Permutations and shifts: a survey

Émilie Charlier

Département de Mathématique, Université de Liège

DLT 2016 - Montréal, July 25 - 28

(ロ)、

Permutations

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$T: [0,1] \to [0,1], \ x \mapsto \begin{cases} 2x & \text{if } x \in [0,\frac{1}{2}] \\ -2x+2 & \text{if } x \in [\frac{1}{2},1] \end{cases}$$

(ロ)、(型)、(E)、(E)、 E のQで

$$T: [0,1] \to [0,1], \ x \mapsto \begin{cases} 2x & \text{if } x \in [0,\frac{1}{2}] \\ -2x+2 & \text{if } x \in [\frac{1}{2},1] \end{cases}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

$$T: [0,1] \to [0,1], \ x \mapsto \begin{cases} 2x & \text{if } x \in [0,\frac{1}{2}] \\ -2x+2 & \text{if } x \in [\frac{1}{2},1] \end{cases}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$T: [0,1] \to [0,1], \ x \mapsto \begin{cases} 2x & \text{if } x \in [0,\frac{1}{2}] \\ -2x+2 & \text{if } x \in [\frac{1}{2},1] \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ →□ ● ◇◇◇

$$T: [0,1] \to [0,1], \ x \mapsto \begin{cases} 2x & \text{if } x \in [0,\frac{1}{2}] \\ -2x+2 & \text{if } x \in [\frac{1}{2},1] \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ →□ ● ◇◇◇

$$T: [0,1] \to [0,1], \ x \mapsto \begin{cases} 2x & \text{if } x \in [0,\frac{1}{2}] \\ -2x+2 & \text{if } x \in [\frac{1}{2},1] \end{cases}$$

(ロ)、(型)、(E)、(E)、 E のQで

$$T: [0,1] \to [0,1], \ x \mapsto \begin{cases} 2x & \text{if } x \in [0,\frac{1}{2}] \\ -2x+2 & \text{if } x \in [\frac{1}{2},1] \end{cases}$$

(ロ)、(型)、(E)、(E)、 E のQで

$$T: [0,1] \to [0,1], \ x \mapsto \begin{cases} 2x & \text{if } x \in [0,\frac{1}{2}] \\ -2x+2 & \text{if } x \in [\frac{1}{2},1] \end{cases}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ○ ○ ○ ○

$$T: [0,1] \to [0,1], \ x \mapsto \begin{cases} 2x & \text{if } x \in [0,\frac{1}{2}] \\ -2x+2 & \text{if } x \in [\frac{1}{2},1] \end{cases}$$

◆□ ▶ ◆□ ▶ ◆三 ▶ ◆三 ▶ ◆□ ▶

Any x close to 0 realizes the permutation 123: $x < T(x) < T^2(x)$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ●

Any x close to 0 realizes the permutation 123: $x < T(x) < T^2(x)$. Any x close to 1 realizes the permutation 312: $T(x) < T^2(x) < x$.

Any x close to 0 realizes the permutation 123: $x < T(x) < T^2(x)$. Any x close to 1 realizes the permutation 312: $T(x) < T^2(x) < x$.

Any x close to 0 realizes the permutation 123: $x < T(x) < T^2(x)$. Any x close to 1 realizes the permutation 312: $T(x) < T^2(x) < x$.

Any x close to 0 realizes the permutation 123: $x < T(x) < T^2(x)$. Any x close to 1 realizes the permutation 312: $T(x) < T^2(x) < x$.

Any x close to 0 realizes the permutation 123: $x < T(x) < T^2(x)$. Any x close to 1 realizes the permutation 312: $T(x) < T^2(x) < x$.

Any x close to 0 realizes the permutation 123: $x < T(x) < T^2(x)$. Any x close to 1 realizes the permutation 312: $T(x) < T^2(x) < x$.

Any x close to 0 realizes the permutation 123: $x < T(x) < T^2(x)$. Any x close to 1 realizes the permutation 312: $T(x) < T^2(x) < x$.

Any x close to 0 realizes the permutation 123: $x < T(x) < T^2(x)$. Any x close to 1 realizes the permutation 312: $T(x) < T^2(x) < x$.

A case study shows

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

So the permutation $\pi = 321$ is not realizable!

Dynamical systems

- (X, T) where X is a set and T is a map from X to X.
- The objects of study are the trajectories of points.
- The orbit of $x \in X$ is the subset $\{T^n(x) : n \in \mathbb{N}\}$.
- Typically, the set X is endowed with a specific structure and the map T preserves this structure.
- ► If X is a topological space and T is continuous, then (X, T) is a topological dynamical system.
- ► If X is a measurable space and T is measure preserving, then (X, T) is a measure-preserving dynamical system.

Conjugacy (in the topological case)

(X₁, T₁) and (X₂, T₂) are conjugate if there exists a homeomorphism φ: X₁ → X₂ such that φ ∘ T₁ = T₂ ∘ φ

 One of the goals in the theory: classify dynamical systems up to conjugacy.

ション ふゆ く 山 マ チャット しょうくしゃ

Invariants

- The idea: if two conjugate systems necessarily share some property, which is called an invariant, then this property can be used to distinguish non-conjugate systems.
- The useful invariants must be computable for a large class of dynamical systems.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

• Example of invariant: the number of periodic points.

Entropy

- > Permits us to measure the complexity of a dynamical system.
- Invariant under conjugacy.
- Computable for a large variety of dynamical systems.
- So, it is a powerful tool in order to classify dynamical systems.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Let I be an interval of \mathbb{R} and consider the dynamical systems (I, T) where $T: I \rightarrow I$.

Theorem (Bandt-Keller-Pompe 2002)

- The concepts of permutation entropy and of topological entropy coincide for piecewise monotone interval maps.
- Similar result for the Kolmogorov-Sinai entropy w.r.t. an invariant measure.

Entropy of interval maps via permutations [Bandt-Keller-Pompe 2002]

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Permutation entropy

- Let (X, T) be a dynamical system where X is a totally ordered set.
- For an integer $n \ge 1$ and a point $x \in X$ such that

$$x, T(x), \ldots, T^{n-1}(x)$$

are pairwise distinct, Pat(T, n, x) denotes the permutation $\pi \in S_n$ defined by

$$T^{\pi^{-1}(1)-1}(x) < T^{\pi^{-1}(2)-1}(x) < \cdots < T^{\pi^{-1}(n)-1}(x).$$

• Otherwise stated, $\pi(i) < \pi(j)$ for all $i, j \in \llbracket 1, n \rrbracket$ such that $T^{i-1}(x) < T^{j-1}(x)$.

Example

If
$$T^3(x) < T(x) < x < T^2(x)$$
 then $Pat(T, 4, x) = 3241$.

Permutation entropy

Allow(T, n) = {Pat(T, n, x): x ∈ X} is the set of permutations of length n realized by some x ∈ X.

► Allow(
$$T$$
) = $\bigcup_{n \ge 1}$ Allow(T, n).

The permutation entropy of T is defined as

$$\lim_{n\to\infty}\frac{1}{n}\log|\mathrm{Allow}(\mathcal{T},n)|,$$

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

provided that the limit exists.

Symbolic dynamical systems

- ► The idea is to discretize dynamical systems.
- The set X is partitioned into subsets P_1, \ldots, P_k .
- A point $x \in X$ is coded by a right-infinite word $(a_n)_{n \in \mathbb{N}}$:

$$\forall n \in \mathbb{N}, a_n = i \text{ whenever } T^n(x) \in P_i.$$

If a point x ∈ X is coded by (a_n)_{n∈N}, then its image T(x) is coded by (a_{n+1})_{n∈N}.

 We are interested in determining which sequences can arise in this way.

Binary representation of numbers

Let $T: [0, 1) \to [0, 1), x \mapsto \{2x\}.$

We partition [0, 1) into the 2 subintervals $[0, \frac{1}{2})$ and $[\frac{1}{2}, 1)$, which are coded by 0 and 1 respectively.

Then the coding of a real number x just corresponds to its binary expansion.

Representation of numbers in a real base β

Let $\beta > 1$ a real number and $T_{\beta} \colon [0,1) \to [0,1), x \mapsto \{\beta x\}.$

We partition [0,1) into the $\lceil \beta \rceil$ subintervals

$$\left[0,\frac{1}{\beta}\right), \ \left[\frac{1}{\beta},\frac{2}{\beta}\right), \ \ldots, \ \left[\frac{\lceil\beta\rceil-1}{\beta},1\right),$$

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト ・ らくぐ

which are coded by $0,1,\ldots,\lceil\beta\rceil-1$ respectively.

In this case the coding of a real number x corresponds to its β -expansion.

Symbolic dynamical systems

• X is a subset of $A^{\mathbb{N}}$ stable under the shift operator σ :

$$\sigma((a_n)_{n\in\mathbb{N}})=(a_{n+1})_{n\in\mathbb{N}}$$

(日) (伊) (日) (日) (日) (0) (0)

- Denote by σ_X the restriction of the operator σ to X.
- If X is also compact then (X, σ_X) is called a symbolic dynamical system, a shift space, or simply a shift.
- ► A shift can also be described as a set X_F of all sequences avoiding the finite blocks in F.
- $(A^{\mathbb{N}}, \sigma)$ is called the full shift.

Entropy in shifts (X, σ_X)

- Fact_n(X) is the number of factors of length n that appear in some x ∈ X.
- Typically, $|Fact_n(X)|$ grows like 2^{cn} for some constant c.
- The entropy of σ_X is given by

$$\lim_{n\to\infty}\frac{1}{n}\log|\operatorname{Fact}_n(X)|$$

- We can equip A^N, and hence any shift space, with a total order, as the lexicographic order for example.
- Using Bandt-Keller-Pompe's result, an alternative way to compute the entropy is given by

$$\lim_{n\to\infty}\frac{1}{n}\log|\operatorname{Allow}(\sigma_X,n)|$$

Uncountably many forbidden permutations

- The same result implies that not all permutations are realizable in such a dynamical system.
- In fact, in general, there are much more forbidden permutations than realizable permutations.
- Quote from Elizalde: "Understanding the forbidden patterns of chaotic maps is important because the absence of these patterns is what distinguishes sequences generated by chaotic maps from random sequences."

ション ふゆ く 山 マ チャット しょうくしゃ

Part I: Permutations in full shifts

Forbidden patterns and shift systems [Amigó-Elizalde-Kennel 2008] The number of permutations realized by a shift [Elizalde 2009]

(ロ)、

The full shift over k symbols

- Let A_k = {0, 1, ..., k − 1} and σ_k: A^N_k → A^N_k denote the shift operator.
- Elements in $A_k^{\mathbb{N}}$ are ordered by the lexicographic order:

$$a_1a_2\cdots <_{\mathsf{lex}} b_1b_2\cdots \iff \exists i\geq 1, \ a_1\cdots a_{i-1}=b_1\cdots b_{i-1}$$

and $a_i < b_i$

- Study the permutations realizable in full shifts (A^N_k, σ_k), that is, the sets Allow(σ_k).
- ▶ In particular, for a given permutation π , compute the quantity

$$N_{+}(\pi) = \min\{k \ge 1 \colon \pi \in \operatorname{Allow}(\sigma_k)\}$$

which is the number of symbols needed in order to realize π .
Example $(\pi = 4217536 \in S_7)$ Then Pat $(\sigma_3, 7, 210221220 \cdots) = \pi$ since

210221220 · · ·	4
10221220 ···	2
0221220 ···	1
221220 · · ·	7
21220 ···	5
1220 · · ·	3
220 · · ·	6

Another way to see it is:

210221220 ···· 4217536

In fact, to realize the permutation π , one needs 3 symbols, so that $N_+(\pi) = 3$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Computing $N_+(\pi)$

► Associated with $\pi \in S_n$, we consider the circular permutation (or *n*-cycle)

$$\hat{\pi} = (\pi(1)\pi(2)\cdots\pi(n)),$$

that is, $\hat{\pi}(\pi(i)) = \pi(i+1)$ for $1 \le i < n$, and $\hat{\pi}(\pi(n)) = \pi(1)$. ldea: Count the number of descents in $\hat{\pi}$.

A descent in a permutation π ∈ S_n is an index 1 ≤ i < n such that π(i) > π(i + 1).

Example

If we represent the permutation $\pi=$ 2413, we see that it has one descent:

Computing $N_+(\pi)$

Theorem (Elizalde 2009)

For any $\pi \in S_n$, the minimal number k of distinct symbols of a sequence w satisfying $Pat(w, \sigma_k, n) = \pi$ is

$$N_+(\pi) = 1 + \operatorname{des}(\hat{\pi}) + \epsilon_+(\pi)$$

where $des(\hat{\pi})$ is the number of descents in $\hat{\pi}$ with $\pi(1)$ removed, and

$$\epsilon_+(\pi) = \begin{cases} 1 & \text{if } \pi \text{ ends with } 21 \text{ or with } (n-1)n, \\ 0 & \text{otherwise.} \end{cases}$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Computing $N_+(\pi)$: Sketch of the proof

$$\blacktriangleright \quad \mathsf{lf} \begin{cases} a_i a_{i+1} \cdots <_{\mathsf{lex}} a_j a_{j+1} \cdots \\ a_i = a_j \end{cases} \quad \text{then } a_{i+1} a_{i+2} \cdots <_{\mathsf{lex}} a_{j+1} a_{j+2} \cdots$$

Now suppose that a₁a₂··· ∈ A^N_k realizes the permutation π ∈ S_n, that is, Pat(σ_k, n, a₁a₂···) = π.

• If
$$\begin{cases} \pi(i) < \pi(j) \\ a_i = a_j \\ i, j < n \end{cases}$$
 then $\pi(i+1) < \pi(j+1)$.

• We make use of $\hat{\pi}$ with the contrapositive statement.

• If
$$\begin{cases} \pi(i) + 1 = \pi(j) \\ \pi(i+1) = \hat{\pi}(\pi(i)) > \hat{\pi}(\pi(j)) = \pi(j+1) & \text{then } a_i < a_j. \\ i, j < n \end{cases}$$

So, for each descent in π̂ with π(1) removed, we need one more symbol.

	$\hat{\pi} =$	7	1	6	2	3	4	5
Finding digits								
	$\pi =$	4	2	1	7	5	3	6
Placing digits								

	$\hat{\pi} =$	7	1	6	2	3	<u>4</u>	5
Finding digits		0	1	1				
	$\pi =$	4	2	1	7	5	3	6
Placing digits								

	$\hat{\pi} =$	7	1	6	2	3	<u>4</u>	5
Finding digits		0	1	1	2			
	$\pi =$	4	2	1	7	5	3	6
Placing digits								

	$\hat{\pi} =$	7	1	6	2	3	<u>4</u>	5
Finding digits		0	1	1	2	2		2
	$\pi =$	4	2	1	7	5	3	6
Placing digits		2	1	0			1	

	$\hat{\pi} =$	7	1	6	2	3	4	5
Finding digits		0	1	1	2	2		2
	$\pi =$	4	2	1	7	5	3	6
Placing digits		2	1	0		2	1	

	$\hat{\pi} =$	7	1	6	2	3	<u>4</u>	5
Finding digits		0	1	1	2	2		2
	$\pi =$	4	2	1	7	5	3	6
Placing digits		2	1	0	2	2	1	

	$\hat{\pi} =$	7	1	6	2	3	4	5
Finding digits		0	1	1	2	2		2
	$\pi =$	4	2	1	7	5	3	6
Placing digits		2	1	0	2	2	1	

If you ask for at most 3 symbols, then the prefix of any sequence realizing π starts with the prefix $z_1 \cdots z_{n-1} = 210221$.

	$\hat{\pi} =$	7	1	6	2	3	4	5
Finding digits		0	1	1	2	2		2
	$\pi =$	4	2	1	7	5	3	6
Placing digits		2	1	0	2	2	1	

If you ask for at most 3 symbols, then the prefix of any sequence realizing π starts with the prefix $z_1 \cdots z_{n-1} = 210221$.

We can continue this prefix (using only 3 symbols) to obtain a sequence that realizes π .

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

	$\hat{\pi} =$	7	1	6	2	3	<u>4</u>	5			
Finding digits		0	1	1	2	2		2			
	$\pi =$	4	2	1	7	5	3	6			
Placing digits		2	1	0	2	2	1	2	2	0	• • •

If you ask for at most 3 symbols, then the prefix of any sequence realizing π starts with the prefix $z_1 \cdots z_{n-1} = 210221$.

We can continue this prefix (using only 3 symbols) to obtain a sequence that realizes π .

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

	$\hat{\pi} =$	7	1	6	2	3	<u>4</u>	5			
Finding digits		0	1	1	2	2		2			
	$\pi =$	4	2	1	7	5	3	6			
Placing digits		2	1	0	2	2	1	2	2	0	•••

If you ask for at most 3 symbols, then the prefix of any sequence realizing π starts with the prefix $z_1 \cdots z_{n-1} = 210221$.

We can continue this prefix (using only 3 symbols) to obtain a sequence that realizes π .

	$\hat{\pi} =$	7	1	6	2	3	<u>4</u>	5			
Finding digits		0	1	1	2	2		2			
	$\pi =$	4	2	1	7	5	3	6			
Placing digits		2	1	0	2	2	1	2	2	0	• • •

If you ask for at most 3 symbols, then the prefix of any sequence realizing π starts with the prefix $z_1 \cdots z_{n-1} = 210221$.

We can continue this prefix (using only 3 symbols) to obtain a sequence that realizes π .

	$\hat{\pi} =$	7	1	6	2	3	<u>4</u>	5			
Finding digits		0	1	1	2	2		2			
	$\pi =$	4	2	1	7	5	3	6			
Placing digits		2	1	0	2	2	1	2	2	0	• • •

If you ask for at most 3 symbols, then the prefix of any sequence realizing π starts with the prefix $z_1 \cdots z_{n-1} = 210221$.

We can continue this prefix (using only 3 symbols) to obtain a sequence that realizes π .

	$\hat{\pi} =$	7	1	6	2	3	<u>4</u>	5			
Finding digits		0	1	1	2	2		2			
	$\pi =$	4	2	1	7	5	3	6			
Placing digits		2	1	0	2	2	1	2	2	0	• • •

If you ask for at most 3 symbols, then the prefix of any sequence realizing π starts with the prefix $z_1 \cdots z_{n-1} = 210221$.

We can continue this prefix (using only 3 symbols) to obtain a sequence that realizes π .

	$\hat{\pi} =$	7	1	6	2	3	4	5			
Finding digits		0	1	1	2	2		2			
	$\pi =$	4	2	1	7	5	3	6			
Placing digits		2	1	0	2	2	1	2	2	0	• • •

If you ask for at most 3 symbols, then the prefix of any sequence realizing π starts with the prefix $z_1 \cdots z_{n-1} = 210221$.

We can continue this prefix (using only 3 symbols) to obtain a sequence that realizes π .

	$\hat{\pi} =$	7	1	6	2	3	<u>4</u>	5			
Finding digits		0	1	1	2	2		2			
	$\pi =$	4	2	1	7	5	3	6			
Placing digits		2	1	0	2	2	1	2	2	0	• • •

If you ask for at most 3 symbols, then the prefix of any sequence realizing π starts with the prefix $z_1 \cdots z_{n-1} = 210221$.

We can continue this prefix (using only 3 symbols) to obtain a sequence that realizes π .

	$\hat{\pi} =$	7	1	6	2	3	4	5			
Finding digits		0	1	1	2	2		2			
	$\pi =$	4	2	1	7	5	3	6			
Placing digits		2	1	0	2	2	1	2	2	0	•••

If you ask for at most 3 symbols, then the prefix of any sequence realizing π starts with the prefix $z_1 \cdots z_{n-1} = 210221$.

We can continue this prefix (using only 3 symbols) to obtain a sequence that realizes π .

Computing $N_+(\pi)$

Theorem (Elizalde 2009)

For any $\pi \in S_n$, the minimal number k of distinct symbols of a sequence w satisfying $Pat(w, \sigma_k, n) = \pi$ is

$$N_+(\pi) = 1 + \operatorname{des}(\hat{\pi}) + \epsilon_+(\pi)$$

where $des(\hat{\pi})$ is the number of descents in $\hat{\pi}$ with $\pi(1)$ removed and

$$\epsilon_+(\pi) = \begin{cases} 1 & \text{if } \pi \text{ ends with } 21 \text{ or with } (n-1)n, \\ 0 & \text{otherwise.} \end{cases}$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Permutations in full shifts

▶ The shortest forbidden permutations of $A_k^{\mathbb{N}}$, have length k + 2.

• For every $\pi \in \mathcal{S}_n$ we have $N_+(\pi) \leq n-1$.

► There are exactly 6 permutations π in S_n such that N₊(π) = n - 1:

$$1n2(n-1)3(n-2)..., ...(n-2)3(n-1)2n1, n1(n-1)2(n-2)3..., ...3(n-2)2(n-1)1n, ...4(n-1)3n21, ...(n-3)2(n-2)1(n-1)n.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Permutations in full shifts

- ▶ In fact, Elizalde shows much more by proving a closed formula for the number $a_{n,\ell}$ of permutations π of length n for which $N_+(\pi) = \ell$, for any n and ℓ .
- ▶ In particular, for each fixed ℓ , $a_{n,\ell} \sim n\ell^{n-1}$ as $n \to \infty$.
- Then, for each k,

$$\lim_{n\to\infty}\frac{1}{n}\log|\operatorname{Allow}(\sigma_k,n)| = \lim_{n\to\infty}\frac{1}{n}\log\left(\sum_{\ell=1}^k a_{n,\ell}\right) = \log k,$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

in accordance with Bandt-Keller-Pompe's theorem.

Part II: Permutations in β -shifts

◆□ > < 個 > < E > < E > E 9 < 0</p>

Permutations and β -shifts [Elizalde 2011]

Permutations in β -shifts

For $\beta > 1$ we study the dynamical systems ([0, 1), T_{β}) where $T_{\beta} : [0, 1) \rightarrow [0, 1), x \mapsto \{\beta x\}.$

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Study the realizable/forbidden permutations.

The β -shift

- Instead of numbers x ∈ [0,1), we will rather consider their β-expansions, denoted by d_β(x).
- ► We let Ω_{β} denote the topological closure of the set $\{d_{\beta}(x) \colon x \in [0,1)\}$ and $\sigma_{\beta} \colon \Omega_{\beta} \to \Omega_{\beta}, \ (a_m) \mapsto (a_{m+1}).$
- The map σ_β is continuous and Ω_β is a compact metric space, hence the β-shift (Ω_β, σ_β) is a topological dynamical system.

• The case $\beta \in \mathbb{N}$ corresponds to full shifts.

 $\operatorname{Allow}(T_{\beta}) = \operatorname{Allow}(\sigma_{\beta})$

- Key observation: $x < y \iff d_{\beta}(x) <_{|ex} d_{\beta}(y)$.
- The following diagram commutes

$$\begin{array}{c|c} [0,1) \xrightarrow{T_{\beta}} [0,1) \\ \hline d_{\beta} \\ \downarrow \\ \Omega_{\beta} \xrightarrow{\sigma_{\beta}} \Omega_{\beta} \end{array}$$

Thus, T_β and σ_β are order-isomorphic, and, for all x ∈ [0, 1) and all n ≥ 1, we have

$$\mathsf{Pat}(T_{\beta}, n, x) = \mathsf{Pat}(\sigma_{\beta}, n, d_{\beta}(x)),$$

with the lexicographic order on Ω_{β} .

The shift complexity

- ▶ If $1 < \beta \leq \beta'$ then $\Omega_{\beta} \subseteq \Omega_{\beta'}$ and $\operatorname{Allow}(\mathcal{T}_{\beta}) \subseteq \operatorname{Allow}(\mathcal{T}_{\beta'})$.
- Compute $B_+(\pi) = \inf\{\beta > 1 \colon \pi \in \operatorname{Allow}(T_\beta)\}.$
- This quantity is called the (positive) shift complexity of π .

Example

For n = 2, one has $B_+(12) = B_+(21) = 1$. For n = 3, one has

$$B_+(132) = B_+(213) = B_+(321) = \frac{1+\sqrt{5}}{2}$$

and

$$B_+(123) = B_+(231) = B_+(312) = 1.$$

ション ふゆ く 山 マ チャット しょうくしゃ

Computing the shift complexity

$$\sum_{j=1}^{\infty} \frac{a_j}{\beta^j} = 1.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

By convention, $b_+(\overline{0}) = 1$.

► If a is eventually periodic then b₊(a) is the unique real root greater than or equal to 1 of a polynomial.
Computing the shift complexity

- ▶ For $\pi \in S_n$, define $z_1 z_2 \cdots z_{n-1}$ as in the case of full shifts.
- Let $m = \pi^{-1}(n)$ and $\ell = \pi^{-1}(\pi(n) 1)$ if $\pi(n) \neq 1$.

Theorem (Elizalde 2011)

Let $\pi \in S_n$ and $\beta > 1$. Then $\pi \in \text{Allow}(T_\beta) \iff \beta > b_+(a)$ where

$$a = \begin{cases} z_{[m,n)}\overline{z_{[\ell,n)}} & \text{if } \pi(n) \neq 1, \\ z_{[m,n)}\overline{0} & \text{if } \pi(n) = 1 \text{ and } \pi(n-1) \neq 2, \\ z'_{[m,n)}\overline{0} & \text{if } \pi(n) = 1 \text{ and } \pi(n-1) = 2. \end{cases}$$

where for $1 \leq j < n$, $z_j' = z_j + 1$. In particular, $B_+(\pi) = b_+(a)$.

Theorem (Elizalde 2011)

We always have $\pi \notin \operatorname{Allow}(T_{B_+(\pi)})$. So $N_+(\pi) = 1 + \lfloor B_+(\pi) \rfloor$.

Minimal shift complexity

The only permutations $\pi\in\mathcal{S}_n$ satisfying $B_+(\pi)=1$ are

$$(c+1)(c+2)\ldots n12\ldots c$$

for any fixed $1 \leq c \leq n$.

Example

We already saw that

$$B_+(12) = B_+(21) = 1$$

and

$$B_+(123) = B_+(231) = B_+(312) = 1.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Maximal shift complexity

For n = 3, there is 3 permutations of maximal complexity.

Theorem (Elizalde 2011) For $\pi \in S_n \setminus \{\rho_n\}$ with $n \ge 4$, we have $B_+(\pi) < B_+(\rho_n)$ where $\rho_n = \begin{cases} 1n2(n-1) \dots \frac{n}{2} \frac{n+2}{2} & \text{if } n \text{ is even} \\ 1n2(n-1) \dots \frac{n-1}{2} \frac{n+3}{2} \frac{n+1}{2} & \text{if } n \text{ is odd.} \end{cases}$

Moreover, $B_+(\rho_n) \in [n-2, n-1)$.

Example

We have $ho_4 = 1423$ and $B_+(
ho_4) = \frac{3+\sqrt{5}}{2} = 2.61...$

$B_+(\rho_n)$ is the threshold

Recall that $\pi \notin \operatorname{Allow}(T_{B_+(\pi)})$. Therefore we get

Corollary For $n \ge 4$, we have $S_n \subseteq \text{Allow}(T_\beta) \iff \beta > B_+(\rho_n)$.

Example (continued)

For $\beta > 2.61...$, the β -shift allows all permutations of length \leq 4.

Corollary

For a fixed $\beta > 1$, the length of the shortest forbidden permutation of T_{β} is the integer $n \ge 2$ defined by $B_{+}(\rho_{n-1}) < \beta \le B_{+}(\rho_{n})$.

Part III: Permutations and negative β -shifts

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Patterns of negative shifts and beta-shifts [Elizalde-Moore] Permutations and negative beta-shifts [Charlier-Steiner]

Negative β -shifts

• Let $\beta > 1$. We study the map

$$T_{-\beta}\colon (0,1] \to (0,1], \ x \mapsto \lfloor \beta x \rfloor + 1 - \beta x.$$

Generalization of T_β as T_{-β}(x) = {-βx} except for finitely many points.

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

Negative β -shifts

- Again, instead of numbers x ∈ (0, 1], we consider their (-β)-expansions, denoted by d_{-β}(x).
- $\Omega_{-\beta}$ is the closure of $\{d_{-\beta}(x) : x \in (0, 1]\}$.
- ► The shift map is $\sigma_{-\beta}$: $\Omega_{-\beta} \rightarrow \Omega_{-\beta}$, $(a_m) \mapsto (a_{m+1})$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

Permutations in negative β -shifts

- Key observation: $x < y \iff d_{-\beta}(x) <_{\text{alt}} d_{-\beta}(y)$.
- Here we use the alternating lexicographic order for sequences:

$$a_1 a_2 \cdots <_{\mathrm{alt}} b_1 b_2 \cdots \iff \exists i \ge 1, \ a_1 \cdots a_{i-1} = b_1 \cdots b_{i-1}$$

and $\begin{cases} a_i < b_i & \text{if } i \text{ is odd}, \\ a_i > b_i & \text{if } i \text{ is even.} \end{cases}$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

For example, $1320 \cdots <_{alt} 1210 \cdots <_{alt} 1220 \cdots$

We have Allow(T_{-β}) = Allow(σ_{-β}) with the alternating lexicographic order on the (−β)-shift.

Count the number of ascents

- ▶ We have to adapt the arguments from the full shift case.
- We consider again $\hat{\pi} = (\pi(1)\pi(2)\cdots\pi(n))$.
- Idea: For each ascent in π̂ with π(1) removed, we need one more symbol.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ う へ つ ・

Theorem (Charlier-Steiner, Elizalde-Moore)

Let $\pi \in S_n$. Then the minimal number of symbols of a sequence w satisfying $Pat(\sigma_k, n, w) = \pi$ w.r.t. the alternating lexicographic order is

$$N_{-}(\pi) = 1 + \operatorname{asc}(\hat{\pi}) + \epsilon_{-}(\pi),$$

where $\operatorname{asc}(\hat{\pi})$ is the number of ascents in $\hat{\pi}$ with $\pi(1)$ removed and

$$\epsilon_-(\pi) = egin{cases} 1 & ext{if some condition on π holds,} \ 0 & ext{otherwise.} \end{cases}$$

In particular $N_{-}(\pi) \leq n-1$ for all $\pi \in \mathcal{S}_n$, $n \geq 3$.

For $n \ge 4$, there are exactly 4 permutations $\pi \in S_n$ with $N_-(\pi) = n - 1$:

12...n, 12...(n-2)n(n-1), n(n-1)...1, n(n-1)...312.

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

Permutations in negative β -shifts

- Study the permutations realizable/forbidden in negative β-shifts.
- Compute the negative shift complexity

$$B_{-}(\pi) = \inf\{\beta > 1 \colon \pi \in \operatorname{Allow}(T_{-\beta})\}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Computing the negative shift complexity

Theorem (Charlier-Steiner, Elizalde-Moore) Let $\pi \in S_n$ and $\beta > 1$. Then $\pi \in \text{Allow}(T_{-\beta}) \iff \beta > b_{-}(a)$ where

$$a = \begin{cases} z_{[m,n)} \overline{z_{[\ell,n)}} & \text{if } n - m \text{ is even, } \pi(n) \neq 1, \text{ and } (\star), \\ \frac{\min_{0 \leq i < |r-\ell|} z_{[m,n)}^{(i)} \overline{z_{[\ell,n)}^{(i)}}}{z_{[m,n)}0} & \text{if } n - m \text{ is even, } \pi(n) \neq 1, \text{ and } \neg(\star), \\ \frac{\pi(m,n)}{z_{[m,n)} \overline{z_{[r,n)}}} & \text{if } n - m \text{ is even and } \pi(n) = 1, \\ z_{[m,n)} \overline{z_{[r,n)}} & \text{if } n - m \text{ is odd and } \neg(\star), \\ \min_{0 \leq i < |r-\ell|} z_{[m,n)}^{(i)} \overline{z_{[r,n)}^{(i)}} & \text{if } n - m \text{ is odd and } (\star). \end{cases}$$

In particular $B_{-}(\pi) = b_{-}(a)$.

Theorem (Charlier-Steiner, Elizalde-Moore) We have $N_{-}(\pi) = 1 + \lfloor B_{-}(\pi) \rfloor$.

Minimal negative shift complexity

Theorem (Charlier-Steiner)

If a >_{alt} $\varphi^{\omega}(0)$ where $\varphi: 0 \mapsto 1$, $1 \mapsto 100$, then $B_{-}(\pi)$ is a Perron number, i.e., an algebraic integer $\beta > 1$ all of whose Galois conjugates α satisfy $|\alpha| < \beta$.

ション ふゆ く 山 マ チャット しょうくしゃ

Moreover, $B_{-}(\pi) = 1 \iff a = \overline{\varphi^{k}(0)}$ for some $k \ge 0$.

Comparing the positive and negative β -shifts

$\overline{B_{\pm}(\pi)}$	root of	π , negative beta-shift	π , positive beta-shift
1	$\beta - 1$	12,21	12,21
		123, 132, 213, 231, 321	123,231,312
		1324, 1342, 1432, 2134	1234, 2341, 3412, 4123
		2143, 2314, 2431, 3142	
		3214, 3241, 3421, 4213	
1.465	$\beta^3 - \beta^2 - 1$		1342, 2413, 3124, 4231
1.618	$\beta^2 - \beta - 1$	312	132,213,321
		1423, 3412, 4231	1243, 1324, 2431, 3142, 4312
1.755	$\beta^3 - 2\beta^2 + \beta - 1$	2341, 2413, 3124, 4123	
1.802	$\beta^3 - 2\beta^2 - 2\beta + 1$		4213
1.839	$\beta^3 - \beta^2 - \beta - 1$	4132	1432, 2143, 3214, 4321
2	$\beta - 2$	1234, 1243	2134, 3241
2.247	$\beta^3 - 2\beta^2 - \beta + 1$	4321	4132
2.414	$\beta^2 - 2\beta - 1$		2314, 3421
2.618	$\beta^2 - 3\beta + 1$		1423
2.732	$\beta^2 - 2\beta - 2$	4312	

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Some open problems

Count all permutations with B_−(π) ≤ N or B_−(π) < N, in particular with B_−(π) = 1. From Bandt-Keller-Pompe's theorem we know that

$$\lim_{n\to\infty}\frac{1}{n}\log\#\{\pi\in{\mathcal S}_n:\ B_-(\pi)\leq\beta\}=\log\beta$$

What are the precise asymptotics of

$$c_n = \#\{\pi \in S_n : B_-(\pi) = 1\}?$$

We have $(c_n)_{n\geq 2} = 2, 5, 12, 19, 34, 57, 82, 115, \ldots$

Describe the permutations given by the transformations

$$T_{\beta,\alpha}: [0,1) \to [0,1), \ x \mapsto \beta x + \alpha - \lfloor \beta x + \alpha \rfloor.$$

References

- A. Rényi, Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hungar 8, 477-493, 1957.
- Ch. Bandt, G. Keller and B. Pompe, Entropy of interval maps via permutations. Nonlinearity 15(5), 1595–1602, 2002.
- J.M. Amigó, S. Elizalde, G. Kennel, Forbidden patterns and shift systems. J. Combin. Theory Ser. A 115(3), 485–504, 2008.
- S. Elizalde, The number of permutations realized by a shift. SIAM J. Discrete Math. 23(2), 765–786, 2009.
- S. Ito and T. Sadahiro, Beta-expansions with negative bases. Integers 9(A22), 239-259, (2009).
- S. Elizalde, Permutations and β-shifts. J. Combin. Theory Ser. A 118(8), 2474–2497, 2011.
- S. Elizalde and K. Moore, Patterns of negative shifts and beta-shifts, working paper.
- É. Charlier and W. Steiner, Permutations and negative beta-shifts, working paper.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()