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Engine health monitoring has been an area of intensive research for many years. Numerous methods have been developed with the
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diagnosis has received less attention from the community. The present contribution revisits the problem of sensor selection for
engine performance monitoring within the scope of information theory. To this end, a metric that integrates the essential elements
of the sensor selection problem is defined from the Fisher information matrix. An example application consisting in a commercial
turbofan engine illustrates the enhancement that can be expected from a wise selection of the sensor set.
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1. INTRODUCTION

In the last years, condition-based maintenance has been
widely promoted in the jet engine community. A main-
tenance schedule adapted to the level of deterioration of
the engine leads to many advantages such as improved
operability and safety or reduced life cycle costs. In this
framework, generating a reliable information about the
health condition of the engine is a requisite.

In this contribution, module performance analysis, also
known as gas path analysis, is considered. Its purpose is to
assess the changes in engine module performance on the
basis of measurements collected along the gas path of the
engine [1]. This approach allows to track the evolution of
a particular engine relative to some baseline performance
which may be engine specific or fleet averaged. The gas path
analysis approach is illustrated in Figure 1 and is governed by
the following principles:

(i) the condition of the components (e.g., fan, lpc, hpc,
hpt, lpt, nozzle) can be represented by a set of
performance indicators, so-called health parameters
w, which are typically correcting factors on their
efficiency and flow capacity;

(ii) a degradation (progressive or accidental) affecting
the engine induces a modification of its performance,

which results in a drift of some measurements y col-
lected along the engine flow path (e.g., temperatures,
pressures, mass flows, shaft speeds);

(iii) a physical or mathematical model, of the engine that
relates the variation of the health parameters w to the
drift of the gas-path measurements y can be derived.

As depicted in Figure 1, the diagnosis problem (or health
parameter estimation problem) can be considered as the
inverse problem of performance simulation. Mathematically
speaking, the health parameters are estimated by minimising
a cost function ρ( · ) of the residuals defined as the difference
between the measured value y and the model prediction ŷw:

ŵ = arg min
w

{

ρ
(

y − ŷw
)}

. (1)

Next to the definition of the cost function and the choice of
an appropriate method to solve the inverse problem, which
has been an area of intensive research (see [2] for a detailed
review), the selection of a relevant configuration of the sen-
sors is an important issue. Current sensors remain intrusive,
their integration is limited by many constraints such as cost,
weight, or harsh environment. As a consequence, the number
of sensors is usually kept to a minimum and hence out-
weighed by the number of health parameters. This makes the
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Figure 1: The gas path analysis approach to jet engine diagnostics.

estimation problem ill posed. Moreover, the measurements
are corrupted with noise. The efficiency of the diagnosis
algorithm depends on the sensor configuration which should
therefore be selected so as to optimise the amount of
information that is carried about the engine condition.

Optimal sensor selection has been investigated only
sparsely in the engine health monitoring community, few
contributions indeed address this issue. Most of the work so
far is based on linear approaches. In [3], a metric based on
the sensitivity of the sensors with respect to the parameters
is defined. The use of the condition number of the influence
coefficient matrix that relates measurements and parameters
is also investigated in order to perform the sensor selection
in the case of a square problem (i.e., as many sensors as
parameters). In [4], a figure of merit based on the steady-
state error covariance matrix of a Kalman filter is used to
perform the optimisation of the sensor set, again in the case
of a square problem. This study also takes into account the
cost of the different sensors. In [5], the strong link between
sensor selection and observability is underlined. A sensor
configuration is considered as informative if it avoids both
redundancy between measurements and correlation between
fault directions. The solution of the sensor selection problem
relies on a method for observability analysis developed in [6].

The same topic has received much more attention in
other fields such as chemical or structural engineering. As a
general trend (see for instance [7–10]), the sensor selection
problem is addressed in the framework of information
theory. Metrics based on the observability Grammian or
on the Fisher information matrix are defined in order to
optimise the configuration of the experiment.

In the light of these considerations, the present contri-
bution revisits the problem of sensor selection for turbine
engine performance monitoring within the scope of infor-
mation theory. The application consists in a generic turbofan
model developed in the frame of the European OBIDI-
COTE project. A metric that handles the aforementioned
particularities is proposed. With the research being focused
on the metric definition itself, the optimal configuration
is obtained through a brute-force technique. The quality
of the resulting sensor set is assessed on the basis of fault
cases that can be expected on a turbofan engine, and an
observability analysis is performed to get more knowledge
about the sensor configuration.

2. STATEMENT OF THE PROBLEM

The scope of this section is to present the theoretical foun-
dation of the methodology developed for sensor selection.

First, the model relating the observations to the parameters
is described. Elements of information theory are then
introduced in the scope of sensor selection, with a particular
focus on the Fisher information matrix (FIM). Metrics based
on the FIM are subsequently proposed in order to optimise
the measurement configuration for a given set of health
parameters. Finally, guidelines to perform an observability
analysis of a given configuration are proposed.

2.1. Simulation model

One of the master pieces of the gas path analysis approach
is a simulation model of the engine. Considering steady-
state operation of the engine, these simulation tools are
generally nonlinear aerothermodynamic models based on
mass, energy, and momentum conservation laws applied to
the engine flow path. Equation (2) represents such an engine
model where u are the variables defining the operating point
of the engine (e.g., fuel flow, altitude, Mach number), w are
the aforementioned health parameters, and y are the gas path
measurements:

y = G(u, w). (2)

In the frame of turbine engine diagnosis, the statistical model
is rarely used in the previous form stated by (2). Indeed,
the quantity of interest is the difference between the actual
engine health condition and a reference one represented by
baseline values wbl. Assuming a linear relationship between
the measurements and the health parameters, as well as fixed
operating conditions, the model is re-formulated according
to

y = ybl + G
(

w −wbl
)⇐⇒ δy = G δw, (3)

where

ybl = G
(

u, wbl
)

, G = ∂

∂w
G(u, w)

∣

∣

∣

∣

w=wbl
(4)

are, respectively, the prediction of the measurements and the
Jacobian matrix of the engine model around the baseline wbl.

A random variable ε ∈ N (0, Ry) which accounts for
sensor inaccuracies and modelling errors is added to the
deterministic linearised model (3) in order to reconcile
the observed measurements and the model predictions.
Equation (5) is therefore termed the statistical model:

δy = G δw + ε. (5)
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The statistical model (5) can further be scaled to a linear
system with a noise distribution ε̃ ∈ N (0, I) provided that
the covariance matrix Ry is positive definite. The scaled

model is given by ˜G = (
√

Ry)
−1

G, where the scaling factor

takes into account the relative accuracy of each sensor.

ε̃ = δỹ − ˜G δw, (6)

The scaled statistical model is actually the probability density
function of the residuals ε̃ parameterised by the health
parameters δw:

p
(

ε̃ | δw
) = 1

√

(2π)m
exp

(

− 1
2
ε̃T ε̃

)

. (7)

2.2. Fisher information matrix

The idea behind sensor selection is to optimise the amount
of information conveyed by the measurements about the
parameters to be estimated. Optimal information can be
defined in various ways, such as maximum response of the
measurements to a change in the health condition, minimum
uncertainty in the estimated parameters, or maximum
orthogonality between the measurements to name a few. This
question will be addressed in more details in the next section.
It is desirable to base the optimisation on a quantity that
captures these properties and that allows easy comparison
between different configurations.

For the kind of static systems described by (6), the
Fisher information matrix (FIM) is a mathematical entity
that possesses the aforementioned features. Indeed, the FIM
quantifies the amount of information that an observation
carries about an unknown parameter. Mathematically, the
FIM is defined as the variance of the score function associated
to the estimation problem [11]. Loosely speaking, it is
intimately linked to the sensitivity of the measurements with
respect to the parameters.

Considering the joint probability distribution of the
residuals and the parameters p(ε̃, δw), which characterises
the estimation problem, the general term of the FIM is
defined as

FIMi, j
def= E

{

∂

∂δwi
log p(ε̃, δw) · ∂

∂δw j
log p(ε̃, δw)

}

,

(8)

where E{ · } is the mathematical expectation operator and
log, the natural logarithm. The existence of the FIM is con-
ditioned on some regularity assumptions of the probability
density. In the following, two cases widely used in practice
are studied.

Consider first the estimation of the health parameters in
a maximum likelihood (ML) framework. The health param-
eters are seen in this case as deterministic variables that are
assessed from the available measurements. Consequently, the
joint probability density function is equal to the probability
density function of the residuals conditioned on the health
parameters:

pML(ε̃, δw) = p(ε̃ | δw). (9)

Clearly, the Gaussian distribution used to model p(ε̃ | δw) is
such that its natural logarithm as well as its first derivative
with respect to the parameters can be computed for any
values of these parameters. Substituting expression (7) in
relation (8), the FIM writes down:

FIMML = ˜GT
˜G. (10)

Consider now the Bayesian approach to estimation. Both the
measurements and the health parameters are seen as random
variables. The joint probability density function is here equal
to the product of the probability density function of the
residuals conditioned on the health parameters and the a
priori probability density function of the health parameters:

pBayes(ε̃, δw) = p(ε̃ | δw) · p(δw). (11)

The prior distribution of the parameters is chosen as δw =
N (0, Q), where Q is the prior covariance matrix of the
parameters. Moreover, the parameters and the measure-
ments are assumed to be statistically independent. Under
these hypotheses, the FIM takes the form

FIMBayes = ˜GT
˜G + Q−1. (12)

Interestingly, the Cramer-Rao inequality [12] states that
the diagonal terms of the inverse of the FIM (provided
that it exists) are asymptotic lower bounds on the variance
of any unbiased estimator of δw. This underlines the
strong coupling between information, observability, and
estimation.

Engine performance monitoring is characterised in
practice by negative redundancy, which means that the
number of parameters exceeds the number of sensors
(n > m). In this case, the ML formulation leads to an
underdetermined estimation problem that has no unique
solution. Bayesian estimation has to be applied as a palliative.
As already mentioned, sensor selection relies here on the
FIM. Comparing (10) and (12), it can be seen that the FIM
in the Bayesian case is equal to the one of the ML case,
which effectively depends on the sensor configuration, plus
the contribution of the a priori knowledge. This latter term
can be interpreted as an additional information that makes
the mathematical problem well posed. As a conclusion, the
sensor selection problem will be solved by using the FIM of
the ML framework, even in the case m < n.

2.3. Figures of merit for sensor selection

In the previous section, it has been shown that the FIM is a
relevant mathematical entity on which the sensor selection
can rely. Practically, two main objectives govern the design of
a diagnosis tool. On the one hand, high sensitivity is desirable
in order to provide an early detection of a fault. On the other
hand, the user’s confidence in the system is conditioned by a
minimum false alarm rate. These objectives can be achieved
by determining the configuration that maximises both the
orthogonality between the sensors and the orthogonality
between the parameters. The former means that two sensors
should not react in the same way to any engine fault. The
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latter means that two parameters should have a distinct
signature on the observations. Various scalar figures of merit
based on the FIM can describe these objectives:

(1) the condition number CN of the FIM is defined as the
ratio of the largest to the smallest singular value. The
condition number is linked to the rank of a matrix
and to the difficulty in performing its inversion. In
the case m < n, the rank of the FIM is at best equal to
m which can be ensured by minimising the condition
number. In that way, no sensor is redundant with
another;

(2) the trace Tr of the FIM is defined as the sum of the
singular values. In the case m < n, the sum is limited
to the first m singular values. The trace is a measure
of the global sensitivity of the sensors with respect
to the parameters and hence has to be maximised.
It is linked to some extent to the sensitivity measure
defined in [3];

(3) the determinant Det of the FIM is defined as the
product of the singular values. Again, the product
is restricted to the first m singular values. Indeed,
as stated in point 1, at most m singular values are
nonzero. This quantity has to be maximised too
as the inverse of the determinant is a measure of
the overall uncertainty on the estimated parameters.
Furthermore, this criterion tends to standardise the
singular values and hence the contribution of each
sensor. This criterion is similar to the one used in [5].

Relations (13) give the mathematical form of the figures of
merit, where σi, i = 1, . . . ,m are the singular values, see next
section for a definition of singular value, of the FIM sorted in
descending order:

CN = σ1

σm
, Tr =

m
∑

i=1

σi, Det =
m
∏

i=1

σi. (13)

Each of those metrics puts emphasis on a particular aspect
of the problem at hand. To perform the sensor selection, it
is thus proposed to combine them in an aggregated figure of
merit:

FOM = −W1 log(CN) +W2 log(Tr) +W3 log(Det), (14)

where Wi are factors that allow both normalisation of the
magnitude of the various components and variable weight-
ing between the objectives. For the problem considered in
this study, FOM has to be maximised with respect to the
sensor configuration under the constraint of a fixed number
of sensors.

2.4. Metrics for observability analysis

The purpose of the observability analysis as considered in
the present study is twofold: firstly assessing the contribution
of each sensor to the estimation problem and secondly
quantifying the observability level of each health factor. In

simple words, the observability level measures the possibility
to estimate correctly a given parameter.

As pointed by Brown in [13], the classical test for observ-
ability, that is, checking the invertibility (or full rank) of
the system matrix—˜G here—gives merely a boolean answer.
In the case of negative redundancy, the system is always
classified as nonobservable. Practically, it is however partially
observable, and it is worth determining the observability
level of the different parameters as well as the unobservable
fault directions. Inspired by the work of Provost [6], a
method for generating this information is proposed in the
following.

The intent is to derive metrics for both the sensors and
the parameters, the computation is therefore based on the
scaled Jacobian matrix rather than on the FIM. Singular
value decomposition (SVD) (see [14]) of ˜G serves as the
mathematical tool to carry out the observability analysis:

˜G = UΣVT = U
[

Σ1 Σ2
][

V1 V2
]T

, (15)

where

(i) U ∈ Rm×m is an orthogonal matrix whose columns
define an orthonormal basis for the output (measure-
ment) space;

(ii) V ∈ Rn×n is an orthogonal matrix whose columns
define an orthonormal basis for the input (parame-
ter) space;

(iii) Σ ∈ Rm×n is a rectangular matrix whose main
diagonal contains the singular values σ , which can be
seen as stretching factors along the directions defined
in U and V.

A more practical interpretation of the SVD is proposed
hereafter. The scaled Jacobian matrix ˜G can be seen as
an operator that maps the space of the health parameters
(input space) to the space of the measurements (output
space). In this representation, each health parameter (resp.,
measurement) is one orthogonal base vector of the input
(resp., output) space. Application of the SVD to the matrix
consists essentially in a change of reference frame in both
the input and output spaces. The position of any health
condition of the engine is now measured according to the
columns of matrix V, and the corresponding measurement
coordinates are expressed in terms of the columns of matrix
U. The major difference between the two representations
(original and SVD) lies in the mapping from the input
space to the output space. In the SVD representation, the
mapping is given by the diagonal matrix Σ which simplifies
the description of the input-output relation.

Given the meaning of the columns of U and the diagonal
terms of Σ, a sensitivity index SI is defined for each sensor as
a weighted norm of each row of U:

SIi = Ui

√

ΣTΣUT
i , i = 1, . . . ,m. (16)

This sensitivity index is an image of the overall contribution
of a given sensor to the estimation process. The higher the SI,
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Figure 2: Turbofan layout with health parameters location.

the more important the influence of the associated sensor in
the estimation of the health parameters.

An observability index for the parameters, and to a larger
extent for any fault (i.e., combination of several parameters),
could be defined in a similar way as the sensitivity index is.
Nonetheless, in the case of negative redundancy, a loss of
information is introduced due to the fact that the number
of parameters outweighs the number of sensors. From linear
algebra theory, it can be stated that the rank of the Jacobian
matrix ˜G is at best equal to m. Hence, n −m singular values
are equal to zero. As highlighted in the second part of (15),
matrix Σ is partitioned in two where ΣT1 gathers the m
nonzero singular values and ΣT2 is a submatrix containing
the n − m null singular values. Matrix V is accordingly
split column-wise into the observable subspace V1 and its
unobservable counterpart V2, also known as the null space,
which does not carry any information about the state of the
system [15].

The definition of the observability index proposed in the
present study quantifies this loss of information. For some
fault f , the observability index OI is computed according to

OIf = ‖VT
1 f‖2

‖VT f‖2 , (17)

where the numerator is a measure of the intensity of fault f
in the observable subspace, and the denominator represents
the total intensity of fault f .

Following this definition, the observability index is
bounded by zero and one. An observability index equal to
unity means that the considered fault has no component
located in the null space and can therefore be estimated with
a great accuracy. On the contrary, a small observability index
characterises a large loss of information. The estimation of
the associated fault is hence less accurate.

The fault directions defined by the columns of matrix
V2 are unobservable in the sense that they produce no shift
in the measurements. Any fault direction that is a linear
combination of these vectors has obviously the same detri-
mental property. The examination of the unobservable fault

Table 1: Cruise point definition.

Label Wfuel Altitude Mach ΔTISA

Value 0.350 kg/s 10668 m 0.80 0.0 K

directions gives clues about possible confusions between
weakly observable faults.

3. APPLICATION OF THE METHOD

3.1. Engine layout

The application considered as a test case is a large bypass
ratio, mixed-flow turbofan. The engine performance model
was developed in the frame of the OBIDICOTE project, a
Brite-Euram project for onboard identification, diagnosis,
and control of turbofan engine, and is detailed in [16]. A
schematic of the engine is sketched in Figure 2, where the
location of the eleven health parameters and the station
numbering are also indicated. One control variable is
considered in the following, namely, fuel flow rate Wfuel fed
in the combustor.

The sensor selection problem is formulated for the case of
an onboard engine performance monitoring tool. As steady-
state operation of the engine is achieved nearly exclusively
during the cruise phase, the corresponding operating point
is selected for this study. Cruise conditions are defined in
Table 1.

Sensors that may be fitted on the engine are listed with
their associated uncertainty (noise level) in Table 2. They
mostly consist in total temperature and pressure at various
intercomponent planes as well as both spool speeds.

3.2. Optimisation of the sensor configuration

The optimisation problem is to determine the m (among
twelve) sensors that maximise the figure of merit of (14) for
the set of n = 11 health parameters depicted in Figure 2 at
cruise conditions. The only parameter that still needs to be
set is the number of sensors that are installed on the engine.
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Table 2: Available sensors (uncertainty is three times the standard deviation).

Label P13 P26 NLP P3 P49 P5

Uncertainty ±100 Pa ± 500 Pa ±6 rpm ±5000 Pa ±500 Pa ±300 Pa

Label T13 T26 NHP T3 T49 T5

Uncertainty ±2 K ±2 K ±12 rpm ±2 K ±2 K ±2 K

Table 3: First ten optimal configurations.

P13 T13 P26 T26 NLP NHP P3 T3 P49 T49 P5 T5 FOM

1
√ √ √ √ √ √ √ −1.4254

2
√ √ √ √ √ √ √ −1.5968

3
√ √ √ √ √ √ √ −1.7014

4
√ √ √ √ √ √ √ −1.7315

5
√ √ √ √ √ √ √ −1.8936

6
√ √ √ √ √ √ √ −2.0492

7
√ √ √ √ √ √ √ −2.1709

8
√ √ √ √ √ √ √ −2.2540

9
√ √ √ √ √ √ √ −2.2576

10
√ √ √ √ √ √ √ −2.2819

9 0 9 0 9 8 8 8 10 7 0 2

Table 4: First five optimal configurations based on the condition number of the FIM.

P13 T13 P26 T26 NLP NHP P3 T3 P49 T49 P5 T5 CN

1
√ √ √ √ √ √ √ −1.9882

2
√ √ √ √ √ √ √ −2.0634

3
√ √ √ √ √ √ √ −2.0713

4
√ √ √ √ √ √ √ −2.1533

5
√ √ √ √ √ √ √ −2.1851

5 0 5 0 5 5 3 3 5 2 0 2

Table 5: First five optimal configurations based on the trace of the FIM.

P13 T13 P26 T26 NLP NHP P3 T3 P49 T49 P5 T5 Tr

1
√ √ √ √ √ √ √

2.0122

2
√ √ √ √ √ √ √

2.0117

3
√ √ √ √ √ √ √

2.0030

4
√ √ √ √ √ √ √

2.0025

5
√ √ √ √ √ √ √

2.0003

4 0 4 0 5 5 3 1 5 5 0 3

According to the information reported in [17], a number of
m = 7 sensors seem a reasonable choice for contemporary
commercial turbofans.

This optimisation problem is of combinatorial nature.
Although algorithms are especially dedicated to this kind of
problem, the optimal configuration is found here by means
of a brute force technique. The figure of merit is computed
for every of the 792 (12 choose 7 binomial coefficient)
possible combinations. Unit weights have been applied to
each component of the FOM (Wi = 1.0, i = 1, 2, 3).

Table 3 reports the first ten optimal configurations based
on the figure of merit defined in (14). The last column on
the right gives the value of the figure of merit for each setup.

At first sight, the values may appear quite close to each other,
but the reader should recall that the figure of merit is defined
on a logarithmic scale. The bottom line in the table gives
the frequency of each sensor in the first ten best sensor sets.
To complete the picture, the first five optimal configurations
according to each component of the FOM are given in Tables
4, 5, and 6. The last column in each of these tables is also
expressed in a logarithmic scale.

It can be seen that the optimal configuration according to
the full FOM (i.e., first line of Table 3) is ranked, respectively,
fourth, first, and second according to the condition number,
the trace, and the determinant of the FIM. Hence, the com-
bined metric elegantly merges the different objectives of the
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Table 6: First five optimal configurations based on the determinant of the FIM.

P13 T13 P26 T26 NLP NHP P3 T3 P49 T49 P5 T5 Det

1
√ √ √ √ √ √ √ −1.3645

2
√ √ √ √ √ √ √ −1.4557

3
√ √ √ √ √ √ √ −1.6269

4
√ √ √ √ √ √ √ −1.6368

5
√ √ √ √ √ √ √ −1.6608

5 0 4 0 5 5 3 4 5 3 0 1

Table 7: Selected sensors sets for further investigations.

Set A P13 T13 NLP NHP P3 T3 T5

Set B P13 P26 NLP NHP P3 P49 T49

Set C P13 P26 NLP NHP P3 T3 T49

optimisation problem. Looking at the last line of each table, it
can be deduced that T13, T26, and P5 are not good candidate
to the optimal instrumentation whatever the metric consid-
ered. On the contrary, P13, P26, P49, and the spool speeds
appear to be mandatory in the optimised configuration. This
point will be discussed in more details subsequently.

As highlighted in [18], installation of an interturbine
pressure sensor becomes more difficult on modern engines.
Consequently, the search has been carried out a second time
by removing P49 from the list of available sensors, leaving a
mere 330 configurations to be examined.

The three sensor sets selected for further investigations
are presented in Table 7. Set A is the standard instrumen-
tation defined in the frame of the OBIDICOTE project and
serves as the baseline for comparison, set B is the optimal one
when considering P49 as available, and set C is the optimal
one when discarding P49 from the list. Note that the notion
of optimality is relative to the metric defined by (14).

Examining Table 7, one first notices that P13, both
spool speeds, and P3 are common to the three sensor sets.
P13 is indeed required to correctly assess fan performance.
Concerning the spool speeds and P3, these sensors are
mandatory for control purpose. It is thus a good point that
they appear in the optimal sets. Furthermore, spool speeds
are generally very accurately measured, which is one of the
reasons of their presence in the optimal configurations. Set B
is characterised by the presence of P49. This sensor is in fact
the only one in the list that allows full differentiation of lpt
and hpt faults.

It is also of interest to point out that sets B and C
contain, respectively, 4 and 3 pressure sensors out of 7. This
is explained by the fact that pressure sensors are more infor-
mative about the engine condition than temperature sensors.
It may appear strange that lpt exhaust pressure P5 does not
appear in the optimal selection. For a mixed-flow engine,
this quantity is nonetheless highly correlated with fan outlet
pressure P13. So selecting P13 discards P5 and vice versa. It
can also be seen that exhaust gas temperature (defined as T49
or T5, depending on the manufacturer) is part of the optimal
sensor sets. An EGT sensor is already fitted on every engine
as this quantity serves as a global indicator of engine health
for the pilot (so-called EGT margin).

Table 8: Considered fault cases.

a
−1% on SW12R −0.5% on SE12 fan, lpc

−0.7% on SW2R −0.4% on SE2

b −1% on SE12

c −1% on SW26R −0.7% on SE26 hpc

d −1% on SE26

e −1% on SW26R

f +1% on SW42R hpt

g −1% on SW42R −1% on SE42

h −1% on SE42

i −1% on SE49 lpt

j −1% on SW49R −0.4% on SE49

k −1% on SW49R

l +1% on SW49R −0.6% on SE49

m +1% on A8IMP nozzle

n −1% on A8IMP

3.3. Evaluation of the sensor sets

In order to evaluate the benefits brought by optimal
instrumentation, a series of fault cases, taken from [19] and
summarised in Table 8, are considered. They are intended
to represent degradations that can be expected on modern
turbofans for all individual components. Considered faults
involve single as well as multiple health parameters. In the
present application, faults have a constant magnitude. Snap-
shot data are simulated by means of the engine performance
model. Gaussian noise, whose magnitude is specified in
Table 2, is added to the generated measurements to make
them closer to test data.

A diagnosis tool based on a Kalman filter (see [20]
for further details) processes the data. Given its stochastic
nature, each test case is run twenty times with different real-
isation of measurement noise. Table 9 reports the averaged
results in a very synthetic way. Identification of the fault
is declared successful if the estimation error lies within its
bounds (see [21] for more details) and is indicated by a check
mark (

√
) in the table.
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Table 9: Fault identification results with the 3 sensor sets.

Fault case a b c d e f g h i j k l m n

Set A
√ √ √ √ √ √ √ √ √ × × × √ √

Set B
√ √ √ √ √ √ √ √ √ √ √ √ × √

Set C
√ √ √ √ √ √ √ √ √ × √ √ × √
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Figure 3: Comparison of the observability indices OI.
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Figure 4: Comparison of the sensitivity indices SI.

The standard instrumentation, set A, performs already
quite well. It can however be seen that it fails in diagnosing
correctly most of the lpt faults (cases j, k, and l). Sensor
set B, featuring the interturbine pressure sensor, resolves
this issue, as previously mentioned. However, fault case m
is now misidentified. The increase in exhaust nozzle area is
confounded with a fan fault. Finally, set C achieves some
improvement with respect to set A too. Most of the lpt faults
but case j are correctly assessed. As for set B, the diagnosis
tool is misled by fault case m.

3.4. Observability analysis of the sensor sets

The study of the optimal sensor sets is concluded by an
observability analysis as per the concepts defined in a
previous section. Figure 3 depicts the observability indices of
the health parameters for the three sensors sets. Concerning

set A, the observability of most of the parameters is quite
good, except for the booster flow factor, SW2R, and the
lpt flow factor SW49R. The optimal set B improves the
observability of those parameters, on the other hand, it
degrades the observability of SE12 and SE26 due to the loss,
respectively, of T13 and T3. The nozzle area is also affected.
Finally, optimal set C offers an intermediate solution. With
respect to set A, the observability of the lpc is improved as
well as the one of the core components. As for set B, one can
notice a decrease in observability for SE12 and A8IMP.

In Figure 4, the sensitivity indices are compared for
each sensor set. From the left picture, it can be seen that
both temperature sensors in the cold section, namely, T13
and T3, contribute to a lesser extent in set A. The center
picture, associated to set B, illustrates the effect of the
optimisation. The distribution of sensitivity indices is more
uniform, and values are higher. Finally, the right graph shows
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the sensitivity indices for set C. Again, the general trend
reveals an increase in the average level. T3 has the lowest
contribution among all sensors.

4. DISCUSSION

To complete the analysis of the results, some issues that may
lead to further developments of the proposed methodology
are discussed in the following.

The first question is related to the assumptions on
which the proposed approach relies. The metric defined for
sensor selection has indeed been derived for a linearised
system, around a given operating point and reference health
conditions. Yet, the behaviour of the engine is essentially
nonlinear. It would be of interest to evaluate the effects of the
nonlinearities on the selection process. On the other hand,
the method should be extended to multipoint estimation.
A solution could consist in computing the metric from a
weighted sum of Fisher information matrices derived for
various conditions (both operating and health). Another
concern is that the current methodology does not take into
account preferential directions for some faults (e.g., the
efficiencies are not expected to improve over time). This
might impact the sensor selection and should hence be
integrated within the figure of merit.

The present contribution is dedicated to the selection
of the optimal sensor configuration for a given set of
health parameters. Variations of this problem could make up
another interesting field of research. A first variant consists in
the selection of the best sensors to add to an existing set (for
instance imposed by control system requirements). A second
one is the selection of the subset of the most observable
health parameters given a sensor configuration in order to
have a square problem (m = n). This problem has already
been investigated within the scope of thrust estimation in
[22]. The reduction is however carried out in a transformed
space, so that the health parameters become actually tuners
which turn out to be of little interest for diagnostics
purpose.

With a redefined metric, problems such as the minimi-
sation of the number of sensors that allow a satisfactory
estimation of a given set of parameters could be investigated.
A valuable complementary study could consist in the assess-
ment of the modification in the observability properties of
the system in case a sensor is removed either to simplify the
configuration or because it is faulty.

Finally, the search for the optimal sensor configuration
is achieved here by means of a brute force technique.
The primary focus of the present paper is indeed the
definition of relevant metrics that describe the problem
under consideration. An optimisation algorithm fitted to the
combinatorial nature of the problem could supersede the
brute force technique which rapidly turns prohibitive as far
as computational burden is concerned. In this framework,
multiobjective optimisation could be considered. This would
leave the designer to select the optimal configuration by
trading off the metrics a posteriori rather than a priori
through the definition of an aggregated figure of merit.
Additional features such as cost and reliability of the sensors

should be taken into account in the definition of the metric
as they are important factors from an industrial standpoint.

5. CONCLUSION

In this contribution, the problem of optimal selection of
the sensor configuration for diagnostics has been revisited
from the viewpoint of information theory. From sound
mathematical arguments, the Fisher information matrix has
appeared to be a relevant quantity for the problem of sensor
selection. A figure of merit addressing various issues such as
sensor noise, negative redundancy, or orthogonality has been
defined based on the Fisher information matrix.

The selection of the optimal sensor configuration with
respect to the defined metric has been performed by a naive
brute force technique. The enhancement brought by the use
of an optimal instrumentation has been underlined with the
estimation of a series of simulated but still realistic fault cases
that may occur on a contemporary turbofan engine.

NOMENCLATURE

·̂ Estimated value
·̃ Scaled value
A8IMP Nozzle exit area (baseline value: 1.4147 m2)
bl Baseline conditions
FIM Fisher information matrix
hpc High-pressure compressor
hpt High-pressure turbine
lpc Low-pressure compressor
lpt Low-pressure turbine
m Number of gas path measurements
n Number of health parameters
N Rotational speed
Pi Total pressure at station i
SEi Efficiency scaler at station i (baseline value: 1.0)
SWiR Flow capacity scaler at station i (baseline value:

1.0)
Ti Total temperature at station i
u Operating point parameters
w Health parameters
y Observed measurements
ε Measurement noise vector
σ Singular value
N (m, C) A Gaussian probability distribution with mean

m and covariance matrix C.
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