Y ) |X]]

= IE[XpIE[LY τXKXf(Y ) |X]]

= IE[XpIE[MpKY τXKXf(Y ) |X]]

= IE[XpY pKYKXf(XY ) ],
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which achieves the proof.

Note how this last result is easily generalized to the product of n random variables by induction.
More precisely, if (Xi)1≤i≤n are independent random variables with respective Stein operator Li−MpKi,
if all the operators {Li,Ki}1≤i≤n commute with each other and with the τa, a ∈ IR, then a Stein
operator for

∏n
i=1Xi is

n∏
i=1

Li −Mp
n∏
i=1

Ki.

The main drawback of Proposition 2.1 is that we assume the same power of Mp appears in both
operators. As such, the Proposition cannot be applied for instance for the product of a gamma (for
which p = 1) and a centered normal (for which p = 2). In the following Lemma and Proposition, we
show how to bypass this difficutly : one can build another Stein operator for X with the power p
multiplied by an arbitrary integer k (even though by doing so, one increases the order of the operator).
Here we restrict ourselves to the case where the Li and Ki operators are products of operators Tα;
indeed, we will make use of the relation (9).

Lemma 2.1. Assume X has a Stein operator of the form

AX = a

n∏
i=1

Tαi − bMp
m∏
i=1

Tβi . (14)

Then, for every k ≥ 1, a Stein operator for X is given by

ak
n∏
i=1

k−1∏
j=0

Tαi+jp − bkMkp
m∏
i=1

k−1∏
j=0

Tβi+jp.

Proof. We prove the result by induction on k. By asumption, it is true for k = 1. Then, using the
recurrence hypothesis and (9),

IE

ak+1
k∏
j=0

n∏
i=1

Tαi+jkf(X)

 = IE

aak k−1∏
j=0

n∏
i=1

Tαi+jp

(
n∏
i=1

Tαi+kpf

)
(X)


= IE

abkMkp
k−1∏
j=0

m∏
i=1

Tβi+jp

(
n∏
i=1

Tαi+kpf

)
(X)


= IE

abk n∏
i=1

TαiM
kp

k−1∏
j=0

m∏
i=1

Tβi+jpf(X)


= IE

bk+1Mp
m∏
i=1

TβiM
kp

k−1∏
j=0

m∏
i=1

Tβi+jpf(X)


= IE

bk+1Mkp
k∏
j=0

m∏
i=1

Tβi+jpf(X)

 ,
which proves our claim.

Now consider the problem of finding a Stein operator for a product of independent random variables
X and Y with Stein operators AX = a

∏n
i=1 Tαi−bMp

∏m
i=1 Tβi and AY = a′

∏n′

i=1 Tα′i−b
′Mp′

∏m′

i=1 Tβ′i ,
with p 6= p′. Apply Lemma 2.1 to X with k = p′ and to Y with k = p to get Stein operators for X and
Y of the form of Proposition 2.1, but with p replaced by pp′. Then apply the Proposition.

As an illustration, one can prove the following.
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Proposition 2.2. Assume X,Y are random variables with respective Stein operators

AX = a1Tα1 − a2M
pTα2 , (15)

AY = b1Tβ1 − b2M qTβ2 , (16)

where p, q ∈ IN and α1, α2, β1, β2 ∈ IR∪ {∞}. Let m be the least common multiple of p and q and write
m = k1p = k2q. Then, if X and Y are independent,

ak11 b
k2
1

k1−1∏
i=0

Tα1+ip

k2−1∏
i=0

Tβ1+iq −Mmak12 b
k2
2

k1−1∏
i=0

Tα2+ip

k2−1∏
i=0

Tβ2+iq (17)

is a Stein operator for XY .

Proof. Apply Lemma 2.1 with k1 and k2 to get, for all f ∈ F ,

IE

ak11

k1−1∏
j=0

Tα1+jpf(X)

 = IE

ak12 M
m
k1−1∏
j=0

Tα2+jpf(X)

 ,
and

IE

bk21

k2−1∏
j=0

Tβ1+jpf(Y )

 = IE

bk22 M
m
k2−1∏
j=0

Tβ2+jpf(Y )

 .
Then the proof follows from an application of Proposition 2.1.

Remark 2.1. We point out that the Proposition is valid when one of the αi or βi is infinite, that is,
when one of the T operators is the identity. For instance, we have that if X,Y are random variables
with respective Stein operators

AX = a1Tα − a2M
p, (18)

AY = b1Tβ − b2M q, (19)

then, with the same notations, a Stein operator for XY is

ak11 b
k2
1

k1−1∏
i=0

Tα+ip

k2−1∏
i=0

Tβ+iq − ak12 b
k2
2 M

m. (20)

Remark 2.2. As we will see in Section 2.3, a number of classical distributions have Stein operators
of the form (18) and (19), including the mean-zero gaussian, gamma, beta, Student’s t, F -distribution
, as well as powers of such random variables, which includes inverse distributions, such the inverse
gamma distribution. See Appendix A for a list of these Stein operators. Note, in particular, that the
standard normal Stein operator given in Appendix A is given by T 2

1 −M2, rather than the classical
standard normal Stein operator D −M . Further comments on this matter are given in Section 2.3.

Remark 2.3. The proofs of Proposition 2.1 and Lemma 2.1 rely heavily on the fact that Lbτa = τaLb
for all a, b ∈ IR. Since Tbτa = τaTb for all a, b ∈ IR, we can apply a conditioning argument to derive a
Stein operator for the product XY from the Stein operators for X and Y .

However, using such a conditioning argument to derive a Stein operator for the sum X + Y from
the Stein operators for X and Y only works for quite special cases. This is because, for sums, the
operator analogous to τa is the shift operator Sa, defined by Sa(f) = (x 7→ f(x+ a)) is, for non-zero a,
not commutative with the operator Tb. To see this:

TbSaf(x) = xf ′(x+ a) + bf(x+ a)

= (x+ a)f ′(x+ a) + bf(x+ a)− af ′(x+ a)

= SaTbf(x)− aSaDf(x),
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so TbSa = SaTb − aSaD.
There is, however, a class of Stein operators under which a conditioning argument can be easily

used to obtain a Stein operator for a sum of independent random variables. Suppose X,X1, . . . , Xn are
i.i.d., with Stein operator

AXf(x) =
m∑
k=0

(akx+ bk)f
(k)(x).

Let W =
∑n

j=1Xj . Then, by conditioning,

IE[(a0W + nb0)f(W )]

= IE

[(
a0

n∑
j=1

Xj + nb0

)
f(W )

]

=

n∑
j=1

IE

[
IE

[
(a0Xj + b0)f(W )

∣∣∣∣X1, . . . , Xj−1, Xj+1, . . . , Xn

]]

= −
n∑
j=1

IE

[
IE

[ m∑
k=1

(akXj + bk)f
(k)(W )

∣∣∣∣X1, . . . , Xj−1, Xj+1, . . . , Xn

]]

= −
n∑
j=1

IE

[ m∑
k=1

(akXj + bk)f
(k)(W )

]

= −IE

[ m∑
k=1

(akW + nbk)f
(k)(W )

]
.

Thus, a Stein operator for W is given by

AW f(x) =
m∑
k=0

(akx+ nbk)f
(k)(x). (21)

This approach can be used, for example, to obtain the χ2
(d) Stein operator Td/2 − 1

2M from the χ2
(1)

Stein operator T1/2 − 1
2M , since all coefficients in this Stein operator are linear.

2.2 Powers and inverse distributions

In this section, we assume that a.s., X takes values in IR\{0}, and that test functions f are defined
on this open set. Then, we extend the definition of Ma to a ∈ Z by Maf(x) = xaf(x), x 6= 0. In the
particular case where X takes values in (0,∞) (and thus, test functions are defined on (0,∞)), this
definition also makes sense when a ∈ IR.

Let us first note a result concerning powers. Let Pa be defined by Paf(x) = f(xa). For a 6= 0, we
have that TrPa = aPaTr/a, since

TrPaf(x) = x · axa−1f ′(xa) + rf(xa) = axaf ′(xa) + rf(xa)

= a(xaf ′(xa) + (r/a)f(xa)) = aPaTr/af(x).

This result allows us to easily obtain Stein operators for powers of random variables and inverse
distributions. Suppose X has Stein operator

AX = aTα1 · · ·Tαn − bM qTβ1 · · ·Tβm .

We can write down a Stein operator for Xγ immediately (if X takes negative values, we restrict to
positive or integer-valued γ):

AXγ = aTα1 · · ·TαnPγ − bM qTβ1 · · ·TβmPγ
= aγnPγTα1/γ · · ·Tαn/γ − bγ

mM qPγTβ1/γ · · ·Tβm/γ
= aγnPγTα1/γ · · ·Tαn/γ − bγ

mPγM
q/γTβ1/γ · · ·Tβm/γ . (22)
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Applying P1/γ on the left of (22) gives the following Stein operator for the random variable Xγ :

ÃXγ = aγnTα1/γ · · ·Tαn/γ − bγ
mM q/γTβ1/γ · · ·Tβm/γ , (23)

as P1/γPγ = I.

From (23) we immediately obtain, for example, the classical χ2
(1) Stein operator T1/2 − 1

2M from

the standard normal Stein operator T1 −M2. However, in certain situations, a more convenient form
of the Stein operator may be desired. To illustrate this, we consider the important special case of
inverse distributions. Here γ = −1, which yields the following Stein operator for 1/X:

a(−1)nT−α1 · · ·T−αn − b(−1)mM−qT−β1 · · ·T−βm .

To remove the singularity, we multiply on the right by M−1 to get

A1/X = a(−1)nT−α1 · · ·T−αnM q − b(−1)mM−qT−β1 · · ·T−βmM q

= a(−1)nM qTq−α1 · · ·Tq−αn − b(−1)mTq−β1 · · ·Tq−βm .

Cancelling constants gives the Stein operator

Ã1/X = bTq−β1 · · ·Tq−βm − (−1)m+naM qTq−α1 · · ·Tq−αn . (24)

2.3 Applications

Starting from the classical Stein operators of the centered normal, gamma, beta, Student’s t, inverse-
gamma, F -distribution, PRR, variance-gamma (with θ = 0 and µ = 0), generalized gamma distributions,
and K-distributions, we use the results of Section 2.1 to derive new operators for the (possibly mixed)
products of these distributions. The operators of the aforementioned distributions are summed up in
Appendix A. Stein operators for any mixed product of independent copies of such random variables
are attainable through a direct application of Proposition 2.2. We give some examples below.

2.3.1 Mixed products of centered normal and gamma random variables

Stein operators for (mixed) products of independent central normal, beta and gamma random variables
were obtained by [17, 15]. Here we demonstrate how these Stein operators can be easily derived by
an application of our theory (we omit the beta distribution for reasons of brevity). Let (Xi)1≤i≤n
and (Yj)1≤j≤m be independent random variables and assume Xi ∼ N (0, σ2) and Yj ∼ Γ(ri, λi). The
random variables Xi and Yj admit the following Stein operators:

AXi = σ2
i T1 −M2, (25)

AYj = Trj − λjM. (26)

A repeated application of Proposition 2.2 now gives the following Stein operators:

AX1···Xn = σ2
1 · · ·σ2

nT
n
1 −M2, (27)

AY1···Ym = Tr1 · · ·Trm − λ1 · · ·λmM, (28)

AX1···XnY1···Ym = σ2
1 · · ·σ2

nT
n
1 Tr1 · · ·TrmTr1+1 · · ·Trm+1 − λ1 · · ·λmM2. (29)

The product gamma Stein operator (28) is in exact agreement with the one obtained by [15]. However,
the Stein operators (27) and (29) differ slightly from those of [17, 15], because they act on different
functions. Indeed, the product normal Stein operator given in [17] is ÃX1···Xn = σ2

1 · · ·σ2
nDT

n
0 −M ,

but multiplying through on the right by M yields (27). The same is true of the mixed product operator
(29), which is equivalent to the mixed normal-gamma Stein operator of [15] multiplied on the right by
M . We refer to Appendix A where this idea is expounded.

Finally, we note that whilst the operators (27) and (28) are of orders n and m, respectively, the
mixed product operator (29) is of order n+ 2m, rather than order n+m which one may at first expect.
This a consequence of the fact that the powers of M in the Stein operator (25) and (26) differ by a
factor of 2.
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2.3.2 Mixed product of Student and variance-gamma random variables

Let (Xi)1≤i≤n and (Yj)1≤j≤m be independent random variables and assume Xi ∼ T (νi) and Yj ∼
VG(rj , 0, σj , 0); the p.d.f.s of these distributions are given in Appendix A. Xi and Yj admit Stein
operators of the form :

AXi = νiT1 +M2T2−νi ,

AYj = σ2
jT1Trj −M2. (30)

Note that one cannot apply Proposition 2.1 to the VG(r, θ, σ, 0) Stein operator σ2T1Tr+2θMTr/2−M2,
although we do obtain a Stein operator the product of two such distributions in Section 3.2.3.

Applying recursively Proposition 2.1, we obtain the following Stein operators:

AX1···Xn = ν1 . . . νnT
n
1 − (−1)nM2T2−ν1 . . . T2−νn , (31)

AY1···Ym = σ2
1 . . . σ

2
mT

m
1 Tr1 . . . Trm −M2, (32)

AX1···XnY1···Ym = ν1 . . . νnσ
2
1 . . . σ

2
mT

n+m
1 Tr1 . . . Trm − (−1)nM2T2−ν1 . . . T2−νn .

As an aside, note that (30) can be obtained by applying Proposition 2.1 to the Stein operators

AX = σ2T1 −M2, AY = Tr −M2,

where X and Y are independent. We can identify AX as the Stein operator for a N (0, σ2) random
variable and AY as the Stein operator of the random variable Y =

√
V where V ∼ Γ(r/2, 1/2).

Since the variance-gamma Stein operator is characterizing (see [14], Lemma 3.1), it follows that that
Z ∼ VG(r, 0, σ, 0) is equal in distribution to X

√
V . This representation of the VG(r, 0, σ, 0) distribution

can be found in [4]. This example demonstrates that by characterizing probability distributions, Stein
operators can be used to derive useful properties of probability distributions; for a further discussion
on this general matter see Section 4.1.

2.3.3 PRR distribution

A Stein operator for the PRR distribution is given by

sT1T2 −M2T2s, (33)

see Appendix A.
We now exhibit a neat derivation of this Stein operator by an application of Section 2.1. Let X

and Y be independent random variables with distributions

X ∼

{
Beta(1, s− 1), if s > 1,

Beta(1/2, s− 1/2), if 1/2 < s ≤ 1,

and

Y ∼

{
Γ(1/2, 1), if s > 1,

Exp(1), if 1/2 < s ≤ 1.

Then it is known that
√

2sXY ∼ Ks (see [33], Proposition 2.3).
If s > 1, then we have the following Stein operators for X and Y :

AX = T1 −MTs, AY = T1/2 −M,

and, for 1/2 < s ≤ 1, we have the following Stein operators for X and Y :

AX = T1/2 −MTs, AY = T1 −M.

Using Proposition 2.2, we have that, for all s > 1/2,

AXY = T1/2T1 −MTs.

From (23) we obtain the Stein operator

A√XY = T1T2 − 2M2T2s,

which on rescaling by a factor of
√

2s yields the operator (33).

11



2.3.4 Inverse and quotient distributions

From (24) we can write down inverse distributions for many standard distributions. First, suppose
X ∼ Beta(a, b). Then a Stein operator for 1/X is

A1/X = T1−a−b −MT1−a. (34)

This is a Stein operator for a Beta(1− a− b, b) random variable, which is what we would expect since
if X ∼ Beta(a, b) then 1/X ∼ Beta(1− a− b, b). Now, let X1 ∼ Beta(a1, b1) and X2 ∼ Beta(a2, b2) be
independent. Then using Proposition 2.2 applied to the Stein operator (34) for 1/X and the beta Stein
operator, we have the following Stein operator for Z = X1/X2:

AZ = Ta1T1−a2−b2 −MTa1+b1T1−a2 , (35)

which is a second order differential operator.
Let us consider the inverse-gamma distribution. Let X ∼ Γ(r, λ), then the gamma Stein equation is

AX = Tr − λM.

From (24) we can obtain a Stein operator for 1/X (an inverse-gamma random variable):

A1/X = MT1−r − λI.

If X1 ∼ Γ(r1, λ1) and X ∼ Γ(r2, λ2), we have from the above operator and Proposition 2.2, the
following Stein operator for Z = X1/X2:

AZ = λ1MT1−r2 + λ2Tr1 , (36)

which is a first order differential operator. As a special case, we can obtain a Stein operator for
the F -distribution with parameters d1 > 0 and d2 > 0. This is because Z ∼ F (d1, d2) is equal in

distribution to X1/d1
X2/d2

, where X1 ∼ χ2
(d1) and X2 ∼ χ2

(d2) are independent. Now applying (36) and

rescaling to take into account the factor d1/d2 gives the following Stein operator for Z :

AZ = d1MT1−d2/2 + d2Td1/2. (37)

One can also easily derive the generalized gamma Stein operator from the gamma Stein operator.
The Stein operator for the GG(r, λ, q) distribution is given by Tr − qλqM q. Using the relationship

X
L
= (λ1−qY )1/q for X ∼ GG(r, λ, q) and Y ∼ Γ(r/q, λ) (see [34]) together with (23) and a rescaling,

we readily recover the generalized gamma Stein operator from the usual gamma Stein operator.
As a final example, we note that we can use Proposition 2.2 to obtain a Stein operator for the

ratio of two independent standard normal random variables. A Stein operator for the standard normal
random variable X1 is T1 −M2 and we can apply (24) to obtain the following Stein operator for the
random variable 1/X1:

A1/X1
= M2T1 − I

Hence a Stein operator for the ratio of two independent standard normals is

A = (1 +M2)T1,

which is the Stein operator for the Cauchy distribution (a special case of the Student’s t Stein operator
of [37]), as one would expect.

3 A particular case of two i.i.d. random variables

A fundamental example which does not verify the assumptions of Proposition 2.1 is the non-centered
normal distribution. Indeed, a Stein operator for X ∼ N (µ, σ2) is σ2T1 + µM −M2, which cannot
be expressed in the required form. The purpose of this section is to generalize Proposition 2.1 and
to show how to derive a Stein operator for a product of independent random variables having Stein
operators of a similar form of the non-centered normal. Remarkably, the operators we find are much
more complicated than in previous section. In particular, we will exhibit a third order Stein operator
for the product of two i.i.d. non-centered normals and we do not know a way by which this order could
be reduced without losing Constraint 3. We have so far not been able to prove this “minimality” and
state it as a conjecture at the end of the section.
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3.1 A general result

Proposition 3.1. Let α, β ∈ IR and a, b ∈ IR ∪ {∞}. Let X,Y be i.i.d. with common Stein operator
of the form

AX = M − αTa − βTbD.

Then, a weak Stein operator for Z = XY is

AZ = (M − α2T 2
a − β2T 2

b T1D)(Ta−1 − βTbTa+1D)− 2α2βT 2
aTbTa+1D. (38)

Proof. Let Z = XY and f ∈ F . We have

IE[Zf(Z)] = IE[XY f(XY )]

= IE[XY τXf(Y )]

= IE [X (αTaτXf(Y ) + βTbDτXf(Y ))]

= IE [X (αTaf(XY ) + βXTbDf(XY ))]

= IE [X (ατY Taf(X) + βMτY TbDf(X))]

= IE

[
α2TaτY Taf(X) + αβTbDτY Taf(X)

+ αβTaMτY TbDf(X) + β2TbDMτY TbDf(X)

]
= IE

[
α2T 2

a f(XY ) + αβY TbτYDTaf(X)

+ αβMTa+1τY TbDf(X) + β2TbT1τY TbDf(X)

]
,

which yields, since (X,Y ) is exchangeable,

IE[XY f(XY )] = IE
[
α2T 2

a f(XY ) + 2αβXTbTa+1Df(XY ) + β2T 2
b T1Df(XY )

]
.

Let
K = M − α2T 2

a − β2T 2
b T1D, (39)

and
L = 2αβTbTa+1D. (40)

Then, from the above,
IE[Kf(Z)] = IE[XLf(Z)]. (41)

However

IE[XLf(Z)] = IE[XτY Lf(X)]

= IE[αTaτY Lf(X) + βTbDτY Lf(X)]

= IE[αTaLf(Z) + βXTbDLf(Z)].

Thus, from (41),
IE[Kf(Z)− αTaLf(Z)] = βIE[XTbDLf(Z)]. (42)

Now, by applying equations (41) and (42) to respectively L1f and L2f for some suitable operators L1

and L2, we can make the terms in X disappear. More precisely, if we define

L1 = TbTa+1D

L2 = Ta−1,

then we have
LL1 = TbDLL2. (43)
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Indeed,

LL1 = 2αβTbTa+1DTbTa+1D

= 2αβTbDTaTbTa+1D

= 2αβTbDTbTa+1DTa−1

= TbDLL2.

Thus, using (41) and (42), we get IE[(KL2 − αTaLL2 − βKL1)f(Z)] = 0, and a straightforward
calculation leads to (38).

The product operator (38) is in general a seventh order differential operator. However, for particular
cases, such as the product of two i.i.d. non-centered normals, the operator reduces to one of lower
order, see Section 3.2.1. Whilst we strongly believe that this operator is a minimal order polynomial
operator, we have no proof of this claim (nor do we have much intuition as to whether the seventh
order operator (38) is of minimal order). We believe this question of minimality to be of importance
and state it as a conjecture.

Conjecture 1. There exists no second order Stein operator with polynomial coefficients for the product
of two independent non-centered Gaussian random variables.

Remark 3.1. Proving a similar result as Proposition 3.1 in the case where X and Y are not identically
distributed is not straightforward. Indeed, one can easily show an analog of (41) : we have IE[Kf(Z)] =
IE[XLf(Z) + Y L′f(Z)] for some suitable operators K, L and L′. But cancelling out both terms in X
and Y in the same fashion as in Proposition 3.1 leads to inextricable calculations. In certain simple
cases, we can, however, apply the argument used in the proof of Proposition 3.1 to derive a Stein
operator for the product of two non-identically distributed random variables; see Section 3.2.1 for an
example.

3.2 Examples

3.2.1 Product of non-centered normals

Assume X and Y have a normal distribution with mean µ and variance 1. Their common Stein operator
is thus D −M + µI. Apply Proposition 3.1 with α = µ, β = 1 and a = b = ∞ to get the following
Stein operator for XY :

AXY = (M − µ2I − T1D)(I −D)− 2µ2D,

which, in an expanded form, is

AXY = MD3 + (I −M)D2 − (M + (1 + µ2)I)D +M − µ2I. (44)

Note that when µ = 0, the above operator becomes

AXY f(x) = M(D3 −D2 −D + I)f(x) + (D2 −D)f(x)

= x(f (3)(x)− f ′′(x)) + (f ′′(x)− f ′(x)) + x(f ′(x)− f(x)).

Taking g(x) = f ′(x)− f(x) then yields

AXY f(x) = ÃXY g(x) = g′′(x) + g′(x)− xg(x), (45)

which we recognise as the product normal Stein operator that was obtained by [17].
Suppose that X ∼ N (µX , 1) and Y ∼ N (µY , 1) are independent, and that µX and µY are not

necessarily equal. Then on using an argument similar to that used to prove Proposition 3.1 and some
tedious calculations, one arrives at the following Stein operator for the product XY :

AXY f(x) = D4 +D3 + (2M + µXµY I)D2 + (1 + µ2
X + µ2

Y )D + µXµY I −M. (46)
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It is interesting to note that (46) is a fourth order differential operator; one higher than the third order
operator (44) and two higher than the Stein operator for the product of two central normals. Whilst
we are unable to prove it, we believe that (46) is a minimal order polynomial Stein operator.

Finally, since the coefficients in the Stein operators (44) and (46) are linear, we can use (21)
to write down a Stein operator for the sum W =

∑r
i=1XiYi, where (Xi)1≤i≤r ∼ N (µX , 1) and

(Yi)1≤i≤r ∼ N (µY , 1) are independent. When µX = µy = µ, we have

AW = MD3 + (rI −M)D2 − (M + r(1 + µ2)I)D +M − rµ2I, (47)

and when µX and µY are not necessarily equal, we have

AW = D4 +D3 + (2M + rµXµY I)D2 + r(1 + µ2
X + µ2

Y )D + rµXµY I −M.

When µX = µY = 0, the random variable W follows the VG(r, 0, 1, 0) distribution (see [14], Proposition
1.3). Taking g = f ′ − f in (47) (as we did in arriving at (45)), we obtain

AW f(x) = g′′(x) + rg′(x)− g(x),

which we recognise as the VG(r, 0, 1, 0) Stein operator that was obtained in [14].

3.2.2 Product of non-centered gammas

Assume X and Y are distributed as a Γ(r, 1), and let µ ∈ IR. A Stein operator for X + µ (or Y + µ)
is AX = Tr+µ − µD −M. Proposition 3.1 applied with α = 1, β = −µ, a = r + µ, b =∞ yields the
following fourth-order weak Stein operator for Z = (X + µ)(Y + µ):

AZ = (M − T 2
r+µ − µ2T1D)(Tr+µ−1 + µTr+µ+1D) + 2µT 2

r+µTr+µ+1D.

Note also that when µ = 0, this operator reduces to (M − T 2
r )Tr−1, which is the operator found in

Section 2.3.1 applied to Tr−1f instead of f .

3.2.3 Product of VG(r, θ, σ, 0) random variables

A VG(r, θ, σ, 0) Stein operator is given by σ2TrD + 2θTr/2 − M. Applying Proposition 3.1 with
α = 2θ, β = σ2, a = r/2, b = r, we get the following Stein operator for the product of two independent
VG(r, θ, σ, 0) random variables :

A = (M − 4θ2T 2
r/2 − σ

4T 2
r T1D)(Tr/2−1 − σ4TrTr/2+1D)− 8θ2σ2T 2

r/2TrTr/2+1D.

Note that when θ = 0 we have

Af(x) = (M − σ4T 2
r T1D)(Tr/2−1 − σ4TrTr/2+1D)f(x).

Defining g : R→ R by xg(x) = −(Tr/2−1 − σ4TrTr/2+1D)f(x) gives

Ag(x) = (σ4T 2
r T1D −M)Mg(x)

= σ4T 2
r T

2
1 g(x)−M2g(x),

which is in agreement with the product variance-gamma Stein operator (32).

4 Applications

4.1 Densities of product distributions

Fundamental methods, based on the Mellin integral transform, for deriving formulas for densities of
product distributions were developed by [38, 39]. In [39], formulas, involving the Meijer G-function,
were obtained for products of independent centered normals, and for mixed products of beta and
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gamma random variables. However, for other product distributions, applying the Mellin inversion
formula can lead to intractable calculations.

In this section, we present a novel method for deriving formulas for densities of product distributions
based on the duality between Stein operators and ODEs satisfied by densities. Our approach builds
on that of [15] in which a duality argument was used to derive a new formula for the density of the
distribution of a mixed product of mutually independently centered normal, beta and gamma random
variables (deriving such a formula using the Mellin inversion formula would have required some very
involved calculations). We apply this method to derive a new formula for the p.d.f. of the product of n
independent VG(r, 0, σ, 0) random variables and to recover a formula for the product of n independent
Student’s t-distributed random variables that was given in [29].

4.1.1 A duality lemma

The following lemma concerns a Stein operator that also naturally arises from a repeated application
of Proposition 2.2. The proof is a straightforward generalisation of the argument used in Section 3.2
of [15] to obtain a differential equation satisfied by the density of the mixed product of independent
central normal, beta and gamma random variables.

Lemma 4.1. Let Z be a random variable with density p supported on an interval [a, b] ⊆ R. Let

Af(x) = Tr1 · · ·Trnf(x)− bxqTa1 · · ·Tamf(x), (48)

and suppose that
IE[Af(Z)] = 0 (49)

for all f ∈ Ck([a, b]), where k = max{m,n}, such that

1. xq+1+i+jp(i)(x)f (j)(x)→ 0, as x→ a and as x→ b, for all i, j such that 0 ≤ i+ j ≤ m;

2. x1+i+jp(i)(x)f (j)(x)→ 0, as x→ a and as x→ b, for all i, j such that 0 ≤ i+ j ≤ n.

(We denote this class of functions by Cp). Then p satisfies the differential equation

T1−r1 · · ·T1−rnp(x)− b(−1)m+nxqTq+1−a1 · · ·Tq+1−amp(x) = 0. (50)

Remark 4.1. The class of functions Cp consists of all f ∈ Ck([a, b]), where k = max{m,n}, that
satisfy particular boundary conditions at a and b. Note that when (a, b) = R the class includes the set
of all functions on R with compact support that are k times differentiable. The class Cp suffices for the
purpose of deriving the differential equation (50), although we expect that for particular densities (such
as the beta distribution) the conditions on f could be weakened.

Proof. We begin by writing the expectation (49) as∫ b

a

{
Tr1 · · ·Trnf(x)− bxqTa1 · · ·Tamf(x)

}
p(x) dx = 0, (51)

which exists if f ∈ Cp. In arriving at the differential equation (54), we shall apply integration by parts
repeatedly. To this end, it is useful to note the following integration by parts formula. Let γ ∈ R and
suppose that φ and ψ are differentiable. Then∫ b

a
xγφ(x)Trψ(x) dx =

∫ b

a
xγφ(x){xψ′(x) + rψ(x)} dx =

∫ b

a
xγ+1−rφ(x)

d

dx
(xrψ(x)) dx

=
[
xγ+1φ(x)ψ(x)

]b
a
−
∫ b

a
xrψ(x)

d

dx
(xγ+1−rφ(x)) dx

=
[
xγ+1φ(x)ψ(x)

]b
a
−
∫ b

a
xγψ(x)Tγ+1−rφ(x) dx, (52)

provided the integrals exist.
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We now return to equation (51) and use the integration by parts and formula (52) to obtain a
differential equation that is satisfied by p. Using (52) we obtain∫ b

a
xqp(x)Ta1 · · ·Tamf(x) dx =

[
xq+1p(x)Ta2 · · ·Tamf(x)

]b
a

−
∫ b

a
xqTγ+1−a1p(x)Ta2 · · ·Tamf(x) dx

= −
∫ b

a
xqTγ+1−a1p(x)Ta2 · · ·Tamf(x) dx,

where we used condition (i) to obtain the last equality. By a repeated application of integration by
parts, using formula (52) and condition (i), we arrive at∫ b

a
xqp(x)Ta1 · · ·Tamf(x) dx = (−1)m

∫ b

a
xqf(x)Tq+1−a1 · · ·Tq+1−amp(x) dx.

By a similar argument, this time using formula (52) and condition (ii), we obtain∫ b

a
p(x)Tr1 · · ·Trnf(x) dx = (−1)n

∫ b

a
f(x)T1−r1 · · ·T1−rnp(x) dx.

Putting this together we have that∫ b

a
{(−1)nT1−r1 · · ·T1−rnp(x)− b(−1)mxqTq+1−a1 · · ·Tq+1−amp(x)}f(x) dx = 0 (53)

for all f ∈ Cp. Since (53) holds for all f ∈ Cp, we deduce (from an argument analogous to that used to
prove the fundamental lemma of the calculus of variations) that p satisfies the differential equation

T1−r1 · · ·T1−rnp(x)− b(−1)m+nxqTq+1−a1 · · ·Tq+1−amp(x) = 0.

This completes the proof.

4.1.2 Application to obtaining formulas for densities

We now show how the duality Lemma 4.1 can be exploited to derive formulas for densities of distributions.
By duality, p satisfies the differential equation

T1−r1 · · ·T1−rnp(x)− b(−1)m+nxqTq+1−a1 · · ·Tq+1−amp(x) = 0. (54)

Making the change of variables y = b
qn−mx

q yields the following differential equation

T 1−r1
q

· · ·T 1−rn
q
p(y)− (−1)m+nyT q+1−a1

q

· · ·T q+1−am
q

p(y) = 0. (55)

We recognise (55) as an instance of the Meijer G-function differential equation (82). There are
max{m,n} linearly independent solutions to (55) that can be written in terms of the Meijer G-function
(see [32], Chapter 16, Section 21). Using a change of variables, we can thus obtain a fundamental
system of solutions to (54) given as Meijer G-functions. One can then arrive at a formula for the
density by imposing the conditions that the solution must be non-negative and integrate to 1 over the
support of the distribution. Due to the difficulty of handling the Meijer G-function, this final analysis
is in general not straightforward. However, one can “guess” a formula for the density based on the
fundamental system of solutions, and then verify that this is indeed the density by an application of
the Mellin transform (note that in this verification step there is no need to use the Mellin inversion
formula). An interesting direction for future research would be to develop techniques for identifying
formulas for densities of distributions based solely on an analysis of the differential equation (54).
However, even as it stands, we have a technique for obtaining formulas for densities that may be
intractable through standard methods.
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As has been noted, the method described above has already been used by [15] to derive formulas
for the density of a mixed product of independent central normal, beta and gamma random variables.
We now apply the method to obtain formulas for densities of products of independent variance-gamma
and Student’s t-distributed random variables.

Products of Student’s t-distributed random variables. Recall the Stein operator (31) for the product of
n independent Student’s t-distributed random variables with ν1, . . . , νn degrees of freedom respectively:

Af(x) = Tn1 −
(−1)n

ν1 · · · νn
x2T2−ν1 · · ·T2−νnf(x).

By lemma 4.1, we know that the density p of the product Student’s t-distribution satisfies the differential
equation

Tn0 p(x)− (−1)n

ν1 · · · νn
x2Tν1+1 · · ·Tνn+1p(x) = 0. (56)

Making the change of variables y = (−1)n

ν1···νnx
2 yields the differential equation

Tn0 p(y)− x2T ν1+1
2

· · ·T νn+1
2
p(y) = 0. (57)

From (82) it follows that a solution to (57) is

p(y) = CGn,nn,n

(
(−1)ny

∣∣∣∣ 1−ν1
2 , . . . , 1−νn

2
0, . . . , 0

)
,

where C is an arbitrary constant. Therefore, on changing variables, a solution to (56) is given by

p(x) = CGn,nn,n

(
x2

ν1 . . . νn

∣∣∣∣ 1−ν1
2 , . . . , 1−νn

2
0, . . . , 0

)
. (58)

We can apply (81) to choose C such the p integrates to 1 across its support:

p(x) =
1

πn/2

n∏
j=1

√
νj

Γ(νj/2)
Gn,nn,n

(
x2

ν1 . . . νn

∣∣∣∣ 1−ν1
2 , . . . , 1−νn

2
0, . . . , 0

)
, (59)

where we used that Γ(1/2) =
√
π. The formula (59) represents a candidate density for product of n

independent Student’s t-distributed random variables, which we could verify using Mellin transforms.
However, we omit this analysis, because the density of this distribution has already been worked out
by [29]:

p(x) =
1

πn/2|x|

n∏
j=1

1

Γ(νj/2)
Gn,nn,n

(
ν1 . . . νn
x2

∣∣∣∣ 1
2 , . . . ,

1
2

ν1
2 , . . . ,

νn
2

)
. (60)

Formulas (59) and (60) are indeed equal; to see this, just apply formulas (79) and (80) to (59).

Products of VG(r, 0, σ, 0) random variables. Let (Zi)1≤i≤n ∼ VG(ri, 0, σi, 0) be independent, and set
Z =

∏n
i=1 Zi. Recall the Stein operator (32) for the product of VG(ri, 0, σi, 0) distributed random

variables:
AZf(x) = σ2Tn1 Tr1 . . . Trn −M2,

where σ2 = σ2
1 . . . σ

2
n. By Lemma 4.1, it follows that the density p satisfies the following differential

equation:
Tn0 T1−r1 · · ·T1−rnp(x)− σ−2(−1)nx2p(x) = 0. (61)

Arguing as we did in the Student’s t example, we guess the following formula for the density p:

p(x) =
1

2nπn/2σ

n∏
j=1

1

Γ(rj/2)
G2n,0

0,2n

(
x2

22nσ2

∣∣∣∣ r1 − 1

2
, . . . ,

rn − 1

2
, 0, . . . , 0

)
. (62)

18



It is straightforward to verify that (62) solves (61) using (82), and the normalizing constant was
obtained using (81). Unlike the product Student’s t-distribution formula of the previous example, the
formula (62) is unknown, so we must prove that it is indeed the density of Z. We verify this using
Mellin transforms; note that this verification is much more straightforward than an application of the
Mellin inversion formula.

Let us define the Mellin transform and state some properties that will be useful to us. The Mellin
transform of a non-negative random variable U with density p is given by

MU (s) = IEU s−1 =

∫ ∞
0

xs−1p(x) dx,

for all s such that the expectation exists. If the random variable U has density p that is symmetric
about the origin then we can define the Mellin transform of U by

MU (s) = 2

∫ ∞
0

xs−1p(x) dx.

The Mellin transform is useful in determining the distribution of products of independent random
variables due to the property that if the random variables U and V are independent then MUV (s) =
MU (s)MV (s).

To obtain the Mellin transform of Z =
∏n
i=1 Zi, we recall that Zi

L
= Xi

√
Yi, where Xi ∼ N (0, σ2

i )
and Yi ∼ Γ(r/2, 1/2) are independent. Using the formulas for the Mellin transforms of the normal and
gamma distributions (see [39]), we have that

MXi(s) =
1√
π

2(s−1)/2σs−1
i Γ(1/2), M√Yi(s) = MYi((s+ 1)/2) = 2(s−1)/2 Γ( ri−1+s

2 )

Γ(rj)
,

and therefore

MZ(s) =
1

πn/2
2n(s−1)σs−1[Γ(s/2)]n

n∏
i=1

Γ(
rj−1+s

2 )

Γ(
rj
2 )

. (63)

Now, let W denote a random variable with density (62). Then, using (81) gives that

MW (s) = 2

∫ ∞
0

xs−1p(x) dx = 2× 1

2nπn/2σ

n∏
j=1

1

Γ(rj/2)
×
(

1

22nσ2

)−s/2
× [Γ(s/2)]n ×

n∏
i=1

Γ

(
rj − 1 + s

2

)
,

which is equal to (63). Since the Mellin transforms of W is equal to that of Z, it follows that W is
equal in law to Z. Therefore (62) is indeed the p.d.f of the random variable Z.

4.1.3 Reduced order operators

Consider, as we have done throughout this section, that we have the following Stein operator for the
random variable Z:

AZf(x) = Tr1 · · ·Trnf(x)− bxqTa1 · · ·Tamf(x),

which may have arisen naturally from a repeated application of Proposition 2.2. For general parameter
values, this is a differential operator of order max{m,n}. However, for particular parameter values, we
can obtain an operator of lower order. Consider the sets

R = {a1, . . . , am} and S = {r1, . . . , rn}.

If |R ∩ S| = t, then we can obtain a Stein operator for Z that has order max{m,n} − t. To see this,
suppose, without loss of generality, that rj = aj for j = 1, . . . , t. Then we can write (recalling that the
operators Tα and Tβ are commutative)

AZf(x) = Tr1 · · ·TrtTrt+1 · · ·Trnf(x)− bxqTr1 · · ·TrtTat+1 · · ·Tamf(x)

= Trt+1 · · ·TrnTr1 · · ·Trtf(x)− bxqTat+1 · · ·TamTr1 · · ·Trtf(x).
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Taking f(x) = Ta1 · · ·Trtg(x) now gives the following reduced order operator:

ÃZg(x) = Trt+1 · · ·Trng(x)− bxqTat+1 · · ·Tamg(x). (64)

Specific examples of reduced order operators for mixed products of centered normal, beta and gamma
random variables are given in [15].

The condition that the order of the operator reduces to max{m,n} − t when |R ∩ S| = t is related
to the fact the density of the random variable Z can be written as a Meijer G-function. By duality,
the density p of Z satisfies the differential equation

T1−r1 · · ·T1−rnp(x)− b(−1)m+nxqTq+1−a1 · · ·Tq+1−amp(x) = 0.

Arguing more generally than we did in Section 4.1.2, using (82), we have that solutions to this
differential equation are of the form

p(x) = CGk,lm,n

(
b

qn−m
xq
∣∣∣∣ a1−1

q , . . . , am−1
q

r1−1
q , . . . , rn−1

q

)
, (65)

where C is an arbitrary constant and k, l ∈ {0, . . . ,max{m,n}} are integers that we are free to choose
(k = n, l = 0 for the density of the product normal distribution (see [39]), but k = n, l = n for the
density of Student’s t-distribution). It is interesting to note that the order of the G-function (65)
reduces to max{m,n} − t precisely when |R ∩ S| = t (see Section B.2). The duality between Stein
operators and differential equations satisfied by densities therefore suggests that Stein operators for
product distributions that arise from an application of Proposition 2.2 have minimal order amongst all
Stein operators with polynomial coefficients for the given distribution. We expect this to be the case
unless the sets R and S share at least one element, in which case we can obtain a lower order operator
by arguing as as we did in obtaining (64).

4.2 Asymptotics of the K-distribution

The K-distribution is a family of continuous probability distributions on (0,∞) which has been widely
used in applications, for example, for modelling radar signals [42], non-normal statistical properties of
radiation [21] and in wireless signal processing [10].

We have found two different p.d.f.s to be known as the K-distribution p.d.f. in the literature. The
first, taken, for example, from [21], is as a three-parameter distribution

KD1(x;µ, ν, L) =
2
(√

Lν
µ

)L+ν √
x
L+ν−2

Γ(L)Γ(ν)
Kν−L

(
2

√
Lν

µ

√
x

)
(66)

with Kα(·) the modified Bessel function of the second kind (see Appendix A for a definition). This is a
product distribution : a random variable Z follows the K-distribution with p.d.f. (66) and parameters

µ > 0, ν > L > 0 (which we denote Z1 ∼ KD1(µ, ν, L)) if Z1
L
= XY with X,Y independent random

variables with distribution X ∼ Γ(L,L) and Y ∼ Γ(ν, νµ). We easily deduce that IE [Z1] = µ and

Var(Z1) = µ2 ν+L+1
Lν =: σ2. Directly using the known operators for the gamma we can apply the results

from Section 2.1 to deduce that

A1f(x) =
1

Lν
(µTLTν − LνM) f(x) =

µ

Lν
x2f ′′(x) + σ2xf ′(x) + (µ− x)f(x) (67)

is a Stein operator for Z. Operator (67) is a rescaling by Lν of the original operator provided by
Proposition 2.2. It can be shown by direct computations that operator (67) can also be written as

A1f(x) =

(
(xf(x)/u1(x;µ, ν, L))′ xu1(x;µ, ν, L)KD1(x;µ, ν, L)

)′
KD1(x;µ, ν, L)

(68)

with

u1(x;µ, ν, L) = x−(L+ν−2)/2Kν−L

(
2

√
Lν

µ

√
x

)
. (69)
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When f is C2, we get that IE[A1f(Z1)] = [(xf(x)/u1(x))′xu1(x)KD1(x)]+∞0 , provided those limits
exist. However,

(xf(x)/u1(x))′xu1(x)K1(x) = xf(x)KD1(x) + x2f ′(x)KD1(x)− u′1(x)

u1(x)
x2f(x)KD1(x).

Standard properties of the modified Bessel function of the second kind imply that xKD1(x) and
u′1(x)
u1(x)x

2KD1(x) go to zero as x goes to zero and decreases exponentially fast as x goes to +∞. Thus if

both f and xf ′ are bounded, the limits are zero and we have IE[A1f(Z1)] = 0. We will make use of
this result later on.

The second, taken, for example, from [43], is as the two-parameter distribution given by

KD2(x;λ, c) =
2c

Γ(λ)

(cx
2

)λ
Kλ−1(cx). (70)

This is at the same time a product and power distribution : a random variable Z2 follows the K-

distribution with p.d.f. (70), shape λ > 0 and scale c > 0 if Z2
L
=
√
XY with X,Y independent random

variables with distribution X ∼ Exp(1) and Y ∼ Γ(λ, λcΓ(λ)√
πΓ(λ+1/2)

). We immediately obtain

IE [Z2] =

√
πΓ
(

1
2 + λ

)
cΓ(λ)

=: µ and IE
[
Z2

2

]
=

4λ

c2
. (71)

Applying the results from Sections 2.1 and 2.2 we deduce (after rescaling by λ) the operator

A2f(x) =
1

λ

(
µT2T2λ − 2λM2

)
f(x)

=
µ

λ
x2f ′′(x) +

µ

λ
(1 + 2 + 2λ)xf ′(x) + (4µ− 2x2)f(x). (72)

As is often the case with densities whose expression relies on special functions, the K-distribution is
unwieldy for practical implementations and one often needs to have recourse to approximate densities.
Two asymptotic approximations have been used for the K-distribution in the literature. The first
is a not surprising approximation of the K-distribution (66) by the gamma distribution studied, for
example, in [1] : fix without loss of generality µ = σ2 = 1, then L(Z)→ Exp(1) as L→∞. This is
easy to read at least in terms of Stein operators because under the assumptions on the parameters we
necessarily have

L =
1 + ν

1− ν

so that ν → 1 as L→∞ and (67) becomes

A1f(x) =
1

Lν
x2f ′′(x) + xf ′(x) + (1− x)f(x) (73)

which converges to
A1,∞f(x) = xf ′(x) + (1− x)f(x) (74)

as L → ∞, the operator for the Exp(1) distribution. Such a convergence was already known and
applied for wireless signal analysis; see, for example, [1, 11]. In the following Proposition, we give a
quantitative version of this result in terms of the Wasserstein and Kolmogorov distances which, to the
best of our knowledge, are new.

Proposition 4.1. Assume Z has the K-distribution with mean and variance 1, and X ∼ Exp(1).
Then

dW (Z,X) ≤ 4

Lν
(75)

and

dK(Z,X) = sup
x∈IR
|IP[Z ≤ x]− IP[X ≤ x]| ≤ 2

√
2√
Lν

. (76)
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Proof. We first derive the Wasserstein distance bound. Let h : IR+ → IR be Lipshitz. From [18],
Lemma 2.1, there exists a solution fh to the Stein equation A1,∞f = h− IE[h(X)] such that

‖xf ′′h‖ ≤ 4‖h′‖,

‖.‖ being the supremum norm. Moreover, we also have from [18] that fh and xf ′h are bounded, so that
IE[A1fh(Z)] = 0. We deduce that

|IE[h(Z)]− IE[h(X)]| = |IE[A1,∞fh(Z)]− IE[A1fh(Z)]|

=
1

Lν
|IE[Z2f ′′h (Z)]|

≤ 1

Lν
IE|Z| ‖xf ′′h‖

≤ 4

Lν
‖h′‖,

which on taking the supremum over all Lipshitz functions with Lipschitz constant 1 yields (75).
We can immediately obtain the Kolmogorov distance bound (76) from (75) by appealing to the

following result (see [36], Proposition 1.2): If the random variable V has Lebesgue density bounded
by C, then for any random variable U , we have dK(U, V ) ≤

√
2CdW (U, V ). Since the density of the

Exp(1) distribution is bounded by 1 we arrive at (76).

The second approximation is of parameterization (72) by a Rayleigh distribution with parameter 1
(the density is xex

2/2, x > 0) as λ and c tend to infinity, see, for example, [43]. Again this approximation
is obvious in terms of the operators, because (72) becomes

A2,∞f(x) = xf ′(x) + (2− x2)f(x) (77)

as µ/λ→ 0. Since the Rayleigh distribution is a special case of the generalized gamma distribution, it
follows from the generalized gamma Stein operator (see [15] and Table A in Appendix A) that (77) is
indeed a Stein operator for the Rayleigh distribution with parameter 1. Note that

µ

λ
=

√
πΓ(λ+ 1/2)

cλΓ(λ)
<

√
π

c

1√
λ+ 1/4

(the inequality can be found in [13]) for c and λ large; convergence of the K-distribution towards the
Rayleigh thus occurs both as c and λ go to infinity. The condition µ/λ→ 0 for the approximation to
hold is the same as that noted already in [43, Theorem 1].

A List of Stein operators for continuous distributions

Recall that Mf(x) = xf(x), Df(x) = f ′(x), I is the identity and Taf(x) = xf ′(x) + af(x). We also

recall the definition of some standard functions. The beta function is defined by B(a, b) = Γ(a)Γ(b)
Γ(a+b) .

U(a, b, x) denotes the confluent hypergeometric function of the second kind ([32], Chapter 13). The
modified Bessel function of the second kind is given, for x > 0, by Kν(x) =

∫∞
0 e−x cosh(t) cosh(νt) dt

(see [32]).
We give a list of Stein operators for several classical probability distributions, in terms of the

above operators. References for these Stein operators are as follows: normal [40], gamma [7, 27],
beta [8, 19, 37], Student’s t [37], inverse-gamma [22], F -distribution (new to this paper), PRR [33],
variance-gamma [14], generalized gamma [15], and two versions of the K-distribution (both of which
can be deduced from [15], as they are both powers of product of independent gammas).

The usual Stein operators (as defined in the above references) for the normal, PRR and variance-
gamma distributions, are not in the form required in Section 2. In these cases, we multiply the operators
by M on the right (which is equivalent to applying them to xf(x) instead of f(x)). It is important to
note that by doing so, we change the class of functions the operators act on : if A acts on F , then
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Distribution Parameters Notation

Normal µ, σ ∈ IR N (µ, σ2)

Gamma r, λ > 0 Γ(r, λ)

Beta a, b > 0 Beta(a, b)

Student’s t ν > 0 T (ν)

Inverse-gamma α, β > 0 IG(α, β)

F -distribution d1, d2 > 0 F (d1, d2)

PRR distribution s > 1/2 PRRs
Variance-gamma r, σ > 0, θ, µ ∈ R VG(r, θ, σ, µ)

Generalized Gamma r, λ, q > 0 GG(r, λ, q)

K-distribution (1) µ > 0, ν > L > 0 KD1(µ, ν, L)

K-distribution (2) λ, c > 0 KD2(λ, c)

Table 1: Distributions

Distribution p.d.f. Stein operator

N (µ, σ2) 1√
2πσ

e−(x−µ)/σ2
σ2T1 + µM −M2

Γ(r, λ) λr

Γ(r)x
r−1e−λx1x>0 Tr − λM .

Beta(a, b) 1
B(a,b)x

a−1(1− x)b−110<x<1 Ta −MTa+b

T (ν)
Γ( ν+1

2
)√

νπΓ( ν
2

)

(
1 + x2

ν

)−(ν+1)/2

νT1 +M2T2−ν

IG(α, β) βα

Γ(α)x
−α−1e−β/x 1x>0 βI +MT1−α

F (d1, d2) 1

B(
d1
2
,
d2
2

)

(
d1
d2

)d1/2
xd1/2−1

(
1 + d1

d2
x

)−(d1+22)/2

1x>0 d2Td1/2 + d1MT1−d2/2

PRRs Γ(s)
√

2
sπ exp

(
− x2

2s

)
U

(
s− 1, 1

2 ,
x2

2s

)
1x>0 sT1T2 −M2T2s

VG(r, θ, σ, µ = 0) 1
σ
√
πΓ( r

2
)
e
θ
σ2
x

(
|x|

2
√
θ2+σ2

) r−1
2

K r−1
2

(√
θ2+σ2

σ2 |x|
)

σ2T1Tr + 2θMTr/2 −M2

GG(r, λ, q) qλr

Γ(r/q)x
r−1e−(λx)q 1x>0 Tr − qλqM q

KD1(µ, ν, L)
2
(√

Lν
µ

)L+ν√
x
L+ν−2

Γ(L)Γ(ν) Kν−L

(
2
√

Lν
µ

√
x
)

µ
LνTLTν −M

KD2(λ, c) 2c
Γ(λ)

(
cx
2

)λ
Kλ−1(cx) µ

λT2T2λ − 2M2

Table 2: p.d.f. and Stein operator of some classical distributions.

AM acts on {f : Mf ∈ F} (in particular, if Af is defined when f is smooth with compact support, so
is AM).

We show in more detail the normal case. The centered normal distribution with variance σ2 has
usual Stein operator given by Af(x) = σ2f ′(x)− xf(x), which reads, in our notation, A = σ2D −M .
Applying this operator to xf(x) instead of f(x), or, equivalently, multiplying it on the right by M
leads to the new Stein operator Ã = σ2DM −M2. But DM = MD+ I = T1, so that Ã = σ2T1 −M2.
This operator is indeed of the form of (14). The same trick is used for the PRR distribution and the
variance-gamma distribution.

We note that the support of the variance-gamma distributions is R when σ > 0, but in the limit
σ → 0 the support is the region (µ,∞) if θ > 0, and is (−∞, µ) if θ < 0.

B The Meijer G-function

Here we define the Meijer G-function and present some of its basic properties that are relevant to this
paper. For further properties of this function see [28, 32].
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B.1 Definition

The Meijer G-function is defined, for z ∈ C \ {0}, by the contour integral:

Gm,np,q

(
z

∣∣∣∣ a1, . . . , ap
b1, . . . , bq

)
=

1

2πi

∫ c+i∞

c−i∞
z−s

∏m
j=1 Γ(s+ bj)

∏n
j=1 Γ(1− aj − s)∏p

j=n+1 Γ(s+ aj)
∏q
j=m+1 Γ(1− bj − s)

ds,

where c is a real constant defining a Bromwich path separating the poles of Γ(s+ bj) from those of
Γ(1− aj − s) and where we use the convention that the empty product is 1.

B.2 Basic properties

The G-function is symmetric in the parameters a1, . . . , an; an+1, . . . , ap; b1, . . . , bm; and bm+1, . . . , bq.
Thus, if one the aj ’s, j = n+ 1, . . . , p, is equal to one of the bk’s, k = 1, . . . ,m, the G-function reduces
to one of lower order. For example,

Gm,np,q

(
z

∣∣∣∣ a1, . . . , ap−1, b1
b1, . . . , bq

)
= Gm−1,n

p−1,q−1

(
z

∣∣∣∣ a1, . . . , ap−1

b2, . . . , bq

)
, m, p, q ≥ 1. (78)

The G-function satisfies the identities

zcGm,np,q

(
z

∣∣∣∣ a1, . . . , ap
b1, . . . , bq

)
= Gm,np,q

(
z

∣∣∣∣ a1 + c, . . . , ap + c

b1 + c, . . . , bq + c

)
, (79)

Gm,np,q

(
z

∣∣∣∣ a1, . . . , ap
b1, . . . , bq

)
= Gn,mq,p

(
z−1

∣∣∣∣ 1− b1, . . . , 1− bq
1− a1, . . . , 1− ap

)
. (80)

B.3 Integration

The following formula follows from Luke [28], formula (1) of section 5.6 and a change of variables:∫ ∞
0

xs−1Gm,np,q

(
αxγ

∣∣∣∣ a1, . . . , ap
b1, . . . , bq

)
dx =

α−s/γ

γ

∏m
j=1 Γ(bj + s

γ )
∏n
j=1 Γ(1− aj − s

γ )∏q
j=m+1 Γ(1− bj − s

γ )
∏p
j=n+1 Γ(aj + s

γ )
. (81)

For the conditions under which this formula is valid see Luke, pp. 158–159. In particular, the formula
is valid when n = 0, 1 ≤ p+ 1 ≤ m ≤ q and α > 0.

B.4 Differential equation

The G-function f(z) = Gm,np,q

(
z
∣∣a1,...,ap
b1,...,bq

)
satisfies the differential equation

(−1)p−m−nzT1−a1 · · ·T1−apf(z)− T−b1 · · ·T−bqf(z) = 0, (82)

where Trf(z) = zf ′(z) + rf(z).
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[33] Peköz, E., Röllin, A. and Ross, N. Degree asymptotics with rates for preferential attachment
random graphs. Ann. Appl. Probab. 23 (2013), pp. 1188–1218.
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