Permutations and shifts: a survey

Émilie Charlier
Département de Mathématique, Université de Liège
DLT 2016 - Montréal, July 25-28

Permutations

We write

$$
312=\left(\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 2
\end{array}\right)
$$

and

$$
(312)=\left(\begin{array}{lll}
1 & 2 & 3 \\
2 & 3 & 1
\end{array}\right)=231
$$

Let's start with the tent map

$$
T:[0,1] \rightarrow[0,1], x \mapsto\left\{\begin{array}{cl}
2 x & \text { if } x \in\left[0, \frac{1}{2}\right] \\
-2 x+2 & \text { if } x \in\left[\frac{1}{2}, 1\right]
\end{array}\right.
$$

Let's start with the tent map

$$
T:[0,1] \rightarrow[0,1], x \mapsto\left\{\begin{array}{cl}
2 x & \text { if } x \in\left[0, \frac{1}{2}\right] \\
-2 x+2 & \text { if } x \in\left[\frac{1}{2}, 1\right]
\end{array}\right.
$$

Let's start with the tent map

$$
T:[0,1] \rightarrow[0,1], x \mapsto\left\{\begin{array}{cl}
2 x & \text { if } x \in\left[0, \frac{1}{2}\right] \\
-2 x+2 & \text { if } x \in\left[\frac{1}{2}, 1\right]
\end{array}\right.
$$

Let's start with the tent map

$$
T:[0,1] \rightarrow[0,1], x \mapsto\left\{\begin{array}{cl}
2 x & \text { if } x \in\left[0, \frac{1}{2}\right] \\
-2 x+2 & \text { if } x \in\left[\frac{1}{2}, 1\right]
\end{array}\right.
$$

Let's start with the tent map

$$
T:[0,1] \rightarrow[0,1], x \mapsto\left\{\begin{array}{cl}
2 x & \text { if } x \in\left[0, \frac{1}{2}\right] \\
-2 x+2 & \text { if } x \in\left[\frac{1}{2}, 1\right]
\end{array}\right.
$$

Let's start with the tent map

$$
T:[0,1] \rightarrow[0,1], x \mapsto\left\{\begin{array}{cl}
2 x & \text { if } x \in\left[0, \frac{1}{2}\right] \\
-2 x+2 & \text { if } x \in\left[\frac{1}{2}, 1\right]
\end{array}\right.
$$

Let's start with the tent map

$$
T:[0,1] \rightarrow[0,1], x \mapsto\left\{\begin{array}{cl}
2 x & \text { if } x \in\left[0, \frac{1}{2}\right] \\
-2 x+2 & \text { if } x \in\left[\frac{1}{2}, 1\right]
\end{array}\right.
$$

Let's start with the tent map

$$
T:[0,1] \rightarrow[0,1], x \mapsto\left\{\begin{array}{cl}
2 x & \text { if } x \in\left[0, \frac{1}{2}\right] \\
-2 x+2 & \text { if } x \in\left[\frac{1}{2}, 1\right]
\end{array}\right.
$$

Let's start with the tent map

$$
T:[0,1] \rightarrow[0,1], x \mapsto\left\{\begin{array}{cl}
2 x & \text { if } x \in\left[0, \frac{1}{2}\right] \\
-2 x+2 & \text { if } x \in\left[\frac{1}{2}, 1\right]
\end{array}\right.
$$

Let's start with the tent map

$$
T:[0,1] \rightarrow[0,1], x \mapsto\left\{\begin{array}{cl}
2 x & \text { if } x \in\left[0, \frac{1}{2}\right] \\
-2 x+2 & \text { if } x \in\left[\frac{1}{2}, 1\right]
\end{array}\right.
$$

Any x close to 0 realizes the permutation 123: $x<T(x)<T^{2}(x)$.

Let's start with the tent map

$$
T:[0,1] \rightarrow[0,1], x \mapsto\left\{\begin{array}{cl}
2 x & \text { if } x \in\left[0, \frac{1}{2}\right] \\
-2 x+2 & \text { if } x \in\left[\frac{1}{2}, 1\right]
\end{array}\right.
$$

Any x close to 0 realizes the permutation 123: $x<T(x)<T^{2}(x)$. Any x close to 1 realizes the permutation 312: $T(x)<T^{2}(x)<x$.

Let's start with the tent map

$$
T:[0,1] \rightarrow[0,1], x \mapsto\left\{\begin{array}{cl}
2 x & \text { if } x \in\left[0, \frac{1}{2}\right] \\
-2 x+2 & \text { if } x \in\left[\frac{1}{2}, 1\right]
\end{array}\right.
$$

Any x close to 0 realizes the permutation 123: $x<T(x)<T^{2}(x)$. Any x close to 1 realizes the permutation 312: $T(x)<T^{2}(x)<x$.

Let's start with the tent map

$$
T:[0,1] \rightarrow[0,1], x \mapsto\left\{\begin{array}{cl}
2 x & \text { if } x \in\left[0, \frac{1}{2}\right] \\
-2 x+2 & \text { if } x \in\left[\frac{1}{2}, 1\right]
\end{array}\right.
$$

Any x close to 0 realizes the permutation 123: $x<T(x)<T^{2}(x)$. Any x close to 1 realizes the permutation 312: $T(x)<T^{2}(x)<x$.

Let's start with the tent map

$$
T:[0,1] \rightarrow[0,1], x \mapsto\left\{\begin{array}{cl}
2 x & \text { if } x \in\left[0, \frac{1}{2}\right] \\
-2 x+2 & \text { if } x \in\left[\frac{1}{2}, 1\right]
\end{array}\right.
$$

Any x close to 0 realizes the permutation 123: $x<T(x)<T^{2}(x)$. Any x close to 1 realizes the permutation 312: $T(x)<T^{2}(x)<x$.

Let's start with the tent map

$$
T:[0,1] \rightarrow[0,1], x \mapsto\left\{\begin{array}{cl}
2 x & \text { if } x \in\left[0, \frac{1}{2}\right] \\
-2 x+2 & \text { if } x \in\left[\frac{1}{2}, 1\right]
\end{array}\right.
$$

Any x close to 0 realizes the permutation 123: $x<T(x)<T^{2}(x)$. Any x close to 1 realizes the permutation 312: $T(x)<T^{2}(x)<x$.

Let's start with the tent map

$$
T:[0,1] \rightarrow[0,1], x \mapsto\left\{\begin{array}{cl}
2 x & \text { if } x \in\left[0, \frac{1}{2}\right] \\
-2 x+2 & \text { if } x \in\left[\frac{1}{2}, 1\right]
\end{array}\right.
$$

Any x close to 0 realizes the permutation 123: $x<T(x)<T^{2}(x)$. Any x close to 1 realizes the permutation 312: $T(x)<T^{2}(x)<x$.

Let's start with the tent map

$$
T:[0,1] \rightarrow[0,1], x \mapsto\left\{\begin{array}{cl}
2 x & \text { if } x \in\left[0, \frac{1}{2}\right] \\
-2 x+2 & \text { if } x \in\left[\frac{1}{2}, 1\right]
\end{array}\right.
$$

Any x close to 0 realizes the permutation 123: $x<T(x)<T^{2}(x)$. Any x close to 1 realizes the permutation 312: $T(x)<T^{2}(x)<x$.

Let's start with the tent map

$$
T:[0,1] \rightarrow[0,1], x \mapsto\left\{\begin{array}{cl}
2 x & \text { if } x \in\left[0, \frac{1}{2}\right] \\
-2 x+2 & \text { if } x \in\left[\frac{1}{2}, 1\right]
\end{array}\right.
$$

Any x close to 0 realizes the permutation 123: $x<T(x)<T^{2}(x)$. Any x close to 1 realizes the permutation 312: $T(x)<T^{2}(x)<x$.

Let's start with the tent map

A case study shows

So the permutation $\pi=321$ is not realizable!

Dynamical systems

- (X, T) where X is a set and T is a map from X to X.
- The objects of study are the trajectories of points.
- The orbit of $x \in X$ is the subset $\left\{T^{n}(x): n \in \mathbb{N}\right\}$.
- Typically, the set X is endowed with a specific structure and the map T preserves this structure.
- If X is a topological space and T is continuous, then (X, T) is a topological dynamical system.
- If X is a measurable space and T is measure preserving, then (X, T) is a measure-preserving dynamical system.

Conjugacy (in the topological case)

- $\left(X_{1}, T_{1}\right)$ and $\left(X_{2}, T_{2}\right)$ are conjugate if there exists a homeomorphism $\phi: X_{1} \rightarrow X_{2}$ such that $\phi \circ T_{1}=T_{2} \circ \phi$

$$
\begin{array}{cl}
X_{1} \xrightarrow{T_{1}} X_{1} \\
\phi \downarrow \\
\downarrow \\
X_{2} \xrightarrow{T_{2}}{ }^{\downarrow}{ }^{\downarrow}{ }_{2}
\end{array}
$$

- One of the goals in the theory: classify dynamical systems up to conjugacy.

Invariants

- The idea: if two conjugate systems necessarily share some property, which is called an invariant, then this property can be used to distinguish non-conjugate systems.
- The useful invariants must be computable for a large class of dynamical systems.
- Example of invariant: the number of periodic points.

Entropy

- Permits us to measure the complexity of a dynamical system.
- Invariant under conjugacy.
- Computable for a large variety of dynamical systems.
- So, it is a powerful tool in order to classify dynamical systems.

The starting point

Let I be an interval of \mathbb{R} and consider the dynamical systems (I, T) where $T: I \rightarrow I$.

Theorem (Bandt-Keller-Pompe 2002)

- The concepts of permutation entropy and of topological entropy coincide for piecewise monotone interval maps.
- Similar result for the Kolmogorov-Sinai entropy w.r.t. an invariant measure.

Entropy of interval maps via permutations [Bandt-Keller-Pompe 2002]

Permutation entropy

- Let (X, T) be a dynamical system where X is a totally ordered set.
- For an integer $n \geq 1$ and a point $x \in X$ such that

$$
x, T(x), \ldots, T^{n-1}(x)
$$

are pairwise distinct, $\operatorname{Pat}(T, n, x)$ denotes the permutation $\pi \in \mathcal{S}_{n}$ defined by

$$
T^{\pi^{-1}(1)-1}(x)<T^{\pi^{-1}(2)-1}(x)<\cdots<T^{\pi^{-1}(n)-1}(x) .
$$

- Otherwise stated, $\pi(i)<\pi(j)$ for all $i, j \in \llbracket 1, n \rrbracket$ such that $T^{i-1}(x)<T^{j-1}(x)$.

Example
If $T^{3}(x)<T(x)<x<T^{2}(x)$ then $\operatorname{Pat}(T, 4, x)=3241$.

Permutation entropy

- $\operatorname{Allow}(T, n)=\{\operatorname{Pat}(T, n, x): x \in X\}$ is the set of permutations of length n realized by some $x \in X$.
- $\operatorname{Allow}(T)=\bigcup_{n \geq 1} \operatorname{Allow}(T, n)$.
- The permutation entropy of T is defined as

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log |\operatorname{Allow}(T, n)|
$$

provided that the limit exists.

Symbolic dynamical systems

- The idea is to discretize dynamical systems.
- The set X is partitioned into subsets P_{1}, \ldots, P_{k}.
- A point $x \in X$ is coded by a right-infinite word $\left(a_{n}\right)_{n \in \mathbb{N}}$:

$$
\forall n \in \mathbb{N}, a_{n}=i \text { whenever } T^{n}(x) \in P_{i}
$$

- If a point $x \in X$ is coded by $\left(a_{n}\right)_{n \in \mathbb{N}}$, then its image $T(x)$ is coded by $\left(a_{n+1}\right)_{n \in \mathbb{N}}$.

- We are interested in determining which sequences can arise in this way.

Binary representation of numbers

$$
\text { Let } T:[0,1) \rightarrow[0,1), x \mapsto\{2 x\}
$$

We partition $[0,1)$ into the 2 subintervals $\left[0, \frac{1}{2}\right)$ and $\left[\frac{1}{2}, 1\right)$, which are coded by 0 and 1 respectively.
Then the coding of a real number x just corresponds to its binary expansion.

Representation of numbers in a real base β

Let $\beta>1$ a real number and $T_{\beta}:[0,1) \rightarrow[0,1), x \mapsto\{\beta x\}$.

$$
\beta=\sqrt{5}
$$

We partition $[0,1)$ into the $\lceil\beta\rceil$ subintervals

$$
\left[0, \frac{1}{\beta}\right),\left[\frac{1}{\beta}, \frac{2}{\beta}\right), \ldots,\left[\frac{\lceil\beta\rceil-1}{\beta}, 1\right),
$$

which are coded by $0,1, \ldots,\lceil\beta\rceil-1$ respectively.
In this case the coding of a real number x corresponds to its β-expansion.

Symbolic dynamical systems

- X is a subset of $A^{\mathbb{N}}$ stable under the shift operator σ :

$$
\sigma\left(\left(a_{n}\right)_{n \in \mathbb{N}}\right)=\left(a_{n+1}\right)_{n \in \mathbb{N}}
$$

- Denote by σ_{X} the restriction of the operator σ to X.
- If X is also compact then $\left(X, \sigma_{X}\right)$ is called a symbolic dynamical system, a shift space, or simply a shift.
- A shift can also be described as a set $X_{\mathcal{F}}$ of all sequences avoiding the finite blocks in \mathcal{F}.
- $\left(A^{\mathbb{N}}, \sigma\right)$ is called the full shift.

Entropy in shifts $\left(X, \sigma_{X}\right)$

- $\operatorname{Fact}_{n}(X)$ is the number of factors of length n that appear in some $x \in X$.
- Typically, $\left|\operatorname{Fact}_{n}(X)\right|$ grows like $2^{c n}$ for some constant c.
- The entropy of σ_{X} is given by

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log \left|\operatorname{Fact}_{n}(X)\right|
$$

- We can equip $A^{\mathbb{N}}$, and hence any shift space, with a total order, as the lexicographic order for example.
- Using Bandt-Keller-Pompe's result, an alternative way to compute the entropy is given by

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log \left|\operatorname{Allow}\left(\sigma_{X}, n\right)\right|
$$

Uncountably many forbidden permutations

- The same result implies that not all permutations are realizable in such a dynamical system.
- In fact, in general, there are much more forbidden permutations than realizable permutations.
- Quote from Elizalde: "Understanding the forbidden patterns of chaotic maps is important because the absence of these patterns is what distinguishes sequences generated by chaotic maps from random sequences."

Part I: Permutations in full shifts

Forbidden patterns and shift systems [Amigó-Elizalde-Kennel 2008] The number of permutations realized by a shift [Elizalde 2009]

The full shift over k symbols

- Let $A_{k}=\{0,1, \ldots, k-1\}$ and $\sigma_{k}: A_{k}^{\mathbb{N}} \rightarrow A_{k}^{\mathbb{N}}$ denote the shift operator.
- Elements in $A_{k}^{\mathbb{N}}$ are ordered by the lexicographic order:

$$
\begin{array}{r}
a_{1} a_{2} \cdots<_{\text {lex }} b_{1} b_{2} \cdots \Longleftrightarrow \exists i \geq 1, a_{1} \cdots a_{i-1}=b_{1} \cdots b_{i-1} \\
\text { and } a_{i}<b_{i}
\end{array}
$$

- Study the permutations realizable in full shifts $\left(A_{k}^{\mathbb{N}}, \sigma_{k}\right)$, that is, the sets $\operatorname{Allow}\left(\sigma_{k}\right)$.
- In particular, for a given permutation π, compute the quantity

$$
N_{+}(\pi)=\min \left\{k \geq 1: \pi \in \operatorname{Allow}\left(\sigma_{k}\right)\right\}
$$

which is the number of symbols needed in order to realize π.

Example ($\pi=4217536 \in \mathcal{S}_{7}$)
Then $\operatorname{Pat}\left(\sigma_{3}, 7,210221220 \cdots\right)=\pi$ since

$210221220 \cdots$	4
$10221220 \cdots$	2
$0221220 \cdots$	1
$221220 \cdots$	7
$21220 \cdots$	5
$1220 \cdots$	3
$220 \cdots$	6

Another way to see it is:

$$
\begin{aligned}
& 210221220 \ldots \\
& 4217536
\end{aligned}
$$

In fact, to realize the permutation π, one needs 3 symbols, so that $N_{+}(\pi)=3$.

Computing $N_{+}(\pi)$

- Associated with $\pi \in \mathcal{S}_{n}$, we consider the circular permutation (or n-cycle)

$$
\hat{\pi}=(\pi(1) \pi(2) \cdots \pi(n)),
$$

that is, $\hat{\pi}(\pi(i))=\pi(i+1)$ for $1 \leq i<n$, and $\hat{\pi}(\pi(n))=\pi(1)$.

- Idea: Count the number of descents in $\hat{\pi}$.
- A descent in a permutation $\pi \in \mathcal{S}_{n}$ is an index $1 \leq i<n$ such that $\pi(i)>\pi(i+1)$.

Example

If we represent the permutation $\pi=2413$, we see that it has one descent:

Computing $N_{+}(\pi)$

Theorem (Elizalde 2009)
For any $\pi \in \mathcal{S}_{n}$, the minimal number k of distinct symbols of a sequence w satisfying $\operatorname{Pat}\left(w, \sigma_{k}, n\right)=\pi$ is

$$
N_{+}(\pi)=1+\operatorname{des}(\hat{\pi})+\epsilon_{+}(\pi)
$$

where $\operatorname{des}(\hat{\pi})$ is the number of descents in $\hat{\pi}$ with $\pi(1)$ removed, and

$$
\epsilon_{+}(\pi)= \begin{cases}1 & \text { if } \pi \text { ends with } 21 \text { or with }(n-1) n \\ 0 & \text { otherwise }\end{cases}
$$

Computing $N_{+}(\pi)$: Sketch of the proof

- If $\left\{\begin{array}{l}a_{i} a_{i+1} \cdots<_{\text {lex }} a_{j} a_{j+1} \cdots \\ a_{i}=a_{j}\end{array}\right.$ then $a_{i+1} a_{i+2} \cdots<_{\text {lex }} a_{j+1} a_{j+2} \cdots$
- Now suppose that $a_{1} a_{2} \cdots \in A_{k}^{\mathbb{N}}$ realizes the permutation $\pi \in \mathcal{S}_{n}$, that is, $\operatorname{Pat}\left(\sigma_{k}, n, a_{1} a_{2} \cdots\right)=\pi$.
- If $\left\{\begin{array}{l}\pi(i)<\pi(j) \\ a_{i}=a_{j} \\ i, j<n\end{array} \quad\right.$ then $\pi(i+1)<\pi(j+1)$.
- We make use of $\hat{\pi}$ with the contrapositive statement.
- If $\left\{\begin{array}{l}\pi(i)+1=\pi(j) \\ \pi(i+1)=\hat{\pi}(\pi(i))>\hat{\pi}(\pi(j))=\pi(j+1) \quad \text { then } a_{i}<a_{j} \text {. } \\ i, j<n\end{array}\right.$
- So, for each descent in $\hat{\pi}$ with $\pi(1)$ removed, we need one more symbol.

Example $\left(\pi=4217536 \in \mathcal{S}_{7}\right)$
One has $\hat{\pi}=(4217536)=7162345$ and $\operatorname{des}(\hat{\pi})=2$.

$$
\hat{\pi}=7 \begin{array}{llllll}
7 & 1 & 6 & 2 & 3 & \underline{4}
\end{array}
$$

Finding digits

$$
\pi=\begin{array}{lllllll}
4 & 2 & 1 & 7 & 5 & 3 & 6
\end{array}
$$

Placing digits

Example $\left(\pi=4217536 \in \mathcal{S}_{7}\right)$
One has $\hat{\pi}=(4217536)=7162345$ and $\operatorname{des}(\hat{\pi})=2$.

$$
\begin{array}{llllllll}
\hat{\pi} & =\begin{array}{lllllll}
7 & 1 & 6 & 2 & 3 & 4 & 5 \\
0 & & & & & & \\
\pi & = & 2 & 1 & 7 & 5 & 3
\end{array} & 6
\end{array}
$$

Finding digits
Placing digits

Example $\left(\pi=4217536 \in \mathcal{S}_{7}\right)$
One has $\hat{\pi}=(4217536)=7162345$ and $\operatorname{des}(\hat{\pi})=2$.

$$
\begin{array}{llllllll}
\hat{\pi} & =\begin{array}{lllllll}
7 & 1 & 6 & 2 & 3 & 4 & 5 \\
0 & 1 & & & & & \\
\pi & 4 & 2 & 1 & 7 & 5 & 3
\end{array} & 6
\end{array}
$$

Finding digits
Placing digits

Example $\left(\pi=4217536 \in \mathcal{S}_{7}\right)$
One has $\hat{\pi}=(4217536)=7162345$ and $\operatorname{des}(\hat{\pi})=2$.

	$\hat{\pi}=$	7	1	6	2	3	$\underline{4}$	5
0	1	1						
Finding digits							1	7
	5	3	6					

Placing digits

Example $\left(\pi=4217536 \in \mathcal{S}_{7}\right)$
One has $\hat{\pi}=(4217536)=7162345$ and $\operatorname{des}(\hat{\pi})=2$.

	$\hat{\pi}=$	7	1	6	2	3	$\underline{4}$	5
0	1	1	2					
Finding digits								
	$\pi=$	2	1	5	3	6		

Placing digits

Example $\left(\pi=4217536 \in \mathcal{S}_{7}\right)$
One has $\hat{\pi}=(4217536)=7162345$ and $\operatorname{des}(\hat{\pi})=2$.

	$\hat{\pi}=$	7	1	6	2	3	4	5
0	1	1	2	2				
Finding digits								
	$\pi=$	2	1	7	5	3	6	

Placing digits

Example $\left(\pi=4217536 \in \mathcal{S}_{7}\right)$
One has $\hat{\pi}=(4217536)=7162345$ and $\operatorname{des}(\hat{\pi})=2$.

Finding digits	$\hat{\pi}=$	7	1	6	2	3	$\underline{4}$	5
0	1	1	2	2		2		
	$\pi=$	2	1	7	5	3	6	

Placing digits

Example $\left(\pi=4217536 \in \mathcal{S}_{7}\right)$
One has $\hat{\pi}=(4217536)=7162345$ and $\operatorname{des}(\hat{\pi})=2$.
$\begin{array}{lllllllll} & \hat{\pi}= & 7 & 1 & 6 & 2 & 3 & 4 & 5 \\ \text { Finding digits } & & 1 & 1 & 2 & 2 & & 2 \\ & \pi= & 4 & 2 & 1 & 7 & 5 & 3 & 6\end{array}$

Example $\left(\pi=4217536 \in \mathcal{S}_{7}\right)$
One has $\hat{\pi}=(4217536)=7162345$ and $\operatorname{des}(\hat{\pi})=2$.
$\begin{array}{lllllllll} & \hat{\pi}= & 7 & 1 & 6 & 2 & 3 & 4 & 5 \\ \text { Finding digits } & & 1 & 1 & 2 & 2 & & 2 \\ & \pi= & 4 & 2 & 1 & 7 & 5 & 3 & 6 \\ \text { Placing digits } & & 1 & 0 & & & & \end{array}$

Example $\left(\pi=4217536 \in \mathcal{S}_{7}\right)$
One has $\hat{\pi}=(4217536)=7162345$ and $\operatorname{des}(\hat{\pi})=2$.

	$\hat{\pi}=$	7	1	6	2	3	4	5
Finding digits		1	1	2	2		2	
	$\pi=$	4	2	1	7	5	3	6
Placing digits		1	0			1		

Example $\left(\pi=4217536 \in \mathcal{S}_{7}\right)$
One has $\hat{\pi}=(4217536)=7162345$ and $\operatorname{des}(\hat{\pi})=2$.

	$\hat{\pi}=$	7	1	6	2	3	4	5
Finding digits		1	1	2	2		2	
	$\pi=$	2	1	7	5	3	6	
Placing digits		1	0			1		

Example $\left(\pi=4217536 \in \mathcal{S}_{7}\right)$
One has $\hat{\pi}=(4217536)=7162345$ and $\operatorname{des}(\hat{\pi})=2$.

	$\hat{\pi}=$	7	1	6	2	3	4	5
Finding digits		1	1	2	2		2	
	$\pi=$	2	1	7	5	3	6	
Placing digits		1	0		2	1		

Example $\left(\pi=4217536 \in \mathcal{S}_{7}\right)$
One has $\hat{\pi}=(4217536)=7162345$ and $\operatorname{des}(\hat{\pi})=2$.

	$\hat{\pi}=$	7	1	6	2	3	4	5
Finding digits		1	1	2	2		2	
	$\pi=$	2	1	7	5	3	6	
Placing digits		1	0	2	2	1		

Example $\left(\pi=4217536 \in \mathcal{S}_{7}\right)$
One has $\hat{\pi}=(4217536)=7162345$ and $\operatorname{des}(\hat{\pi})=2$.

	$\hat{\pi}=$	7	1	6	2	3	4	5
Finding digits		1	1	2	2		2	
	$\pi=$	2	1	7	5	3	6	
Placing digits		1	0	2	2	1		

If you ask for at most 3 symbols, then the prefix of any sequence realizing π starts with the prefix $z_{1} \cdots z_{n-1}=210221$.

Example $\left(\pi=4217536 \in \mathcal{S}_{7}\right)$
One has $\hat{\pi}=(4217536)=7162345$ and $\operatorname{des}(\hat{\pi})=2$.

	$\hat{\pi}=$	7	1	6	2	3	4	5
Finding digits		1	1	2	2		2	
	$\pi=$	2	1	7	5	3	6	
Placing digits		1	0	2	2	1		

If you ask for at most 3 symbols, then the prefix of any sequence realizing π starts with the prefix $z_{1} \cdots z_{n-1}=210221$.

We can continue this prefix (using only 3 symbols) to obtain a sequence that realizes π.

Example $\left(\pi=4217536 \in \mathcal{S}_{7}\right)$
One has $\hat{\pi}=(4217536)=7162345$ and $\operatorname{des}(\hat{\pi})=2$.

| | $\hat{\pi}=$ | 7 | 1 | 6 | 2 | 3 | 4 | 5 | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Finding digits | | 0 | 1 | 1 | 2 | 2 | | 2 | | | |
| | $\pi=$ | 2 | 1 | 7 | 5 | 3 | 6 | | | | |
| Placing digits | | 1 | 0 | 2 | 2 | 1 | 2 | 2 | 0 | \ldots | |

If you ask for at most 3 symbols, then the prefix of any sequence realizing π starts with the prefix $z_{1} \cdots z_{n-1}=210221$.

We can continue this prefix (using only 3 symbols) to obtain a sequence that realizes π.

Example $\left(\pi=4217536 \in \mathcal{S}_{7}\right)$
One has $\hat{\pi}=(4217536)=7162345$ and $\operatorname{des}(\hat{\pi})=2$.

| | $\hat{\pi}=$ | 7 | 1 | 6 | 2 | 3 | 4 | 5 | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Finding digits | | 0 | 1 | 1 | 2 | 2 | | 2 | | | |
| | $\pi=$ | 2 | 1 | 7 | 5 | 3 | 6 | | | | |
| Placing digits | | 1 | 0 | 2 | 2 | 1 | 2 | 2 | 0 | \ldots | |

If you ask for at most 3 symbols, then the prefix of any sequence realizing π starts with the prefix $z_{1} \cdots z_{n-1}=210221$.

We can continue this prefix (using only 3 symbols) to obtain a sequence that realizes π.

In fact any sequence starting with the prefix 210221220 works.

Example $\left(\pi=4217536 \in \mathcal{S}_{7}\right)$
One has $\hat{\pi}=(4217536)=7162345$ and $\operatorname{des}(\hat{\pi})=2$.

| | $\hat{\pi}=$ | 7 | 1 | 6 | 2 | 3 | 4 | 5 | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Finding digits | | 0 | 1 | 1 | 2 | 2 | | 2 | | | |
| | $\pi=$ | 2 | 1 | 7 | 5 | 3 | 6 | | | | |
| Placing digits | | 1 | 0 | 2 | 2 | 1 | 2 | 2 | 0 | \ldots | |

If you ask for at most 3 symbols, then the prefix of any sequence realizing π starts with the prefix $z_{1} \cdots z_{n-1}=210221$.

We can continue this prefix (using only 3 symbols) to obtain a sequence that realizes π.

In fact any sequence starting with the prefix 210221220 works.

Example $\left(\pi=4217536 \in \mathcal{S}_{7}\right)$
One has $\hat{\pi}=(4217536)=7162345$ and $\operatorname{des}(\hat{\pi})=2$.

| | $\hat{\pi}=$ | 7 | 1 | 6 | 2 | 3 | 4 | 5 | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Finding digits | | 0 | 1 | 1 | 2 | 2 | | 2 | | | |
| | $\pi=$ | 2 | 1 | 7 | 5 | 3 | 6 | | | | |
| Placing digits | | 1 | 0 | 2 | 2 | 1 | 2 | 2 | 0 | \ldots | |

If you ask for at most 3 symbols, then the prefix of any sequence realizing π starts with the prefix $z_{1} \cdots z_{n-1}=210221$.

We can continue this prefix (using only 3 symbols) to obtain a sequence that realizes π.

In fact any sequence starting with the prefix 210221220 works.

Example $\left(\pi=4217536 \in \mathcal{S}_{7}\right)$
One has $\hat{\pi}=(4217536)=7162345$ and $\operatorname{des}(\hat{\pi})=2$.

| | $\hat{\pi}=$ | 7 | 1 | 6 | 2 | 3 | 4 | 5 | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Finding digits | | 0 | 1 | 1 | 2 | 2 | | 2 | | | |
| | $\pi=$ | 2 | 1 | 7 | 5 | 3 | 6 | | | | |
| Placing digits | | 1 | 0 | 2 | 2 | 1 | 2 | 2 | 0 | \ldots | |

If you ask for at most 3 symbols, then the prefix of any sequence realizing π starts with the prefix $z_{1} \cdots z_{n-1}=210221$.

We can continue this prefix (using only 3 symbols) to obtain a sequence that realizes π.

In fact any sequence starting with the prefix 210221220 works.

Example $\left(\pi=4217536 \in \mathcal{S}_{7}\right)$
One has $\hat{\pi}=(4217536)=7162345$ and $\operatorname{des}(\hat{\pi})=2$.

| | $\hat{\pi}=$ | 7 | 1 | 6 | 2 | 3 | 4 | 5 | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Finding digits | | 0 | 1 | 1 | 2 | 2 | | 2 | | | |
| | $\pi=$ | 2 | 1 | 7 | 5 | 3 | 6 | | | | |
| Placing digits | | 1 | 0 | 2 | 2 | 1 | 2 | 2 | 0 | \ldots | |

If you ask for at most 3 symbols, then the prefix of any sequence realizing π starts with the prefix $z_{1} \cdots z_{n-1}=210221$.

We can continue this prefix (using only 3 symbols) to obtain a sequence that realizes π.

In fact any sequence starting with the prefix 210221220 works.

Example $\left(\pi=4217536 \in \mathcal{S}_{7}\right)$
One has $\hat{\pi}=(4217536)=7162345$ and $\operatorname{des}(\hat{\pi})=2$.

| | $\hat{\pi}=$ | 7 | 1 | 6 | 2 | 3 | 4 | 5 | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Finding digits | | 1 | 1 | 2 | 2 | | 2 | | | | |
| | $\pi=$ | 2 | 1 | 7 | 5 | 3 | 6 | | | | |
| Placing digits | | 1 | 0 | 2 | 2 | 1 | 2 | 2 | 0 | \ldots | |

If you ask for at most 3 symbols, then the prefix of any sequence realizing π starts with the prefix $z_{1} \cdots z_{n-1}=210221$.

We can continue this prefix (using only 3 symbols) to obtain a sequence that realizes π.

In fact any sequence starting with the prefix 210221220 works.

Example $\left(\pi=4217536 \in \mathcal{S}_{7}\right)$
One has $\hat{\pi}=(4217536)=7162345$ and $\operatorname{des}(\hat{\pi})=2$.

| | $\hat{\pi}=$ | 7 | 1 | 6 | 2 | 3 | 4 | 5 | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Finding digits | | 0 | 1 | 1 | 2 | 2 | | 2 | | | |
| | $\pi=$ | 2 | 1 | 7 | 5 | 3 | 6 | | | | |
| Placing digits | | 1 | 0 | 2 | 2 | 1 | 2 | 2 | 0 | \ldots | |

If you ask for at most 3 symbols, then the prefix of any sequence realizing π starts with the prefix $z_{1} \cdots z_{n-1}=210221$.

We can continue this prefix (using only 3 symbols) to obtain a sequence that realizes π.

In fact any sequence starting with the prefix 210221220 works.

Computing $N_{+}(\pi)$

Theorem (Elizalde 2009)
For any $\pi \in \mathcal{S}_{n}$, the minimal number k of distinct symbols of a sequence w satisfying $\operatorname{Pat}\left(w, \sigma_{k}, n\right)=\pi$ is

$$
N_{+}(\pi)=1+\operatorname{des}(\hat{\pi})+\epsilon_{+}(\pi)
$$

where $\operatorname{des}(\hat{\pi})$ is the number of descents in $\hat{\pi}$ with $\pi(1)$ removed and

$$
\epsilon_{+}(\pi)= \begin{cases}1 & \text { if } \pi \text { ends with } 21 \text { or with }(n-1) n \\ 0 & \text { otherwise } .\end{cases}
$$

Permutations in full shifts

- The shortest forbidden permutations of $A_{k}^{\mathbb{N}}$, have length $k+2$.
- For every $\pi \in \mathcal{S}_{n}$ we have $N_{+}(\pi) \leq n-1$.
- There are exactly 6 permutations π in \mathcal{S}_{n} such that $N_{+}(\pi)=n-1:$

$$
\begin{array}{ll}
1 n 2(n-1) 3(n-2) \ldots, & \ldots(n-2) 3(n-1) 2 n 1, \\
n 1(n-1) 2(n-2) 3 \ldots, & \ldots 3(n-2) 2(n-1) 1 n, \\
\ldots 4(n-1) 3 n 21, & \ldots(n-3) 2(n-2) 1(n-1) n .
\end{array}
$$

Permutations in full shifts

- In fact, Elizalde shows much more by proving a closed formula for the number $a_{n, \ell}$ of permutations π of length n for which $N_{+}(\pi)=\ell$, for any n and ℓ.
- In particular, for each fixed $\ell, a_{n, \ell} \sim n \ell^{n-1}$ as $n \rightarrow \infty$.
- Then, for each k,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log \left|\operatorname{Allow}\left(\sigma_{k}, n\right)\right|=\lim _{n \rightarrow \infty} \frac{1}{n} \log \left(\sum_{\ell=1}^{k} a_{n, \ell}\right)=\log k,
$$

in accordance with Bandt-Keller-Pompe's theorem.

Part II: Permutations in β-shifts

Permutations and β-shifts [Elizalde 2011]

Permutations in β-shifts

- For $\beta>1$ we study the dynamical systems $\left([0,1), T_{\beta}\right)$ where $T_{\beta}:[0,1) \rightarrow[0,1), x \mapsto\{\beta x\}$.

$\beta=2$

$\beta=\sqrt{5}$
- Study the realizable/forbidden permutations.

The β-shift

- Instead of numbers $x \in[0,1)$, we will rather consider their β-expansions, denoted by $d_{\beta}(x)$.
- We let Ω_{β} denote the topological closure of the set $\left\{d_{\beta}(x): x \in[0,1)\right\}$ and $\sigma_{\beta}: \Omega_{\beta} \rightarrow \Omega_{\beta},\left(a_{m}\right) \mapsto\left(a_{m+1}\right)$.
- The map σ_{β} is continuous and Ω_{β} is a compact metric space, hence the β-shift $\left(\Omega_{\beta}, \sigma_{\beta}\right)$ is a topological dynamical system.
- The case $\beta \in \mathbb{N}$ corresponds to full shifts.

$\operatorname{Allow}\left(T_{\beta}\right)=\operatorname{Allow}\left(\sigma_{\beta}\right)$

- Key observation: $x<y \Longleftrightarrow d_{\beta}(x)<_{\text {lex }} d_{\beta}(y)$.
- The following diagram commutes

$$
\begin{gathered}
{[0,1) \xrightarrow{T_{\beta}}[0,1)} \\
d_{\beta} \left\lvert\, \begin{array}{l}
\| \\
\\
\Omega_{\beta} \xrightarrow{\sigma_{\beta}} \xrightarrow{\mid d_{\beta}} \\
\Omega_{\beta}
\end{array}\right.
\end{gathered}
$$

- Thus, \boldsymbol{T}_{β} and σ_{β} are order-isomorphic, and, for all $x \in[0,1)$ and all $n \geq 1$, we have

$$
\operatorname{Pat}\left(T_{\beta}, n, x\right)=\operatorname{Pat}\left(\sigma_{\beta}, n, d_{\beta}(x)\right)
$$

with the lexicographic order on Ω_{β}.

The shift complexity

- If $1<\beta \leq \beta^{\prime}$ then $\Omega_{\beta} \subseteq \Omega_{\beta^{\prime}}$ and $\operatorname{Allow}\left(T_{\beta}\right) \subseteq \operatorname{Allow}\left(T_{\beta^{\prime}}\right)$.
- Compute $B_{+}(\pi)=\inf \left\{\beta>1: \pi \in \operatorname{Allow}\left(T_{\beta}\right)\right\}$.
- This quantity is called the (positive) shift complexity of π.

Example

For $n=2$, one has $B_{+}(12)=B_{+}(21)=1$.
For $n=3$, one has

$$
B_{+}(132)=B_{+}(213)=B_{+}(321)=\frac{1+\sqrt{5}}{2}
$$

and

$$
B_{+}(123)=B_{+}(231)=B_{+}(312)=1 .
$$

Computing the shift complexity

- For $a=a_{1} a_{2} \cdots$ such that $a=\sup a_{j} a_{j+1} \cdots \neq \overline{0}$, let $b_{+}(a)$ be the unique solution $\beta \geq 1$ of

$$
\sum_{j=1}^{\infty} \frac{a_{j}}{\beta^{j}}=1
$$

By convention, $b_{+}(\overline{0})=1$.

- If a is eventually periodic then $b_{+}(a)$ is the unique real root greater than or equal to 1 of a polynomial.

Computing the shift complexity

- For $\pi \in \mathcal{S}_{n}$, define $z_{1} z_{2} \cdots z_{n-1}$ as in the case of full shifts.
- Let $m=\pi^{-1}(n)$ and $\ell=\pi^{-1}(\pi(n)-1)$ if $\pi(n) \neq 1$.

Theorem (Elizalde 2011)
Let $\pi \in \mathcal{S}_{n}$ and $\beta>1$. Then $\pi \in \operatorname{Allow}\left(T_{\beta}\right) \Longleftrightarrow \beta>b_{+}(a)$ where

$$
a= \begin{cases}z_{[m, n)} \overline{z_{[\ell, n)}} & \text { if } \pi(n) \neq 1, \\ z_{[m, n)} \overline{0} & \text { if } \pi(n)=1 \text { and } \pi(n-1) \neq 2 \\ z_{[m, n)}^{\prime} \overline{0} & \text { if } \pi(n)=1 \text { and } \pi(n-1)=2\end{cases}
$$

where for $1 \leq j<n, z_{j}^{\prime}=z_{j}+1$. In particular, $B_{+}(\pi)=b_{+}(a)$.
Theorem (Elizalde 2011)
We always have $\pi \notin \operatorname{Allow}\left(T_{B_{+}(\pi)}\right)$. So $N_{+}(\pi)=1+\left\lfloor B_{+}(\pi)\right\rfloor$.

Minimal shift complexity

The only permutations $\pi \in \mathcal{S}_{n}$ satisfying $B_{+}(\pi)=1$ are

$$
(c+1)(c+2) \ldots n 12 \ldots c
$$

for any fixed $1 \leq c \leq n$.

Example
We already saw that

$$
B_{+}(12)=B_{+}(21)=1
$$

and

$$
B_{+}(123)=B_{+}(231)=B_{+}(312)=1 .
$$

Maximal shift complexity

For $n=3$, there is 3 permutations of maximal complexity.

Theorem (Elizalde 2011)
For $\pi \in \mathcal{S}_{n} \backslash\left\{\rho_{n}\right\}$ with $n \geq 4$, we have $B_{+}(\pi)<B_{+}\left(\rho_{n}\right)$ where

$$
\rho_{n}= \begin{cases}1 n 2(n-1) \ldots \frac{n}{2} \frac{n+2}{2} & \text { if } n \text { is even } \\ 1 n 2(n-1) \ldots \frac{n-1}{2} \frac{n+3}{2} \frac{n+1}{2} & \text { if } n \text { is odd. }\end{cases}
$$

Moreover, $B_{+}\left(\rho_{n}\right) \in[n-2, n-1)$.

Example
We have $\rho_{4}=1423$ and $B_{+}\left(\rho_{4}\right)=\frac{3+\sqrt{5}}{2}=2.61 \ldots$

$B_{+}\left(\rho_{n}\right)$ is the threshold

Recall that $\pi \notin$ Allow $\left(T_{B_{+}(\pi)}\right)$. Therefore we get
Corollary
For $n \geq 4$, we have $\mathcal{S}_{n} \subseteq \operatorname{Allow}\left(T_{\beta}\right) \Longleftrightarrow \beta>B_{+}\left(\rho_{n}\right)$.

Example (continued)
For $\beta>2.61 \ldots$, the β-shift allows all permutations of length ≤ 4.

Corollary
For a fixed $\beta>1$, the length of the shortest forbidden permutation of T_{β} is the integer $n \geq 2$ defined by $B_{+}\left(\rho_{n-1}\right)<\beta \leq B_{+}\left(\rho_{n}\right)$.

Part III: Permutations and negative β-shifts

Patterns of negative shifts and beta-shifts [Elizalde-Moore] Permutations and negative beta-shifts [Charlier-Steiner]

Negative β-shifts

- Let $\beta>1$. We study the map

$$
T_{-\beta}:(0,1] \rightarrow(0,1], x \mapsto\lfloor\beta x\rfloor+1-\beta x .
$$

- Generalization of T_{β} as $T_{-\beta}(x)=\{-\beta x\}$ except for finitely many points.

$$
\beta=2
$$

$\beta=\frac{3+\sqrt{5}}{2}$

Negative β-shifts

- Again, instead of numbers $x \in(0,1]$, we consider their $(-\beta)$-expansions, denoted by $d_{-\beta}(x)$.
- $\Omega_{-\beta}$ is the closure of $\left\{d_{-\beta}(x): x \in(0,1]\right\}$.
- The shift map is $\sigma_{-\beta}: \Omega_{-\beta} \rightarrow \Omega_{-\beta},\left(a_{m}\right) \mapsto\left(a_{m+1}\right)$.

Permutations in negative β-shifts

- Key observation: $x<y \Longleftrightarrow d_{-\beta}(x)<_{\text {alt }} d_{-\beta}(y)$.
- Here we use the alternating lexicographic order for sequences:

$$
\begin{array}{r}
a_{1} a_{2} \cdots<_{\text {alt }} b_{1} b_{2} \cdots \Longleftrightarrow \exists i \geq 1, a_{1} \cdots a_{i-1}=b_{1} \cdots b_{i-1} \\
\\
\text { and } \begin{cases}a_{i}<b_{i} & \text { if } i \text { is odd }, \\
a_{i}>b_{i} & \text { if } i \text { is even. }\end{cases}
\end{array}
$$

For example, $1320 \cdots<_{\text {alt }} 1210 \cdots<_{\text {alt }} 1220 \cdots$

- We have $\operatorname{Allow}\left(T_{-\beta}\right)=\operatorname{Allow}\left(\sigma_{-\beta}\right)$ with the alternating lexicographic order on the $(-\beta)$-shift.

Count the number of ascents

- We have to adapt the arguments from the full shift case.
- We consider again $\hat{\pi}=(\pi(1) \pi(2) \cdots \pi(n))$.
- Idea: For each ascent in $\hat{\pi}$ with $\pi(1)$ removed, we need one more symbol.

Theorem (Charlier-Steiner, Elizalde-Moore)

Let $\pi \in \mathcal{S}_{n}$. Then the minimal number of symbols of a sequence w satisfying $\operatorname{Pat}\left(\sigma_{k}, n, w\right)=\pi$ w.r.t. the alternating lexicographic order is

$$
N_{-}(\pi)=1+\operatorname{asc}(\hat{\pi})+\epsilon_{-}(\pi),
$$

where $\operatorname{asc}(\hat{\pi})$ is the number of ascents in $\hat{\pi}$ with $\pi(1)$ removed and

$$
\epsilon_{-}(\pi)= \begin{cases}1 & \text { if some condition on } \pi \text { holds } \\ 0 & \text { otherwise }\end{cases}
$$

In particular $N_{-}(\pi) \leq n-1$ for all $\pi \in \mathcal{S}_{n}, n \geq 3$.
For $n \geq 4$, there are exactly 4 permutations $\pi \in \mathcal{S}_{n}$ with $N_{-}(\pi)=n-1$:
$12 \ldots n, \quad 12 \ldots(n-2) n(n-1), \quad n(n-1) \ldots 1, \quad n(n-1) \ldots 312$.

Permutations in negative β-shifts

- Study the permutations realizable/forbidden in negative β-shifts.
- Compute the negative shift complexity

$$
B_{-}(\pi)=\inf \left\{\beta>1: \pi \in \operatorname{Allow}\left(T_{-\beta}\right)\right\}
$$

Computing the negative shift complexity

Theorem (Charlier-Steiner, Elizalde-Moore)
Let $\pi \in \mathcal{S}_{n}$ and $\beta>1$. Then $\pi \in \operatorname{Allow}\left(T_{-\beta}\right) \Longleftrightarrow \beta>b_{-}(a)$ where
$a= \begin{cases}z_{[m, n)} \overline{z_{l \ell, n)}} & \text { if } n-m \text { is even, } \pi(n) \neq 1, \text { and }(\star), \\ \min _{0 \leq i<|r-\ell|} z_{[m, n)}^{(i)} \overline{z_{[\ell, n)}^{(i)}} & \text { if } n-m \text { is even, } \pi(n) \neq 1, \text { and } \neg(\star), \\ \overline{z_{[m, n)}^{0}} & \text { if } n-m \text { is even and } \pi(n)=1, \\ z_{[m, n)} \overline{z_{[r, n)}} & \text { if } n-m \text { is odd and } \neg(\star), \\ \min _{0 \leq i<|r-\ell|} z_{[m, n)}^{(i)} \overline{z_{[r, n)}^{(i)}} & \text { if } n-m \text { is odd and }(\star) .\end{cases}$
In particular $B_{-}(\pi)=b_{-}(a)$.

Theorem (Charlier-Steiner, Elizalde-Moore)
We have $N_{-}(\pi)=1+\left\lfloor B_{-}(\pi)\right\rfloor$.

Minimal negative shift complexity

Theorem (Charlier-Steiner)
If $a \gg_{\text {alt }} \varphi^{\omega}(0)$ where $\varphi: 0 \mapsto 1,1 \mapsto 100$, then $B_{-}(\pi)$ is a Perron number, i.e., an algebraic integer $\beta>1$ all of whose Galois conjugates α satisfy $|\alpha|<\beta$.

Moreover, $B_{-}(\pi)=1 \Longleftrightarrow a=\overline{\varphi^{k}(0)}$ for some $k \geq 0$.

Comparing the positive and negative β-shifts

$B_{ \pm}(\pi)$	root of	π, negative beta-shift	π, positive beta-shift
1	$\beta-1$	12,21	12,21
		$123,132,213,231,321$	$123,231,312$
		$1324,1342,1432,2134$	$1234,2341,3412,4123$
		$2143,2314,2431,3142$	
1.465	$\beta^{3}-\beta^{2}-1$		$1342,2413,3124,4231,3421,4213$
1.618	$\beta^{2}-\beta-1$	$1423,3412,4231$	$1243,1324,2431,3142,4312$
1.755	$\beta^{3}-2 \beta^{2}+\beta-1$	$2341,2413,3124,4123$	
1.802	$\beta^{3}-2 \beta^{2}-2 \beta+1$		4213
1.839	$\beta^{3}-\beta^{2}-\beta-1$	4132	$1432,2143,3214,4321$
2	$\beta-2$	1234,1243	2134,3241
2.247	$\beta^{3}-2 \beta^{2}-\beta+1$	4321	4132
2.414	$\beta^{2}-2 \beta-1$		2314,3421
2.618	$\beta^{2}-3 \beta+1$		1423
2.732	$\beta^{2}-2 \beta-2$	4312	

Some open problems

- Count all permutations with $B_{-}(\pi) \leq N$ or $B_{-}(\pi)<N$, in particular with $B_{-}(\pi)=1$. From Bandt-Keller-Pompe's theorem we know that

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \log \#\left\{\pi \in \mathcal{S}_{n}: B_{-}(\pi) \leq \beta\right\}=\log \beta
$$

What are the precise asymptotics of

$$
c_{n}=\#\left\{\pi \in \mathcal{S}_{n}: B_{-}(\pi)=1\right\} ?
$$

We have $\left(c_{n}\right)_{n \geq 2}=2,5,12,19,34,57,82,115, \ldots$

- Describe the permutations given by the transformations

$$
T_{\beta, \alpha}:[0,1) \rightarrow[0,1), x \mapsto \beta x+\alpha-\lfloor\beta x+\alpha\rfloor .
$$

References

- A. Rényi, Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hungar 8, 477-493, 1957.
- Ch. Bandt, G. Keller and B. Pompe, Entropy of interval maps via permutations. Nonlinearity 15(5), 1595-1602, 2002.
- J.M. Amigó, S. Elizalde, G. Kennel, Forbidden patterns and shift systems. J. Combin. Theory Ser. A 115(3), 485-504, 2008.
- S. Elizalde, The number of permutations realized by a shift. SIAM J. Discrete Math. 23(2), 765-786, 2009.
- S. Ito and T. Sadahiro, Beta-expansions with negative bases. Integers 9(A22), 239-259, (2009).
- S. Elizalde, Permutations and β-shifts. J. Combin. Theory Ser. A 118(8), 2474-2497, 2011.
- S. Elizalde and K. Moore, Patterns of negative shifts and beta-shifts, working paper.
- É. Charlier and W. Steiner, Permutations and negative beta-shifts, working paper.

