

Weak localization with interacting Bose-Einstein condensates

T. Hartmann¹, M. Hartung¹, J. Michl¹, C. Petitjean², J.-D. Urbina¹, T. Wellens³, C. A. Müller⁴, K. Richter¹, and P. Schlagheck⁵

¹Institut für Theoretische Physik, Universität Regensburg, Germany

²Laboratoire de Physique, Ecole Normale Supérieure de Lyon, France

³Institut für Physik, Albert-Ludwigs-Universität Freiburg, Germany

⁴Centre for Quantum Technologies, National University of Singapore, Singapore

⁵Département de Physique, Université de Liège, Belgium

2D scattering with atom lasers

Possible experimental realization:

- guided atom laser
W. Guerin *et al.*, PRL 97, 200402 (2006)
- 1D optical lattice perpendicular to the waveguide, in order to confine the matter-wave beam to 2 dimensions
- 2D disorder potential (optical speckle field) or
- 2D atom-optical billiard geometry
V. Milner *et al.*, PRL 86, 1514 (2001)
- artificial gauge field, to break time-reversal invariance
N. Friedman *et al.*, PRL 86, 1518 (2001)
- artificial gauge field, to break time-reversal invariance
Y.-J. Lin *et al.*, PRL 102, 130401 (2009)

Theoretical description:

- 2D Gross-Pitaevskii equation with a source term that models the outcoupling from a BEC reservoir ($\mathbf{r} \equiv (x, y)$)
- $i\hbar \frac{\partial \Psi(\mathbf{r}, t)}{\partial t} = \left[-\frac{1}{2m} \left(\frac{\hbar}{i} \nabla - \mathbf{A}(\mathbf{r}) \right)^2 + V(\mathbf{r}) + g \frac{\hbar^2}{2m} |\Psi(\mathbf{r}, t)|^2 \right] \Psi(\mathbf{r}, t) + S_0 \chi(y) \delta(x - x_0) \exp(-i\mu t/\hbar)$
- $A(\mathbf{r}) = \frac{1}{2} B \mathbf{e}_z \times \mathbf{r}$: artificial gauge vector potential
- $g = 4\sqrt{2\pi} a_s / a_{\perp}(x) \equiv g(x)$: effective 2D interaction strength
-
- numerical integration of the Gross-Pitaevskii equation in the presence of an adiabatic ramping of the source amplitude S_0
- apply absorbing boundary conditions at the longitudinal boundaries of the spatial grid: T. Paul *et al.*, PRA 76, 063605 (2007)

Scattering in disorder potentials

- injection of a homogeneous plane-wave beam from the source (periodic boundary conditions along the transverse boundaries)
- disorder potential with short-range (Gaussian) spatial correlation (similar results were obtained for speckle disorder)

Angle-resolved backscattered current:

→ permanently time-dependent (turbulent) scattering for $g \gtrsim 0.05$

Comparison of the peak height at $\theta = 0$:

M. Hartung, T. Wellens, C. A. Müller, K. Richter, and P. Schlagheck, PRL 101, 020603 (2008)

Transport through chaotic billiards

- injection within one transverse channel of the left lead
- homogeneous gauge field B perpendicular to the billiard
- energy and configuration average (for several positions of the obstacle)

Semiclassical retro-reflection probability to incident channel:

$$r_{ii} = \frac{1}{N} \left[1 + \frac{N-1}{N} \frac{(1 + B^2/B_0^2)}{(1 + B^2/B_0^2)^2 + (gj^i \tau_D)^2} \right]$$

N = total number of open channels ($= 10$)

B_0 = characteristic gauge field scale for weak localization (obtained from directed areas accumulated along trajectories)

j^i = incident current, τ_D = mean classical survival time

- deviations due to non-universal short-path contributions (self-retraced trajectories)

- non-universal contributions of short reflected paths give rise to signature for weak antilocalization
- T. Hartmann, J. Michl, C. Petitjean, T. Wellens, J.-D. Urbina, K. Richter, and P. Schlagheck, Ann. Phys. 327, 1998 (2012)

Coherent backscattering

- constructive interference between reflected paths and their time-reversed counterparts in disordered systems or chaotic confinements
- enhanced retro-reflection probability
- reduced transmission probability due to loop contributions
K. Richter and M. Sieber, PRL 89, 206801 (2002)

- dephasing in the presence of a perpendicular magnetic field
- precursor to strong Anderson localization
D. Vollhardt and P. Wölfle, PRL 45, 842 (1980); PRB 22, 4666 (1980)

Nonlinear diagrammatic theory

T. Wellens and B. Grémaud, PRL 100, 033902 (2008)

Basic assumption: stationary scattering state $\psi(\mathbf{r}, t) = \psi(\mathbf{r}) \exp(-i\mu t/\hbar)$ satisfying the nonlinear Lippmann-Schwinger equation

$$\psi(\mathbf{r}) = S_0 \int G[\mathbf{r}, (x_0, y')] \mu \chi(y') dy' + \int d^2 r' G(\mathbf{r}, \mathbf{r}', \mu) g \frac{\hbar^2}{2m} |\psi(\mathbf{r}')|^2 \psi(\mathbf{r}')$$

with $G(\mathbf{r}, \mathbf{r}', \mu)$ = Green function of the linear scattering problem

Diagrammatic representation:

$$\overrightarrow{\psi} = \overrightarrow{\chi} G + \overrightarrow{\psi} \overrightarrow{\chi} G$$

Regime of weak localization ($k \times \ell_{\text{transport}} \gg 1$):

- main contributions to average retro-reflection probability from ladder (diffuson) and crossed (Cooperon) diagrams

Ladder contributions are accounted for by the modified Green function

$$\overrightarrow{\psi} = \overrightarrow{\psi} + 2 \overrightarrow{\psi} \overrightarrow{\chi} G$$

→ effective background potential $V_{\text{eff}}(\mathbf{r}) = \langle V(\mathbf{r}) \rangle + g(\mathbf{r}) \frac{\hbar^2}{m} \langle |\psi(\mathbf{r})|^2 \rangle$

→ no net modification of mean densities and currents on the ladder level

Crossed contributions

Total nonlinear crossed contributions to the retro-reflection probability:

$$\overrightarrow{\psi} = \overrightarrow{\psi} + \overrightarrow{\psi} \overrightarrow{\chi} G + \overrightarrow{\psi} G \overrightarrow{\chi} + \overrightarrow{\psi} G \overrightarrow{\psi}$$

defining the “nonlinear crossed densities” through

$$\overrightarrow{\psi} = \overrightarrow{\psi} + 2 \overrightarrow{\psi} \overrightarrow{\chi} G ; \overrightarrow{\psi} = \overrightarrow{\psi} + 2 \overrightarrow{\psi} G \overrightarrow{\chi}$$

Explicit summations:

Loop contribution for (a):

→ finite net modification of the retro-reflection probability: dephasing of weak localization due to the presence of interaction

→ current conservation is restored taking into account nonlinear chains within the loop contributions