Transport and interaction blockade of cold bosonic atoms in a triple-well potential

Peter Schlagheck*, Francesc Malet, Jonas C. Cremon, and Stephanie M. Reimann

Division of Mathematical Physics, LTH, Lund University, Sweden
Université de Liège
*Département de Physique, Université de Liège, Belgium

We investigate the transport properties of cold bosonic atoms in a triple-well potential that consists of two large outer wells, which act as microscopic source and drain reservoirs, and a small inner well, which represents a quantum-dot-like scattering region. Bias and gate "voltages" are introduced in order, respectively, to tilt the triple-well configuration and to shift the energetic level of the inner well with respect to the outer ones. By means of exact diagonalization considering a total number of 6 atoms in the triple-well potential, we find diamond-like structures for the occurrence of single-atom transport in the parameter space spanned by the bias and gate voltages, in close analogy with the Coulomb blockade in electronic quantum dots

Motivation

Interaction blockade experiments in double-well superlattices created by two optical lattices with the wavelengths
$\lambda_{1}=1530 \mathrm{~nm}$ and $\lambda_{2}=0.5 \lambda_{1}=765 \mathrm{~nm}$
S. Fölling et al., Nature 448, 1029 (2007)
P. Cheinet et al., PRL 101, 090404 (2008)

Triple-well lattice

\longrightarrow add a third lattice with wavelength $\lambda_{3}=0.5 \lambda_{2}$ Effective potential (for $k \equiv 4 \pi / \lambda_{1}$)

$$
\begin{aligned}
& V(x)= V_{0}[-\cos (k x)+\cos (2 k x)-\cos (4 k x)] \\
&-V_{g} \cos (k x)-V_{b} \sin (k x) \\
& V_{b}=V_{g}=0 \quad \text { finite } V_{b} \text { and } V_{g}
\end{aligned}
$$

A MWMWMWH N MW MW MW M

V_{b} tilts the triple-well potentials: \longrightarrow "bias voltage"
V_{g} pulls down the central well: \longrightarrow "gate voltage"
\longrightarrow analogy with Coulomb blockade for electrons:

- load the lattice at given gate voltage V_{g} and vanishing bias with a well-defined number of particles per triple-well site,
- ramp up the bias voltage until a given final value V_{b},
- measure the populations in the left, central, and right wells.

Specifically we consider

- ${ }^{87} \mathrm{Rb}$ atoms
- main periodicity $2 \pi / k=\lambda_{2}=765 \mathrm{~nm}$
- main lattice strength $V_{0}=20 \hbar^{2} k^{2} / m$
- effective 1D interaction strength $g=4 \hbar^{2} k / m$

Ground-state populations

Exact numerical diagonalization (based on the Lanczos algorithm) of the many-body Hamiltonian

$$
\begin{aligned}
\hat{H}= & \int d x \hat{\psi}^{\dagger}(x)\left(-\frac{\hbar^{2}}{2 m} \frac{\partial^{2}}{\partial x^{2}}+V(x)\right) \hat{\psi}(x) \\
& +\frac{g}{2} \int d x \hat{\psi}^{\dagger}(x) \hat{\psi}^{\dagger}(x) \hat{\psi}(x) \hat{\psi}(x)
\end{aligned}
$$

- assuming 6 atoms per triple-well site and
- neglecting hopping between adjacent triple-well sites (\rightarrow periodic boundary conditions in $x:-\pi \leq k x \leq \pi$).

Single-atom transport

- prepare the lattice with 6 atoms per triple-well site,
- make the time-dependent ramping $V_{b}(t)=s t$,
- decompose the time-dependent many-body wavefunction within the instantaneous eigenbasis.

Numerical calculation for $V_{g}=0.25 V_{0}$ and $s=0.002 \hbar^{3} k^{4} / \mathrm{m}^{2}$.

Landau-Zener probability for nonadiabatic transitions at avoided crossings:

$$
P=\exp \left[-2 \pi \Delta E^{2} /(\hbar s)\right]
$$

\longrightarrow choose the ramping speed such that it is

- too fast for the unwanted anticrossings
$N_{L}: N_{C}: N_{R} \leftrightarrow N_{L} \pm 1: N_{C}: N_{R} \mp 1$
with energy scale $\delta E \sim 0.001 \hbar^{2} k^{2} / m$ for $N_{C}=0$,
- but slow enough for the "good" anticrossings
$N_{L}: N_{C}: N_{R} \leftrightarrow N_{L} \pm 1: N_{C} \mp 1: N_{R}$ or $N_{L}: N_{C} \pm 1: N_{R} \mp 1$ with energy scale $\Delta E \sim 10 \times \delta E$

$$
\delta E^{2} \ll \hbar s<\Delta E^{2}
$$

Atomic "Coulomb" diamonds

Plotted are the bias voltages V_{b} at which a single-atom transfer takes place between adjacent wells. The size of the circles marks the extent of the corresponding avoided crossings

Bose-Hubbard model

Consider a simplified Bose-Hubbard model for the system with the on-site energies $E_{L / R}=E_{0} \pm V_{b}$ and $E_{C}=E_{1}-V_{b}$ with the local interaction energies $E_{U}^{(L / R / C)}=E_{U} \simeq 0.27 V_{0}$, and with negligible tunnel coupling between adjacent wells.

Local particle-addition energies:
$\mu_{L / R}^{+}=E_{0} \pm V_{b}+N_{L / R} E_{U}$ and $\mu_{C}^{+}=E_{1}-V_{b}+N_{C} E_{U}$
\longrightarrow avoided crossings of $N_{L}: N_{C}: N_{R} \leftrightarrow N_{L} \pm 1: N_{C} \mp 1: N_{R}$ $V_{b}=E_{1}-E_{0}-V_{g}+\left(N_{C}-N_{L} \mp 1\right) E_{U}$ \longrightarrow avoided crossings of $N_{L}: N_{C}: N_{R} \leftrightarrow N_{L}: N_{C} \pm 1: N_{R} \mp 1$ $-V_{b}=E_{1}-E_{0}-V_{g}+\left(N_{C}-N_{R} \pm 1\right) E_{U}$

Main differences to Coulomb diamonds in quantum dots:

- open ends for empty dot and empty reservoirs
- asymmetry between balanced $\left(N_{L}=N_{R}\right)$ and unbalanced ($N_{L}=N_{R} \pm 1$) populations in the reservoirs

$$
\longrightarrow \text { microscopic nature of the reservoirs }
$$

Perspectives

\rightarrow extract local interaction energy E_{U} from the distance between the diamond structures
\rightarrow single-atom pumping (3:0:3 \rightarrow 2:0:4) following a closed curve in $V_{g}-V_{b}$ space
\rightarrow atomic transistors
P. Schlagheck, F. Malet, J. C. Cremon, and S. M. Reimann, New J. Phys., in press (arXiv:0912.0484)

