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Permutations
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Any x close to 0 realizes the permutation 123: x < T(x) < T?(x).
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Let's start with the tent map

1
0 1
A case study shows
123 132 231 213 312
| - T
0 12 2 4
3 5 3 5

So the permutation m = 321 is not realizable!



Dynamical systems

v

(X, T) where X is a set and T is a map from X to X.
The objects of study are the trajectories of points.
The orbit of x € X is the subset {T"(x): n € N}.

Typically, the set X is endowed with a specific structure and
the map T preserves this structure.

v

v

v

v

If X is a topological space and T is continuous, then (X, T) is
a topological dynamical system.

v

If X is a measurable space and T is measure preserving, then
(X, T) is a measure-preserving dynamical system.



Conjugacy (in the topological case)

» (X1, T1) and (Xa, T2) are conjugate if there exists a
homeomorphism ¢: X; — Xp such that po T3 = Tr 0 ¢

X1 L)ﬁ

|k

Xo —2> Xo

» One of the goals in the theory: classify dynamical systems up
to conjugacy.



Invariants

» The idea: if two conjugate systems necessarily share some
property, which is called an invariant, then this property can be
used to distinguish non-conjugate systems.

» The useful invariants must be computable for a large class of
dynamical systems.

» Example of invariant: the number of periodic points.



Entropy

v

Permits us to measure the complexity of a dynamical system.

v

Invariant under conjugacy.

v

Computable for a large variety of dynamical systems.

v

So, it is a powerful tool in order to classify dynamical systems.



The starting point

Let / be an interval of R and consider the dynamical systems (/, T)
where T: [ — I.

Theorem (Bandt-Keller-Pompe 2002)

» The concepts of permutation entropy and of topological
entropy coincide for piecewise monotone interval maps.

» Similar result for the Kolmogorov-Sinai entropy w.r.t. an
invariant measure.

Entropy of interval maps via permutations [Bandt-Keller-Pompe 2002]



Permutation entropy

» Let (X, T) be a dynamical system where X is a totally ordered
set.

» For an integer n > 1 and a point x € X such that
x, T(x),..., T"}x)

are pairwise distinct, Pat( T, n, x) denotes the permutation
m € Sy defined by

T 10 < TP O 1) <o < T7 (1),
» Otherwise stated, 7(i) < 7(j) for all i,j € [1, n] such that

T1(x) < TI71(x).

Example
If T3(x) < T(x) < x < T?(x) then Pat(T,4,x) = 3241.



Permutation entropy

» Allow(T,n) = {Pat(T,n,x): x € X} is the set of
permutations of length n realized by some x € X.

> Allow(T) = | Allow(T, n).
n>1
» The permutation entropy of T is defined as

o1
nll_)moo - log |Allow (T, n)|,

provided that the limit exists.



Symbolic dynamical systems

» The idea is to discretize dynamical systems.
The set X is partitioned into subsets Py, ..., Py.

v

v

A point x € X is coded by a right-infinite word (an)nen:

Vn €N, a, =i whenever T"(x) € P;.

v

If a point x € X is coded by (an)nen, then its image T(x) is
coded by (an+1)nen.

X—"-x

codei lcode

AN _9 AN

» We are interested in determining which sequences can arise in
this way.



Binary representation of numbers

Let T:[0,1) = [0,1), x — {2x}.

1

We partition [0,1) into the 2 subintervals [0, 1) and [3,1), which
are coded by 0 and 1 respectively.

Then the coding of a real number x just corresponds to its binary
expansion.



Representation of numbers in a real base

Let 8 > 1 a real number and Tj3: [0,1) — [0,1), x — {Bx}.

1

3= 5

We partition [0, 1) into the [/3] subintervals

o). [52) - [B)

which are coded by 0,1,...,[3] — 1 respectively.

In this case the coding of a real number x corresponds to its
[B-expansion.



Symbolic dynamical systems

X is a subset of AN stable under the shift operator o

v

o((an)nen) = (@n+1)nen

v

Denote by ox the restriction of the operator o to X.

v

If X is also compact then (X, o0x) is called a symbolic
dynamical system, a shift space, or simply a shift.

v

A shift can also be described as a set X of all sequences
avoiding the finite blocks in F.

(AN, ) is called the full shift.

v



Entropy in shifts (X, ox)

» Fact,(X) is the number of factors of length n that appear in
some x € X.

» Typically, | Fact,(X)| grows like 2" for some constant c.

» The entropy of ox is given by

1
lim = log | Fact,(X)|

n—oo n

» We can equip AY, and hence any shift space, with a total
order, as the lexicographic order for example.

» Using Bandt-Keller-Pompe's result, an alternative way to
compute the entropy is given by

o1
n||_>moo - log |Allow(ox, n)]



Uncountably many forbidden permutations

» The same result implies that not all permutations are
realizable in such a dynamical system.

» In fact, in general, there are much more forbidden
permutations than realizable permutations.

» Quote from Elizalde: “Understanding the forbidden patterns of
chaotic maps is important because the absence of these
patterns is what distinguishes sequences generated by chaotic
maps from random sequences.”



Part |: Permutations in full shifts

Forbidden patterns and shift systems [Amig6-Elizalde-Kennel 2008]
The number of permutations realized by a shift [Elizalde 2009]



The full shift over k symbols

» Let Ay ={0,1,...,k—1} and oy: AIE — AE denote the shift
operator.

» Elements in A} are ordered by the lexicographic order:

ajar - <jex biby--- <= Ji>1, ar---aji1 =b1---bi_1
and a; < b;

» Study the permutations realizable in full shifts (A}, o), that
is, the sets Allow(o).

» In particular, for a given permutation 7, compute the quantity
No(7) = min{k > 1: 7w € Allow(og)}

which is the number of symbols needed in order to realize 7.



Example (7 = 4217536 € S7)
Then Pat(03,7,210221220 - --) = 7 since

210221220 - - -
10221220 - --
0221220 - - -
221220 - - -
21220 ---
1220 ---
220 - - -

D WO NE=E NP

Another way to see it is:

210221220 ---
4217536

In fact, to realize the permutation 7, one needs 3 symbols, so that
N+(7T) = 3



Computing N ()
» Associated with m € S,,, we consider the circular permutation
(or n-cycle)
= (r()m(2)- - m(n)),
that is, 7(7(i)) = n(i +1) for 1 <i < n, and 7(7(n)) = w(1).
» Idea: Count the number of descents in 7.

> A descent in a permutation m € S, is an index 1 </ < n such
that 7(/) > m(i +1).

Example

If we represent the permutation m = 2413, we see that it has one
descent:

= NWP

1234



Computing N ()

Theorem (Elizalde 2009)

For any m € Sp,, the minimal number k of distinct symbols of a
sequence w satisfying Pat(w, ok, n) =7 is

Ny(m) =1+ des(7) + e (m)

where des(7) is the number of descents in & with w(1) removed,
and

() 1 ifw ends with 21 or with (n — 1)n,
er(m) =
" 0 otherwise.



Computing N (7): Sketch of the proof

ajaiy1 - <lex @jdj41 -
If { then aj1aj42 -+ <lex 3j113j42

a;j = aj
» Now suppose that aja, - - - € A}l realizes the permutation 7 € S,
that is, Pat(ok, n,a1a2 -+ ) = 7.

(i) < m(j)
> If {aj=a then 7(i+1) < n(j + 1).
i,j<n
» We make use of 7 with the contrapositive statement.
(i) +1=mn()j)
> I S (i 4+ 1) = #(n(i) > #(x()) = w(i +1)  then a < aj.
i,j<n

> So, for each descent in ## with 7(1) removed, we need one more
symbol.



Example (7 = 4217536 € &7)
One has 7 = (4217536) = 7162345 and des(7) = 2.

7= 7 1 6 2 3 4 5
Finding digits

T= 4 2 1 7 5 3 6
Placing digits
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Example (7 = 4217536 € &7)
One has 7 = (4217536) = 7162345 and des(7) = 2.

7= 7 1 6 2 3 4 5
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Computing N ()

Theorem (Elizalde 2009)

For any m € S,,, the minimal number k of distinct symbols of a
sequence w satisfying Pat(w, oy, n) = m is

Ni(m) =1+ des(7) + e (m)
where des(7) is the number of descents in 7t with 7(1) removed and

() 1 if 7 ends with 21 or with (n — 1)n,
er(m) =
" 0 otherwise.



Permutations in full shifts

» The shortest forbidden permutations of AIE, have length k + 2.
» For every m € S, we have Ny (7) < n—1.

> There are exactly 6 permutations 7 in S, such that

Ny(m)=n-—1:
1n2(n—1)3(n—2)..., ...(n—2)3(n—1)2n1,
nl(n—1)2(n—2)3..., ...3(n—=2)2(n—1)1n,

...4(n—1)3n21, ...(n=3)2(n—2)1(n—1)n.



Permutations in full shifts

» In fact, Elizalde shows much more by proving a closed formula
for the number a, ;s of permutations 7 of length n for which
Ny (m) = ¢, for any n and £.

> In particular, for each fixed ¢, a, ¢ ~ n"™ 1 as n — .
» Then, for each k,

n—oo oo

k
.1 .1
lim . log [Allow (ok, n)| = nILm . log (; a,,7g> = log k,

in accordance with Bandt-Keller-Pompe's theorem.



Part II: Permutations in [3-shifts

Permutations and §-shifts [Elizalde 2011]



Permutations in §-shifts

» For 3 > 1 we study the dynamical systems ([0, 1), T3) where
T5:[0,1) = [0,1), x — {Bx}.

1 1

B=2 B=5

» Study the realizable/forbidden permutations.



The [S-shift

v

Instead of numbers x € [0,1), we will rather consider their
[3-expansions, denoted by dj(x).

v

We let 25 denote the topological closure of the set

{dg(x): x €10,1)} and o4: Qg — Qg, (am) — (am+1)-

The map o3 is continuous and Qg is a compact metric space,
hence the S-shift (Q3,053) is a topological dynamical system.
The case 8 € N corresponds to full shifts.

v

v



Allow(T3) = Allow(op)

> Key observation: x <y <= dg(x) <jex ds(y)-
» The following diagram commutes

» Thus, T and og are order-isomorphic, and, for all x € [0, 1)
and all n > 1, we have

Pat( Tﬁa n,x) = Pat(o-ﬁ’ n, dﬁ(X)),

with the lexicographic order on Q3.



The shift complexity

» If 1 < 8 < then Qg C Qg and Allow(Tg) C Allow(Tg).
» Compute By (7) = inf{ > 1: 7 € Allow(Ts)}.
» This quantity is called the (positive) shift complexity of 7.

Example
For n =2, one has B (12) = B4 (21) = 1.
For n = 3, one has

1++5

2

B, (132) = B, (213) = B, (321) =

and
B, (123) = B, (231) = B,(312) = 1.



Computing the shift complexity

» For a = ajay--- such that a =sup ajaji1--- #0, let by (a)

Jj21
be the unique solution 8 > 1 of

o
ot

By convention, b, (0) = 1.

» If ais eventually periodic then by (a) is the unique real root
greater than or equal to 1 of a polynomial.



Computing the shift complexity

» For m € S, define z1z> - - - z,_1 as in the case of full shifts.
» Let m=n"Y(n) and ¢ = 7 1(n(n) — 1) if m(n) # 1.

Theorem (Elizalde 2011)

Letme Sy and > 1. Thenm € Allow(Tg) <= [ > bi(a)
where

Z[m,n)Z[¢,n) if7r(n) #1,

a= z[m m0 ifw(n) =1 and 7(n—1) # 2,

Zipn, n)ﬁ ifr(n)=1and m(n—1) =2.
where for 1 < j < n, zj = zj + 1. In particular, B, (7) = by (a).
Theorem (Elizalde 2011)
We always have m ¢ Allow(Tg, (). So Ni(m) =1+ |By(m)].



Minimal shift complexity

The only permutations 7 € S, satisfying By (7) = 1 are
(c+1)(c+2)...n12...c
for any fixed 1 < ¢ < n.
Example
We already saw that
B.(12) = B, (21) = 1

and
B, (123) = B;(231) = B4(312) = 1.



Maximal shift complexity

For n = 3, there is 3 permutations of maximal complexity.

Theorem (Elizalde 2011)
Form € Sy \ {pn} with n > 4, we have B (m) < Bi(pn) where

) 1n2(n-1) ... pof2 if n is even
P 1m2l—1) . mSEmER e i s odd

Moreover, By (pp) € [n —2,n —1).

Example
We have ps = 1423 and By (ps) = 355 = 261...



B (pn) is the threshold

Recall that m ¢ Allow(Tg, (r)). Therefore we get

Corollary
For n > 4, we have S, C Allow(Tg) <= > Bi(pn).

Example (continued)
For B > 2.61..., the 3-shift allows all permutations of length < 4.

Corollary

For a fixed 5 > 1, the length of the shortest forbidden permutation
of Tg is the integer n > 2 defined by B (pp—1) < 8 < By(pn).



Part Ill: Permutations and negative (-shifts

Patterns of negative shifts and beta-shifts [Elizalde-Moore]
Permutations and negative beta-shifts [Charlier-Steiner]



Negative [3-shifts

> Let 8 > 1. We study the map
T_5:(0,1] = (0,1], x — |Bx] +1—Bx.

> Generalization of Tz as T_g(x) = {—/x} except for finitely
many points.

=

I
N
i)

I
w
m‘+
S



Negative [-shifts

» Again, instead of numbers x € (0, 1], we consider their
(—/3)-expansions, denoted by d_3(x).

» Q_g is the closure of {d_g(x) : x € (0,1]}.
» The shift mapis o_3: Q_53 = Q_3, (am) — (am+1)-



Permutations in negative [-shifts

» Key observation: x <y <= d_g(x) <aix d_s(y).
» Here we use the alternating lexicographic order for sequences:

ajay - <ait bibo--- <= Ii>1, a;---a._1=b1---bi1
{a,-<b,- if i is odd,
and

a; > b; ifiiseven.

For example, 1320 -+ <; 1210 --- <z 1220 - - -

» We have Allow(T_g) = Allow(o_g) with the alternating
lexicographic order on the (—[3)-shift.



Count the number of ascents

» We have to adapt the arguments from the full shift case.

» We consider again & = (w(1)m(2) - - - 7(n)).

» Idea: For each ascent in 7 with 7(1) removed, we need one
more symbol.

RN WS

1234



Theorem (Charlier-Steiner, Elizalde-Moore)

Let m € S,. Then the minimal number of symbols of a sequence w

satisfying Pat(ok, n,w) = 7 w.r.t. the alternating lexicographic
order is

N_(m) =1+ asc(7) + e_(n),

where asc(7) is the number of ascents in & with w(1) removed and

() 1 if some condition on w holds,
e_(m) =
0 otherwise.

In particular N_(m) < n—1 forall m € Sy, n > 3.

For n > 4, there are exactly 4 permutations m € S,, with
N_(m)=n—1:

12...n, 12...(n=2)n(n-1), n(n—1)...1, n(n—1)...312.



Permutations in negative [-shifts

» Study the permutations realizable/forbidden in negative
[-shifts.

» Compute the negative shift complexity

B_(m) =inf{8>1: 7 e Allow(T_g)}.



Computing the negative shift complexity

Theorem (Charlier-Steiner, Elizalde-Moore)

Let m € Sp and > 1. Then 7 € Allow(T_g3) <= [ > b_(a)
where

(Z[m,,,) Z[y n) if n —m is even, w(n) # 1, and (x),

Ming<j<|r—¢| z[(,;'q)’n) z[(é;)n) if n — m is even, m(n) # 1, and —(%),

a=q Zmn0 if n —m is even and 7(n) =1,

Z[m,n) Z[r,n) if n — m is odd and —(x),

Ming<i<|r—¢| z[(rir?’n) z[(r'.’)n) if n —m is odd and (x).

In particular B_(m) = b_(a).

Theorem (Charlier-Steiner, Elizalde-Moore)
We have N_(m) =1+ |B_(n)].



Minimal negative shift complexity

Theorem (Charlier-Steiner)

If a >4t ¢*¥(0) where ¢: 0+— 1, 1+ 100, then B_(x) is a Perron
number, i.e., an algebraic integer § > 1 all of whose Galois
conjugates « satisfy |a| < .

Moreover, B_(m) =1 <= a = ¢k(0) for some k > 0.



Comparing the positive and negative (3-shifts

By () root of 7, negative beta-shift 7, positive beta-shift
1 B—1 12,21 12,21
123,132,213,231,321 123,231,312
132413421432, 2134 1234,2341,3412, 4123
2143,2314,2431, 3142
3214,3241,3421, 4213
1.465 B3 —p2 -1 1342,2413,3124, 4231
1.618 BZ—-B—-1 312 132,213,321
1423, 3412, 4231 1243,1324,2431,3142,4312
1.755 | B3 —2B%2 + B — 1 | 2341,2413,3124,4123
1.802 (33 —282 —25+1 4213
1839 | B2 —p2—p—1 4132 1432,2143,3214, 4321
2 5 —2 1234, 1243 2134,3241
2247 | B3 —2B2 —B+1 4321 4132
2.414 B2 —-28—-1 2314,3421
2.618 BZ—38+1 1423
2.732 B2 —26—-2 4312




Some open problems

» Count all permutations with B_(7) < N or B_(7) < N, in
particular with B_(7) = 1. From Bandt-Keller-Pompe's
theorem we know that

. 1
n|L>mOO . log #{m € Sp: B_(7) < B} =log 3
What are the precise asymptotics of
chn=#{reSy: B_(r)=1}7

We have (cn)n>2 = 2,5,12,19,34,57,82,115, ...

» Describe the permutations given by the transformations

Tsa: [0,1) = [0,1), x = Bx +a— [Bx+al.
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