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We investigate the transport properties of cold bosonic atoms
in a triple-well potential that consists of two large outer wells,
which act as microscopic source and drain reservoirs, and a
small inner well, which represents a quantum-dot-like scat-
tering region. Bias and gate “voltages” are introduced in
order, respectively, to tilt the triple-well configuration and
to shift the energetic level of the inner well with respect to
the outer ones. By means of exact diagonalization consider-
ing a total number of 6 atoms in the triple-well potential, we
find diamond-like structures for the occurrence of single-atom
transport in the parameter space spanned by the bias and
gate voltages, in close analogy with the Coulomb blockade in
electronic quantum dots.

Motivation

Interaction blockade experiments in double-well superlattices
created by two optical lattices with the wavelengths
λ1 = 1530 nm and λ2 = 0.5λ1 = 765 nm
S. Fölling et al., Nature 448, 1029 (2007)

P. Cheinet et al., PRL 101, 090404 (2008)

Triple-well lattice

−→ add a third lattice with wavelength λ3 = 0.5λ2

Effective potential (for k ≡ 4π/λ1):

V (x) = V0[− cos(kx) + cos(2kx) − cos(4kx)]

−Vg cos(kx) − Vb sin(kx)

Vb = Vg = 0
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Vb tilts the triple-well potentials: −→ “bias voltage”
Vg pulls down the central well: −→ “gate voltage”

−→ analogy with Coulomb blockade for electrons:

• load the lattice at given gate voltage Vg and vanishing bias
with a well-defined number of particles per triple-well site,

• ramp up the bias voltage until a given final value Vb,

•measure the populations in the left, central, and right wells.

Specifically we consider

• 87Rb atoms

•main periodicity 2π/k = λ2 = 765 nm

•main lattice strength V0 = 20~
2k2/m

• effective 1D interaction strength g = 4~
2k/m

Ground-state populations

Exact numerical diagonalization (based on the Lanczos algo-
rithm) of the many-body Hamiltonian

Ĥ =
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• assuming 6 atoms per triple-well site and

• neglecting hopping between adjacent triple-well sites
(→ periodic boundary conditions in x: −π ≤ kx ≤ π).
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Single-atom transport

• prepare the lattice with 6 atoms per triple-well site,

•make the time-dependent ramping Vb(t) = st,

• decompose the time-dependent many-body wavefunction
within the instantaneous eigenbasis.

Numerical calculation for Vg = 0.25V0 and s = 0.002~
3k4/m2:
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Landau-Zener probability for nonadiabatic transitions at
avoided crossings:

P = exp[−2π∆E2/(~s)]

−→ choose the ramping speed such that it is

• too fast for the unwanted anticrossings
NL:NC:NR ↔ NL ± 1:NC:NR ∓ 1
with energy scale δE ∼ 0.001~

2k2/m for NC = 0,

• but slow enough for the “good” anticrossings
NL:NC:NR ↔ NL ± 1:NC ∓ 1:NR or NL:NC ± 1:NR ∓ 1
with energy scale ∆E ∼ 10 × δE:

δE2 ≪ ~s < ∆E2

Atomic “Coulomb” diamonds

Plotted are the bias voltages Vb at which a single-atom trans-
fer takes place between adjacent wells. The size of the circles
marks the extent of the corresponding avoided crossings.
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Bose-Hubbard model

Consider a simplified Bose-Hubbard model for the system
with the on-site energies EL/R = E0 ± Vb and EC = E1 − Vb,

with the local interaction energies E
(L/R/C)
U = EU ≃ 0.27V0,

and with negligible tunnel coupling between adjacent wells.

Local particle-addition energies:
µ+
L/R = E0 ± Vb +NL/REU and µ+

C = E1 − Vb +NCEU

−→ avoided crossings of NL:NC:NR ↔ NL ± 1:NC ∓ 1:NR:
Vb = E1 − E0 − Vg + (NC −NL ∓ 1)EU

−→ avoided crossings of NL:NC:NR ↔ NL:NC ± 1:NR ∓ 1:
−Vb = E1 − E0 − Vg + (NC −NR ± 1)EU
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Main differences to Coulomb diamonds in quantum dots:

• open ends for empty dot and empty reservoirs

• asymmetry between balanced (NL = NR) and unbalanced
(NL = NR ± 1) populations in the reservoirs

−→ microscopic nature of the reservoirs

Perspectives

→ extract local interaction energy EU from the distance be-
tween the diamond structures

→ single-atom pumping (3:0:3 → 2:0:4) following a closed
curve in Vg − Vb space

→ atomic transistors
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