Weak localization with interacting Bose-Einstein condensates
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2D scattering with atom lasers
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1D optical lattice

Possible experimental realization:

— guided atom laser
W. Guerin et al., PRL 97, 200402 (2006)
G. L. Gattobigio et al., PRL 107, 254104 (2011)

— 1D optical lattice perpendicular to the waveguide,
in order to confine the matter-wave beam to 2 dimensions

— 2D disorder potential (optical speckle field) or

— 2D atom-optical billiard geometry
V. Milner et al., PRL 86, 1514 (2001)
N. Friedman et al., PRL 86, 1518 (2001)

— artificial gauge field, to break time-reversal invariance

Y.-J. Lin et al., PRL 102, 130401 (2009)

Theoretical description:

— 2D Gross-Pitaevskii equation with a source term
that models the outcoupling from a BEC reservoir (r = (x,y))
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Ar) = LBe, x r: artificial gauge vector potential

g =4v2mag/a | (x) = g(x): effective 2D interaction strength

— numerical integration of the Gross-Pitaevskii equation
in the presence of an adiabatic ramping of the source amplitude .Sy

— apply absorbing boundary conditions at the longitudinal boundaries of
the spatial grid: T. Paul et al., PRA 76, 063605 (2007)

Coherent backscattering
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— constructive interference between reflected paths and their time-
reversed counterparts in disordered systems or chaotic confinements

— enhanced retro-reflection probability

— reduced transmission probability due to loop contributions
K. Richter and M. Sieber, PRL 89, 206801 (2002)
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— dephasing in the presence of a perpendicular magnetic field

—s precursor to strong Anderson localization

D. Vollhardt and P. Wolfle, PRL 45, 842 (1980); PRB 22, 4666 (1980)

Scattering in disorder potentials

—s injection of a homogeneous plane-wave beam from the source

(periodic boundary conditions along the transverse boundaries)

— disorder potential with short-range (Gaussian) spatial correlation

(similar results were obtained for speckle disorder)

Angle-resolved backscattered current:
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— permanently time-dependent (turbulent) scattering for g = 0.05

Comparison of the peak height at 6 = 0:
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— analytical prediction
® numerical result
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nonlinearity ¢

M. Hartung, T. Wellens, C. A. Miuller, K. Richter, and P. Schlagheck,
PRL 101, 020603 (2008)

Nonlinear diagrammatic theory
T. Wellens and B. Grémaud, PRL 100, 033902 (2008)

Basic assumption: stationary scattering state ¥ (r,t) = ¢(r) exp(—iut/h)
satisfying the nonlinear Lippmann-Schwinger equation
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with G(r,r’, 1) = Green function of the linear scattering problem

Diagrammatic representation:

Regime of weak localization (k X Ctyansport > 1):

— main contributions to average retro-reflection probability
from ladder (diffuson) and crossed (Cooperon) diagrams
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Ladder contributions are accounted for by the modified Green function
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— effective background potential Vig(r) = (V(r)) + g(r)%Q<|¢(I')\2>

—— no net modification of mean densities and currents on the ladder level
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Transport through chaotic billiards

— Injection within one transverse channel of the left lead
— homogeneous gauge field B perpendicular to the billiard
— energy and configuration average (for several positions of the obstacle)

Semiclassical retro-reflection probability to incident channel:
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N = total number of open channels (= 10)
By = characteristic gauge field scale for weak localization

(obtained from directed areas accumulated along trajectories)
j' = incident current, 7p = mean classical survival time

numerical data semiclassical prediction
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— deviations due to non-universal
short-path contributions
(self-retraced trajectories)

—— non-universal contributions of short reflected paths

oive rise to signature for weak antilocalization

T. Hartmann, J. Michl, C. Petitjean, T. Wellens, J.-D. Urbina, K. Richter.
and P. Schlagheck, Ann. Phys. 327, 1998 (2012)

Crossed contributions

Total nonlinear crossed contributions to the retro-reflection probability:
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defining the “nonlinear crossed densities” through
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Loop contribution for (a):

Explicit summations:

(a)

— finite net modification of the retro-reflection probability:

dephasing of weak localization due to the presence of interaction

— current conservation is restored taking into account nonlinear chains

within the loop contributions



