Weak localization with interacting Bose-Einstein condensates

T. Hartmann ${ }^{1}$, M. Hartung ${ }^{1}$, J. Michl ${ }^{1}$, C. Petitjean ${ }^{2}$, J.-D. Urbina ${ }^{1}$, T. Wellens ${ }^{3}$, C. A. Müller ${ }^{4}$, K. Richter ${ }^{1}$, and P. Schlagheck ${ }^{5}$ ${ }^{1}$ Institut für Theoretische Physik, Universität Regensburg, Germany
${ }^{2}$ Laboratoire de Physique, Ecole Normale Supérieure de Lyon, France
${ }^{4}$ Centre for Quantum Technologies, National University of Singapore, Singapore ${ }^{5}$ Département de Physique, Université de Liège, Belgium

2D scattering with atom lasers

Possible experimental realization:
\rightarrow guided atom laser
W. Guerin et al., PRL 97, 200402 (2006)
G. L. Gattobigio et al., PRL 107, 254104 (2011)
\rightarrow 1D optical lattice perpendicular to the waveguide,
in order to confine the matter-wave beam to 2 dimensions
$\rightarrow 2 \mathrm{D}$ disorder potential (optical speckle field) or
$\rightarrow 2$ a atom-optical billiard geometry
V. Milner et al., PRL 86, 1514 (2001)
N. Friedman et al., PRL 86, 1518 (2001)
\rightarrow artificial gauge field, to break time-reversal invariance Y.-J. Lin et al., PRL 102, 130401 (2009)

Theoretical description:
$\rightarrow 2$ D Gross-Pitaevskii equation with a source term that models the outcoupling from a BEC reservoir $(\mathbf{r} \equiv(x, y))$
$\begin{aligned} i \hbar \frac{\partial}{\partial t} \Psi(\mathbf{r}, t)= & {\left[-\frac{1}{2 m}\left(\frac{\hbar}{i} \nabla-\mathbf{A}(\mathbf{r})\right)^{2}+V(\mathbf{r})+g \frac{\hbar^{2}}{2 m}|\Psi(\mathbf{r}, t)|^{2}\right] \Psi(\mathbf{r}, t) } \\ & +S_{0 \chi(y) \delta\left(x-x_{0}\right) \exp (-i \mu t / \hbar)}\end{aligned}$
$A(\mathbf{r})=\frac{1}{2} B \mathbf{e}_{z} \times \mathbf{r}$: artificial gauge vector potential $g=4 \sqrt{2 \pi} a_{s} / a_{\perp}(x) \equiv g(x)$: effective 2D interaction strength

\rightarrow numerical integration of the Gross-Pitaevskii equation in the presence of an adiabatic ramping of the source amplitude S_{0}
\rightarrow apply absorbing boundary conditions at the longitudinal boundaries of the spatial grid: T. Paul et al., PRA 76, 063605 (2007)

Scattering in disorder potentials

\rightarrow injection of a homogeneous plane-wave beam from the source (periodic boundary conditions along the transverse boundaries) \rightarrow disorder potential with short-range (Gaussian) spatial correlation (similar results were obtained for speckle disorder)

Angle-resolved backscattered current:

\longrightarrow permanently time-dependent (turbulent) scattering for $g \gtrsim 0.05$
Comparison of the peak height at $\theta=0$:

M. Hartung, T. Wellens, C. A. Müller, K. Richter, and P. Schlagheck PRL 101, 020603 (2008)

Transport through chaotic billiards

\rightarrow injection within one transverse channel of the left lead \rightarrow homogeneous gauge field B perpendicular to the billiard \rightarrow energy and configuration average (for several positions of the obstacle)

Semiclassical retro-reflection probability to incident channel

$$
r_{i i}=\frac{1}{N}\left[1+\frac{N-1}{N} \frac{\left(1+B^{2} / B_{0}^{2}\right)}{\left(1+B^{2} / B_{0}^{2}\right)^{2}+\left(g j^{\mathrm{i}} \tau_{D}\right)^{2}}\right]
$$

$N=$ total number of open channels $(=10)$
$B_{0}=$ characteristic gauge field scale for weak localization
(obtained from directed areas accumulated along trajectories)
$j^{i}=$ incident current, $\tau_{D}=$ mean classical survival time

give rise to signature for weak antilocalization
T. Hartmann, J. Michl, C. Petitjean, T. Wellens, J.-D. Urbina, K. Richter, and P. Schlagheck, Ann. Phys. 327, 1998 (2012)

Coherent backscattering

\rightarrow constructive interference between reflected paths and their timereversed counterparts in disordered systems or chaotic confinements \rightarrow enhanced retro-reflection probability
\rightarrow reduced transmission probability due to loop contributions K. Richter and M. Sieber, PRL 89, 206801 (2002)

\rightarrow dephasing in the presence of a perpendicular magnetic field
\rightarrow precursor to strong Anderson localization
D. Vollhardt and P. Wölfle, PRL 45, 842 (1980); PRB 22, 4666 (1980)

Nonlinear diagrammatic theory
T. Wellens and B. Grémaud, PRL 100, 033902 (2008)

Basic assumption: stationary scattering state $\psi(\mathbf{r}, t)=\psi(\mathbf{r}) \exp (-i \mu t / \hbar)$ satisfying the nonlinear Lippmann-Schwinger equation
$\psi(\mathbf{r})=S_{0} \int G\left[\mathbf{r},\left(x_{0}, y^{\prime}\right), \mu\right] \chi\left(y^{\prime}\right) d y^{\prime}+\int d^{2} r^{\prime} G\left(\mathbf{r}, \mathbf{r}^{\prime}, \mu\right) g \frac{\hbar^{2}}{2 m}\left|\psi\left(\mathbf{r}^{\prime}\right)\right|^{2} \psi\left(\mathbf{r}^{\prime}\right)$ with $G\left(\mathbf{r}, \mathbf{r}^{\prime}, \mu\right)=$ Green function of the linear scattering problem

Diagrammatic representation:

Regime of weak localization ($k \times \ell_{\text {transport }} \gg 1$):
\rightarrow main contributions to average retro-reflection probability
$\xrightarrow{\text { from ladder }}$ (diffuson) and crossed (Cooperon) diagrams

Ladder contributions are accounted for by the modified Green function

\longrightarrow effective background potential $\left.V_{\text {eff }}(\mathbf{r})=\langle V(\mathbf{r})\rangle+\left.g(\mathbf{r}) \frac{\hbar^{2}}{m}\langle | \psi(\mathbf{r})\right|^{2}\right\rangle$ \longrightarrow no net modification of mean densities and currents on the ladder level

Crossed contributions

Explicit summations: Loop contribution for (a):

\longrightarrow finite net modification of the retro-reflection probability: dephasing of weak localization due to the presence of interaction
current conservation is restored taking into account nonlinear chains within the loop contributions

