

Transport and interaction blockade of cold bosonic atoms in a triple-well potential

Peter Schlagheck^{*}, Francesc Malet, Jonas C. Cremon, and Stephanie M. Reimann

Division of Mathematical Physics, LTH, Lund University, Sweden *Département de Physique, Université de Liège, Belgium

We investigate the transport properties of cold bosonic atoms in a triple-well potential that consists of two large outer wells, which act as microscopic source and drain reservoirs, and a small inner well, which represents a quantum-dot-like scattering region. Bias and gate "voltages" are introduced in order, respectively, to tilt the triple-well configuration and to shift the energetic level of the inner well with respect to the outer ones. By means of exact diagonalization considering a total number of 6 atoms in the triple-well potential, we find diamond-like structures for the occurrence of single-atom transport in the parameter space spanned by the bias and gate voltages, in close analogy with the Coulomb blockade in electronic quantum dots.

Ground-state populations

Exact numerical diagonalization (based on the Lanczos algorithm) of the many-body Hamiltonian

$$\hat{H} = \int dx \hat{\psi}^{\dagger}(x) \left(-\frac{\hbar^2}{2m} \frac{\partial^2}{\partial x^2} + V(x) \right) \hat{\psi}(x)$$

Atomic "Coulomb" diamonds

Plotted are the bias voltages V_b at which a single-atom transfer takes place between adjacent wells. The size of the circles marks the extent of the corresponding avoided crossings.

Motivation

Interaction blockade experiments in double-well superlattices created by two optical lattices with the wavelengths $\lambda_1 = 1530 \text{ nm}$ and $\lambda_2 = 0.5\lambda_1 = 765 \text{ nm}$ S. Fölling et al., Nature 448, 1029 (2007) P. Cheinet et al., PRL 101, 090404 (2008) $+\frac{s}{2}\int dx\psi'(x)\psi'(x)\psi(x)\psi(x)$

• assuming 6 atoms per triple-well site and

• neglecting hopping between adjacent triple-well sites (\rightarrow periodic boundary conditions in $x: -\pi \leq kx \leq \pi$).

Single-atom transport

• prepare the lattice with 6 atoms per triple-well site,

Bose-Hubbard model

Consider a simplified Bose-Hubbard model for the system with the on-site energies $E_{L/R} = E_0 \pm V_b$ and $E_C = E_1 - V_b$, with the local interaction energies $E_U^{(L/R/C)} = E_U \simeq 0.27V_0$, and with negligible tunnel coupling between adjacent wells.

Local particle-addition energies: $\mu_{L/R}^+ = E_0 \pm V_b + N_{L/R}E_U$ and $\mu_C^+ = E_1 - V_b + N_CE_U$

 $\longrightarrow \text{avoided crossings of } N_L: N_C: N_R \leftrightarrow N_L \pm 1: N_C \mp 1: N_R: \\ V_b = E_1 - E_0 - V_g + (N_C - N_L \mp 1) E_U \\ \longrightarrow \text{avoided crossings of } N_L: N_C: N_R \leftrightarrow N_L: N_C \pm 1: N_R \mp 1: \\ -V_b = E_1 - E_0 - V_g + (N_C - N_R \pm 1) E_U$

Triple-well lattice

 \rightarrow add a third lattice with wavelength $\lambda_3 = 0.5\lambda_2$ Effective potential (for $k \equiv 4\pi/\lambda_1$):

 $V(x) = V_0[-\cos(kx) + \cos(2kx) - \cos(4kx)]$ $-V_g\cos(kx) - V_b\sin(kx)$

 $V_b = V_g = 0 \qquad \text{finite } V_b \text{ and } V_g$

 V_b tilts the triple-well potentials: \longrightarrow "bias voltage" V_g pulls down the central well: \longrightarrow "gate voltage"

- \longrightarrow analogy with Coulomb blockade for electrons:
- load the lattice at given gate voltage V_g and vanishing bias with a well-defined number of particles per triple-well site,
- ramp up the bias voltage until a given final value V_b ,

make the time-dependent ramping V_b(t) = st,
decompose the time-dependent many-body wavefunction within the instantaneous eigenbasis.

Numerical calculation for $V_g = 0.25V_0$ and $s = 0.002\hbar^3 k^4/m^2$:

Landau-Zener probability for nonadiabatic transitions at avoided crossings:

 $P = \exp[-2\pi\Delta E^2/(\hbar s)]$

Main differences to Coulomb diamonds in quantum dots:
open ends for empty dot and empty reservoirs
asymmetry between balanced (N_L = N_R) and unbalanced (N_L = N_R ± 1) populations in the reservoirs
→ microscopic nature of the reservoirs

Perspectives

• measure the populations in the left, central, and right wells.

Specifically we consider

●⁸⁷Rb atoms

• main periodicity $2\pi/k = \lambda_2 = 765$ nm • main lattice strength $V_0 = 20\hbar^2 k^2/m$

• effective 1D interaction strength $g = 4\hbar^2 k/m$

→ choose the ramping speed such that it is
too fast for the unwanted anticrossings
N_L:N_C:N_R ↔ N_L ± 1:N_C:N_R ∓ 1
with energy scale δE ~ 0.001ħ²k²/m for N_C = 0,

but slow enough for the "good" anticrossings

 $N_L: N_C: N_R \leftrightarrow N_L \pm 1: N_C \mp 1: N_R$ or $N_L: N_C \pm 1: N_R \mp 1$ with energy scale $\Delta E \sim 10 \times \delta E$:

 $\delta E^2 \ll \hbar s < \Delta E^2$

 \rightarrow extract local interaction energy E_U from the distance between the diamond structures

 \rightarrow single-atom pumping (3:0:3 \rightarrow 2:0:4) following a closed curve in $V_g - V_b$ space

 \rightarrow atomic transistors

P. Schlagheck, F. Malet, J. C. Cremon, and S. M. Reimann, New J. Phys., in press (arXiv:0912.0484)