Weak localization with interacting Bose-Einstein condensates

T. Hartmann¹, M. Hartung¹, J. Michl¹, C. Petitjean², J.-D. Urbina¹, T. Wellens³, C. A. Müller⁴, K. Richter¹, and P. Schlagheck⁵

¹Institut für Theoretische Physik, Universität Regensburg, Germany ³Institut für Physik, Albert-Ludwigs-Universität Freiburg, Germany

²Laboratoire de Physique, Ecole Normale Supérieure de Lyon, France ⁴Centre for Quantum Technologies, National University of Singapore, Singapore ⁵Département de Physique, Université de Liège, Belgium

1D optical lattice

Possible experimental realization:

- \rightarrow guided atom laser
- W. Guerin *et al.*, PRL 97, 200402 (2006) G. L. Gattobigio et al., PRL 107, 254104 (2011)
- \rightarrow 1D optical lattice perpendicular to the waveguide, in order to confine the matter-wave beam to 2 dimensions
- \rightarrow 2D disorder potential (optical speckle field) or
- $\rightarrow 2D$ atom-optical billiard geometry V. Milner *et al.*, PRL 86, 1514 (2001) N. Friedman *et al.*, PRL 86, 1518 (2001)
- \rightarrow artificial gauge field, to break time-reversal invariance
- Y.-J. Lin *et al.*, PRL 102, 130401 (2009)

Theoretical description:

 $\rightarrow 2D$ Gross-Pitaevskii equation with a source term that models the outcoupling from a BEC reservoir ($\mathbf{r} \equiv (x, y)$)

 $i\hbar\frac{\partial}{\partial t}\Psi(\mathbf{r},t) = \left[-\frac{1}{2m}\left(\frac{\hbar}{i}\nabla - \mathbf{A}(\mathbf{r})\right)^2 + V(\mathbf{r}) + g\frac{\hbar^2}{2m}|\Psi(\mathbf{r},t)|^2\right]\Psi(\mathbf{r},t)$ $+S_0\chi(y)\delta(x-x_0)\exp(-i\mu t/\hbar)$

 $A(\mathbf{r}) = \frac{1}{2}B\mathbf{e}_z \times \mathbf{r}$: artificial gauge vector potential $g = 4\sqrt{2\pi}a_s/a_\perp(x) \equiv g(x)$: effective 2D interaction strength

- \rightarrow injection of a homogeneous plane-wave beam from the source (periodic boundary conditions along the transverse boundaries)
- \rightarrow disorder potential with short-range (Gaussian) spatial correlation (similar results were obtained for speckle disorder)

Angle-resolved backscattered current:

 \rightarrow permanently time-dependent (turbulent) scattering for $g \gtrsim 0.05$

Comparison of the peak height at $\theta = 0$:

 maale	

 \rightarrow injection within one transverse channel of the left lead \rightarrow homogeneous gauge field B perpendicular to the billiard \rightarrow energy and configuration average (for several positions of the obstacle)

Semiclassical retro-reflection probability to incident channel:

$$r_{ii} = \frac{1}{N} \left[1 + \frac{N-1}{N} \frac{\left(1 + \frac{B^2}{B_0^2}\right)}{\left(1 + \frac{B^2}{B_0^2}\right)^2 + \left(\frac{gj^i\tau_D}{gj^i\tau_D}\right)^2} \right]$$

N = total number of open channels (= 10) B_0 = characteristic gauge field scale for weak localization (obtained from directed areas accumulated along trajectories) j^1 = incident current, τ_D = mean classical survival time

- reversed counterparts in disordered systems or chaotic confinements \rightarrow enhanced retro-reflection probability
- \rightarrow reduced transmission probability due to loop contributions K. Richter and M. Sieber, PRL 89, 206801 (2002)

- \rightarrow dephasing in the presence of a perpendicular magnetic field
- \rightarrow precursor to strong Anderson localization D. Vollhardt and P. Wölfle, PRL 45, 842 (1980); PRB 22, 4666 (1980)

Regime of weak localization $(k \times \ell_{\text{transport}} \gg 1)$: \rightarrow main contributions to average retro-reflection probability from ladder (diffuson) and crossed (Cooperon) diagrams

Ladder contributions are accounted for by the modified Green function

 \longrightarrow effective background potential $V_{\text{eff}}(\mathbf{r}) = \langle V(\mathbf{r}) \rangle + g(\mathbf{r}) \frac{\hbar^2}{m} \langle |\psi(\mathbf{r})|^2 \rangle$ \longrightarrow no net modification of mean densities and currents on the ladder level

- \longrightarrow finite net modification of the retro-reflection probability: dephasing of weak localization due to the presence of interaction
- \longrightarrow current conservation is restored taking into account nonlinear chains within the loop contributions