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2D scattering with atom lasers

BEC atom laser

waveguide

1D optical lattice

scattering potential

Possible experimental realization:

→ guided atom laser
W. Guerin et al., PRL 97, 200402 (2006)
G. L. Gattobigio et al., PRL 107, 254104 (2011)

→ 1D optical lattice perpendicular to the waveguide,
in order to confine the matter-wave beam to 2 dimensions

→ 2D disorder potential (optical speckle field) or

→ 2D atom-optical billiard geometry
V. Milner et al., PRL 86, 1514 (2001)
N. Friedman et al., PRL 86, 1518 (2001)

→ artificial gauge field, to break time-reversal invariance
Y.-J. Lin et al., PRL 102, 130401 (2009)

Theoretical description:

→ 2D Gross-Pitaevskii equation with a source term
that models the outcoupling from a BEC reservoir (r ≡ (x, y))
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A(r) = 1
2Bez × r: artificial gauge vector potential

g = 4
√

2πas/a⊥(x) ≡ g(x): effective 2D interaction strength

BEC

→ numerical integration of the Gross-Pitaevskii equation
in the presence of an adiabatic ramping of the source amplitude S0

→ apply absorbing boundary conditions at the longitudinal boundaries of
the spatial grid: T. Paul et al., PRA 76, 063605 (2007)

Scattering in disorder potentials
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→ injection of a homogeneous plane-wave beam from the source
(periodic boundary conditions along the transverse boundaries)

→ disorder potential with short-range (Gaussian) spatial correlation
(similar results were obtained for speckle disorder)

Angle-resolved backscattered current:
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−→ permanently time-dependent (turbulent) scattering for g & 0.05

Comparison of the peak height at θ = 0:
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M. Hartung, T. Wellens, C. A. Müller, K. Richter, and P. Schlagheck,
PRL 101, 020603 (2008)

Transport through chaotic billiards

source

→ injection within one transverse channel of the left lead
→ homogeneous gauge field B perpendicular to the billiard
→ energy and configuration average (for several positions of the obstacle)

Semiclassical retro-reflection probability to incident channel:
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N = total number of open channels (= 10)
B0 = characteristic gauge field scale for weak localization
B0 = (obtained from directed areas accumulated along trajectories)
ji = incident current, τD = mean classical survival time
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→ deviations due to non-universal
→ short-path contributions
→ (self-retraced trajectories)

−→ non-universal contributions of short reflected paths
give rise to signature for weak antilocalization

T. Hartmann, J. Michl, C. Petitjean, T. Wellens, J.-D. Urbina, K. Richter,
and P. Schlagheck, Ann. Phys. 327, 1998 (2012)

Coherent backscattering
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→ constructive interference between reflected paths and their time-
reversed counterparts in disordered systems or chaotic confinements

→ enhanced retro-reflection probability

→ reduced transmission probability due to loop contributions
K. Richter and M. Sieber, PRL 89, 206801 (2002)

→ dephasing in the presence of a perpendicular magnetic field

→ precursor to strong Anderson localization
D. Vollhardt and P. Wölfle, PRL 45, 842 (1980); PRB 22, 4666 (1980)

Nonlinear diagrammatic theory
T. Wellens and B. Grémaud, PRL 100, 033902 (2008)

Basic assumption: stationary scattering state ψ(r, t) = ψ(r) exp(−iµt/~)
satisfying the nonlinear Lippmann-Schwinger equation

ψ(r) = S0

∫

G[r, (x0, y
′), µ]χ(y′)dy′+

∫

d2r′G(r, r′, µ)g
~

2

2m
|ψ(r′)|2ψ(r′)

with G(r, r′, µ) = Green function of the linear scattering problem

Diagrammatic representation:

ψ

=
Gχ

+

ψ

ψ
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Regime of weak localization (k × ℓtransport ≫ 1):

→ main contributions to average retro-reflection probability
from ladder (diffuson) and crossed (Cooperon) diagrams
from (diffuson) and

Ladder contributions are accounted for by the modified Green function

= + 2

−→ effective background potential Veff(r) = 〈V (r)〉 + g(r)~
2

m〈|ψ(r)|2〉
−→ no net modification of mean densities and currents on the ladder level

Crossed contributions

Total nonlinear crossed contributions to the retro-reflection probability:

= +

(a)

+

(b)

+

(c)

defining the “nonlinear crossed densities” through

= + 2 ; = + 2

Explicit summations: Loop contribution for (a):

−→ finite net modification of the retro-reflection probability:
dephasing of weak localization due to the presence of interaction

−→ current conservation is restored taking into account nonlinear chains
within the loop contributions


