
Permutations and shifts
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Abstract. The entropy of a symbolic dynamical system is usually de-
fined in terms of the growth rate of the number of distinct allowed fac-
tors of length n. Bandt, Keller and Pompe showed that, for piecewise
monotone interval maps, the entropy is also given by the number of per-
mutations defined by consecutive elements in the trajectory of a point.
This result is the starting point of several works of Elizalde where he
investigates permutations in shift systems, notably in full shifts and in
beta-shifts. The goal of this talk is to survey Elizalde’s results. I will end
by mentioning the case of negative beta-shifts, which has been simulta-
neously studied by Elizalde and Moore on the one hand, and by Steiner
and myself on the other hand.
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1 Introduction

The following result motivates the subject.

Theorem 1 (Bandt-Keller-Pompe [BKP02]). For piecewise monotonic maps,
the topological entropy coincides with the permutation entropy.

Let us introduce the permutation entropy of a totally ordered dynamical
system. This notion was first introduced in [BP02] and then, studied in [BKP02],
[Kel12], [KUU12], [Ami12] (and other papers). Let us also mention the book
[Ami10].

From now on, we suppose that X is a totally ordered set and T : X → X. For
an integer n ≥ 1 and a point x ∈ X such that x, T (x), . . . , Tn−1(x) are pairwise
distinct, Pat(T, n, x) denotes the permutation π ∈ Sn defined by

Tπ
−1(1)−1(x) < Tπ

−1(2)−1(x) < · · · < Tπ
−1(n)−1(x).

Otherwise stated, the relative order of x, T (x), . . . , Tn−1(x) corresponds to the
permutation π.

Example 2. Suppose T 3(x) < T (x) < x < T 2(x). Then Pat(T, 4, x) = 3241.
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A permutation π in Sn is realized, or allowed, in (X,T ) if there exists x ∈ X
such that Pat(T, n, x) = π. The set of allowed permutations of length n and the
set of all allowed permutations are denoted by

A(T, n) = {π ∈ Sn : ∃x ∈ X Pat(T, n, x) = π} and A(T ) =
⋃
n≥1

A(T, n)

respectively. Then the permutation entropy of (X,T ) is defined as

lim
n→∞

1

n
log #A(T, n)

provided that this limit exists. Theorem 1 states that this limit exists for piece-
wise monotonic maps, and coincides with the topological entropy. In particular
this result implies that not all permutations are realized in a given piecewise
monotonic map system. In fact, most of them are not since the number of per-
mutations of length n is super-exponential.

Example 3 (Tent map). Let X = [0, 1] and T (x) =

{
2x if x ∈ [0, 12 ]

−2x+ 2 if x ∈ [ 12 , 1]
.

0 1

1

2
3

Fig. 1. The tent map

Clearly, any x close to 0 realizes the permutation 123 and any x close to 1
realizes the permutation 312. A simple case study shows that every x ∈]0, 1/3[
realizes the permutation π = 123, every x ∈]1/3, 2/5[ realizes π = 132, every
x ∈]2/5, 2/3[ realizes π = 231, every x ∈]2/3, 4/5[ realizes π = 213, and finally,
that every x ∈]0, 1/3[ realizes π = 312. In particular, the permutation π = 321
is not realizable.

The aim of this note is to provide a quick and understandable overview of
the results of the following papers: [AEK08], [Eli09], [Eli11], [AE14], [EM] and
[CS]. Of course, I do not claim to be exhaustive; thus many interesting results
will not be mentioned. I will end by listing two open questions in this field.

2 Permutations and full shifts

Let Ak denote the k-letter alphabet {0, 1, . . . , k− 1} and consider the map
σk : AN

k → AN
k , (am) 7→ (am+1). This map is continuous with respect to the
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prefix metric on AN
k : for two distinct infinite words over Ak, the longer is their

common prefix, the closer they are. As the set AN
k is compact with respect to this

metric, (AN
k , σk) is a topological dynamical system. The domain AN

k is usually
called the full shift (over k symbols).

We use the notation a1a2 · · · ai for the periodic sequence with period a1a2 · · · ai,
and a[i,∞) = aiai+1 · · · and a[i,j) = aiai+1 · · · aj−1. Moreover, for (am)m≥1 ∈ AN

k ,
we let

ã = sup
m≥1

a[m,∞). (1)

In this section, we suppose that AN
k is ordered by the lexicographic order. We

have

Pat(σk, n, (am)m≥1) = π ⇐⇒ a[π−1(1),∞) <lex a[π−1(2),∞) <lex · · · <lex a[π−1(n),∞).

Permutations in full shifts were first studied in [AEK08]. In this paper, the
authors show that the smallest permutations that are not allowed (such permu-
tations are also said to be forbidden) in (AN

k , σk) have length k+ 2. For example,
for a binary alphabet, every permutation of length smaller than or equal to 3 is
allowed, whereas it is easily checked that the permutation π = 1423 is not.

In [Eli09], Elizalde is interested in computing the quantity N+(π), which is
the smallest k such that π is realized in (AN

k , σk):

N+(π) = min{k ≥ 1: π ∈ A(σk)}.

In Section 4, we will use the analogous notation N−(π) in the case of negative
β-shifts. This is the reason why we write N+(π) instead of following Elizalde’s
notation N(π).

Example 4. Consider the permutation π = 4217536 ∈ S7. Then any infinite
sequence (am)m≥1 starting with 210221220 realizes π since

2 1 0 2 2 1 2 2 0 · · ·
4 2 1 7 5 3 6

where, for each m, 1 ≤ m ≤ 7, we wrote π(m) below am if π(m) = i. For instance,
a[1,∞) = 210 · · · <lex a[5,∞) = 212 · · · , so π(1) = 4 < π(5) = 5. Note that we do
not have uniqueness as Pat(σ3, 7, 210221220 · · · ) = Pat(σ3, 7, 210221221 · · · ) =
π.

If aiai+1 · · · <lex ajaj+1 · · · and ai = aj then ai+1ai+2 · · · <lex aj+1aj+2 · · · .
If a1a2 · · · realizes the permutation π, this means that π(i) < π(j), ai = aj and
1 ≤ i, j < n =⇒ π(i + 1) < π(j + 1). Thus, for a permutation π ∈ Sn, it is
natural to consider the circular permutation

π̂ = (π(1)π(2) · · ·π(n)). (2)

Roughly, N+(π) is approximately equal to the number of descents in π̂, i.e., the
number of indices k < n such that π̂(k) > π̂(k + 1). Indeed, if 1 ≤ i, j < n,
π(i) < π(j), and π(i+ 1) = π̂(π(i)) > π̂(π(j)) = π(j + 1), then ai < aj . So, for
each descent in π̂ where π(1) is ignored we need one more symbol in order to
realize π.
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Example 5. We continue Example 4. One has π̂ = (4217536) = 7162345 and π̂
where π(1) = 4 is ignored, which is the sequence 716235, has 2 descents. By
using the previous argument, we need at least 3 symbols to realize π: 0, 1, 2.
More precisely, the permutation π̂ also tells us the number of occurrences of
those symbols in the prefix of length n−1 of any infinite sequence (am) realizing
the permutation π:

π̂ = 7 1 6 2 3 4 5
0 1 1 2 2 2

Then, the exact order of those n−1 digits in the prefix of any such (am) is given
by π itself:

π = 4 2 1 7 5 3 6
2 1 0 2 2 1

The previous discussion ignores specific situations, where more symbols are
needed. The main result of [Eli09] is as follows:

Theorem 6 ([Eli09]). Let n ≥ 2. For any π ∈ Sn,

N+(π) = 1 + des(π̂) + ε+(π)

where des(π̂) is the number of descents in π̂ with π(1) removed and

ε+(π) =

{
1 if π ends with 21 or with (n− 1)n,

0 otherwise.

Pursuing the previous discussion, in the case ε+(π) = 0 the prefix z1z2 · · · zn−1
of any infinite sequence realizing the permutation π is given by

zj = #{1 ≤ i < π(j) : either i 6∈ {π(n)− 1, π(n)} and π̂(i) > π̂(i+ 1), (3)

or i = π(n)− 1 and π̂(i) > π̂(i+ 2)}

where it should be understood that zj is really the digit corresponding to this
number.

Example 7. We continue Example 5. We have ε+(π) = 0. By (3) we find z1z2 · · · zn−1 =
210221, as desired.

Example 8. Let π = 346752189. Then π̂ = (346752189) = 814627593 and
ε+(π) = 1. In order to realize π, an infinite word a1a2 · · · starting with z1z2 · · · zn−1 =
11232103 needs one more symbol. Indeed

anan+1 · · · >lex zn−1an · · · = 3an · · · =⇒ an > 3

and any infinite sequence starting with 112321034 realizes π.
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Example 9. Let π = 24153. Then π̂ = (24153) = 54213 and ε+(π) = 0. Then
z1z2 · · · zn−1 = 1202 (the prefix defined by (3)). Any sequence starting with
1202121 or 1202201 realizes π. This illustrates that, unlike the prefix of length
n−1, the nth letter is not fixed by the permutation. This choice comes specifically
from the descent 41 in π̂ where π(1) = 2 is removed.

As a corollary of Theorem 6, Elizalde obtains that for n ≥ 3 and π ∈ Sn, one
has N+(π) ≤ n − 1. In addition, he proves that for all n ≥ 3, there are exactly
6 permutations π ∈ Sn such that N+(π) = n− 1. These 6 permutations are:

1n2(n− 1)3(n− 2) . . . , . . . (n− 2)3(n− 1)2n1,

n1(n− 1)2(n− 2)3 . . . , . . . 3(n− 2)2(n− 1)1n,

. . . 4(n− 1)3n21, . . . (n− 3)2(n− 2)1(n− 1)n.

In doing so, he answers a conjecture from [AEK08]. In fact, Elizalde shows
much more by proving a closed formula for the number an,N of permutations
π of length n for which N+(π) = N , for any n and N . In particular, for each
fixed N , one has an,N ∼ nNn−1 as n tends to infinity, whence for each k,

limn→∞
1
n log #A(σk, n) = limn→∞

1
n log(

∑k
N=1 an,N ) = log k, in accordance

with Theorem 1.
To end this section, let me also mention the work [AE14] where the authors

consider other orderings of the elements of the full shift in the case of periodic
orbits.

3 Permutations and positive β-shifts

Let β > 1. The β-transformation is the map Tβ : [0, 1)→ [0, 1), x 7→ {βx} where
{·} designates the fractional part of a real number. Instead of numbers x ∈ [0, 1),
we will rather consider their β-expansions [Rén57]:

x =

∞∑
k=1

dβ,k(x)

βk
with dβ,k(x) =

⌊
β T k−1β (x)

⌋
.

Set dβ(x) = dβ,1(x)dβ,2(x) · · · . The β-shift is the topological closure of the set
{dβ(x) : x ∈ [0, 1)} of all β-expansions from [0, 1); it is denoted by Ωβ . Then
σβ denotes the shift map σβ : Ωβ → Ωβ , (am) 7→ (am+1). This map is contin-
uous and the β-shift is a compact metric space, hence (Ωβ , σβ) is a topological
dynamical system. For all x, y ∈ [0, 1), we have σβ(dβ(x)) = dβ(Tβ(x)) and
x < y ⇐⇒ dβ(x) <lex dβ(y). Thus, for all x ∈ [0, 1) and all n ≥ 1, we have

Pat(Tβ , n, x) = Pat(σβ , n, dβ(x)),

with the lexicographical order on Ωβ . We note that if a1a2 · · · = limi→∞ dβ(xi)
with (xi) a sequence of [0, 1), then for all sufficiently large i and all n ≥ 1, we have
Pat(σβ , n, a1a2 · · · ) = Pat(σβ , n, dβ(xi)). Therefore A(Tβ) = A(σβ). Moreover,
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if 1 < β < β′, then dβ(1) <lex dβ′(1), whence Ωβ ⊆ Ωβ′ and A(Tβ) ⊆ A(Tβ′)
(this follows from Parry’s theorem, which characterizes the β-shift [Par60]).

In [Eli11], Elizalde introduces the notion of the shift complexity of a permu-
tation. We will take the liberty of calling it the positive shift complexity as we
will need an analogous definition in the next section for negative β-shifts. The
positive shift complexity of a permutation π ∈ Sn is the quantity

B+(π) = inf{β > 1: π ∈ A(Tβ)}. (4)

The main result of [Eli11] is a method to compute B+(π). For π ∈ Sn, let
z1z2 · · · zn−1 as in (3). Moreover, let

m = π−1(n) and ` = π−1(π(n)− 1) if π(n) 6= 1. (5)

For a sequence a = a1a2 · · · of finitely many nonnegative digits such that a = ã
(see (1)), let b+(a) be the unique solution β ≥ 1 of

∞∑
j=1

aj
βj

= 1.

Note that when a is an eventually periodic sequence, b+(a) is the unique real
root greater than or equal to 1 of a polynomial.

Theorem 10. [Eli11] Let π ∈ Sn. Then π ∈ A(Tβ) ⇐⇒ β > b+(a) where

a =


z[m,n)z[`,n) if π(n) 6= 1,

z[m,n)0 if π(n) = 1 and π(n− 1) 6= 2,

z′[m,n)0 if π(n) = 1 and π(n− 1) = 2.

where the digits zj are defined as in (3) and for every 1 ≤ j < n, z′j = zj + 1.
In particular, B+(π) = b+(a) and B+(π) is 1 or a Parry number, i.e., a number
β > 1 such that dβ(1) is eventually periodic.

It directly follows from this theorem that N+(π) = 1 + bB+(π)c.

4 Permutations and negative β-shifts

In this section, I report recent results obtained by Steiner and myself [CS].
Equivalent results were obtained simultaneously by Elizalde and Moore [EM].

Let β > 1. Here we are interested in the (−β)-transformation T−β : (0, 1]→
(0, 1], x 7→ bβxc + 1 − βx. This maps is a generalization of Tβ in the following
sense: T−β(x) = {−βx}, except for the (finitely many) following values of x:
1
β ,

2
β , . . . ,

bβc
β .

Again, instead of numbers x ∈ (0, 1], we will rather consider their (−β)-
expansions [IS09,Ste13]:

x = −
∞∑
k=1

d−β,k(x) + 1

(−β)k
with d−β,k(x) =

⌊
β T k−1−β (x)

⌋
.
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Set d−β(x) = d−β,1(x)d−β,2(x) · · · . For all x, y ∈ (0, 1], we have σ−β(d−β(x)) =
d−β(T−β(x)) and x < y if and only if d−β(x) <alt d−β(y). Here we use the
alternating lexicographical order for sequences:

a1a2 · · · <alt b1b2 · · · ⇐⇒ ∃i ≥ 1, a1 · · · ai−1 = b1 · · · bi−1 and

{
ai < bi if i is odd,

ai < bi if i is even.

The closure of the set of all (−β)-expansions {d−β(x) : x ∈ (0, 1]} forms the
(−β)-shift, which is denoted by Ω−β . The shift map σ−β : Ω−β → Ω−β , (am) 7→
(am+1) is continuous. For all x ∈ (0, 1], one has

Pat(x, T−β , n) = Pat(d−β(x), σ−β , n),

with the alternating lexicographical order on the (−β)-shift. ThereforeA(T−β) =
A(σ−β). From [Ste13], we know that if 1 < β < β′ then d−β(1) <alt d−β′(1) and
Ω−β ⊆ Ω−β′ , whence A(T−β) ⊆ A(T−β′).

Similarly to (4), the negative shift complexity of a permutation π ∈ Sn is the
quantity

B−(π) = inf{β > 1: π ∈ A(T−β)}.

Let ϕ be the substitution defined by ϕ(0) = 1, ϕ(1) = 100, with the unique
fixed point u = ϕ(u), i.e.,

u = 100111001001001110011 · · · .

If ã = a and a ≤ u, we set b−(a) = 1. If ã = a and a >alt u, then let b−(a)
be the largest positive root of 1 +

∑∞
j=1(aj + 1)(−x)−j [EM]. If a is eventually

periodic with preperiod of length q and period of length p, then b−(a) is the
largest positive solution of

(−x)p+q +

p+q∑
k=1

(ak + 1) (−x)p+q−k = (−x)q +

q∑
k=1

(ak + 1) (−x)q−k.

Since we are dealing with an order different from the lexicographic order, the
discussion from Section 2 about the first n − 1 digits of any sequence realizing
a given permutation has to be adapted (see the examples at the end of this
section). We define n− 1 digits z1z2 · · · zn−1 by

zj = #{1 ≤ i < π(j) : either i 6∈ {π(n)− 1, π(n)} and π̂(i) < π̂(i+ 1),

or i = π(n)− 1 and π̂(i) < π̂(i+ 2)}

where it should be understood that zj is really the digit corresponding to this
number. So, roughly, we now have one new digit for each ascent in π̂ where π(1)
is removed (see Theorem 13 below). Let m, ` as in (5) and

r = π−1(π(n) + 1) if π(n) 6= n.
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When

z[`,n) = z[r,n)z[r,n) or z[r,n) = z[`,n)z[`,n), if π(n) /∈ {1, n}, (6)

we also use the following digits: for 0 ≤ i < |r − `|, 1 ≤ j < n,

z
(i)
j = zj+

{
1 if π(j) ≥ π(r + i) and i is even, or π(j) ≥ π(`+ i) and i is odd,

0 otherwise

where, again, z
(i)
j really is the digit corresponding to this number.

Theorem 11. [CS,EM] Let π ∈ Sn and β > 1. Then π ∈ A(T−β) ⇐⇒ β >
b−(a) where

a =



z[m,n) z[`,n) if n−m is even, π(n) 6= 1, and (6) does not hold,

min0≤i<|r−`| z
(i)
[m,n) z

(i)
[`,n) if n−m is even, π(n) 6= 1, and (6) holds,

z[m,n)0 if n−m is even and π(n) = 1,

z[m,n) z[r,n) if n−m is odd and (6) does not hold,

min0≤i<|r−`| z
(i)
[m,n) z

(i)
[r,n) if n−m is odd and (6) holds.

(7)
In particular B−(π) = b−(a) and if a >alt u, then B−(π) is a Perron number,
i.e., an algebraic integer all of whose Galois conjugates α satisfying |α| < b−(a).

Theorem 12. [CS] Let π ∈ Sn and a as in (7). We have B−(π) = 1 if and only

if a = ϕk(0) for some k ≥ 0.

Theorem 13. [CS,EM] Let π ∈ Sn and a as in (7). Then the minimal number
of distinct symbols of a sequence w satisfying Pat(w, σ−β , n) = π is

N−(π) = 1 + bB−(π)c = 1 + asc(π̂) + ε−(π),

where asc(π̂) denotes the number of ascents in π̂ with π̂(π(n)) = π(1) removed
and

ε−(π) =

{
1 if (6) holds or a = asc(π̂)0,

0 otherwise.

In particular, we have N−(π) ≤ n − 1 for all π ∈ Sn, n ≥ 3, with equality for
n ≥ 4 if and only if

π ∈ {12 · · ·n, 12 · · · (n−2)n(n−1), n(n− 1) · · · 1, n(n− 1) · · · 312}.

Example 14.

1. Let π = 3421. Then n = 4, π̂ = 3142, z[1,4) = 110, m = 2, π(n) = 1, r = 3.

We obtain that a = z[2,4)0 = 100 = ϕ2(0), thus B−(π) = b−(a) = 1. Indeed,
we have Pat(1100 10011, σ−β , n) = π.
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2. Let π = 892364157. Then n = 9, π̂ = 536174892, z[1,9) = 33012102, m = 2,
` = 5, r = 1, thus a = z[2,9) z[1,9) = 30121023, and b−(a) is the unique root
x > 1 of

x8 − 4x7 + x6 − 2x5 + 3x4 − 2x3 + x2 − 3x+ 4 = 1.

We get B−(π) ≈ 3.831, and we have Pat(330121023 301210220, σ−β , n) = π.
3. Let π = 453261. Then n = 6, π̂ = 462531, z[1,6) = 11001, m = 5, π(n) = 1,
r = 4, thus a = z5 z4z5 = 10, and b−(a) = 2. We have Pat(110010 2, σ−β , n) =
π.

4. Let π = 7325416. Then n = 7, π̂ = 6521473, z[1,7) = 100100, m = r = 1,

` = 4. Hence (6) holds, and z
(0)
[1,7) = 200100, z

(1)
[1,7) = 200210, z

(2)
[1,7) = 211210.

Since n−m is even, we have

a = min
i∈{0,1,2}

z
(i)
[1,7) z

(i)
[4,7) = min{200 100, 200 210, 211 210} = 211 210.

Therefore, B−(π) ≈ 2.343 is the largest positive root of

0 = (x6 − 3x5 + 2x4 − 2x3 + 3x2 − 2x+ 1)− (−x3 + 3x2 − 2x+ 2)

= x6 − 3x5 + 2x4 − x3 − 1.

We have Pat(211(210)
2k+2

2, σ−β , n) = π for k ≥ 0.

5 Comparing the positive and negative β-shifts

In Table 1, we give the values of the shift complexity B(π) for all permutations of
length up to 4, and we compare them with the values obtained by [Eli11] for the
positive β-shift. Here B(π) has to be understood as B−(π) or B+(π) accordingly.
Note that much more permutations satisfy B−(π) = 1 for the negative β-shift
than B+(π) = 1 for the positive one.

6 Open problems

Let me conclude with two open problems.

– Count all permutations with B−(π) ≤ N or B−(π) < N , in particular with
B−(π) = 1. From Theorem 1 we know that

lim
n→∞

1

n
log #{π ∈ Sn : B−(π) < β} = lim

n→∞

1

n
log #{π ∈ Sn : B−(π) ≤ β} = log β

What are the precise asymptotics of

cn = #{π ∈ Sn : B−(π) = 1}?

The first values are given by (cn)2≤n≤9 = 2, 5, 12, 19, 34, 57, 82, 115.
– Describe the permutations given by the transformations

Tβ,α : [0, 1)→ [0, 1), x 7→ βx+ α− bβx+ αc.
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B(π) root of π, negative β-shift π, positive β-shift

1 β − 1 12, 21 12, 21
123, 132, 213, 231, 321 123, 231, 312

1324, 1342, 1432, 2134, 2143, 2314 1234, 2341, 3412, 4123
2431, 3142, 3214, 3241, 3421, 4213

1.465 β3 − β2 − 1 1342, 2413, 3124, 4231

1.618 β2 − β − 1 312 132, 213, 321
1423, 3412, 4231 1243, 1324, 2431, 3142, 4312

1.755 β3 − 2β2 + β − 1 2341, 2413, 3124, 4123

1.802 β3 − 2β2 − 2β + 1 4213

1.839 β3 − β2 − β − 1 4132 1432, 2143, 3214, 4321

2 β − 2 1234, 1243 2134, 3241

2.247 β3 − 2β2 − β + 1 4321 4132

2.414 β2 − 2β − 1 2314, 3421

2.618 β2 − 3β + 1 1423

2.732 β2 − 2β − 2 4312

Table 1. B(π) for the (−β)-shift and the β-shift, for all permutations of length up to
4.
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