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Abstract
The paper develops a method for the parameter identification of massive piezoelectric structures. It can be
shown that the piezoelectric effect involves a modification of the stiffness of the structure due to the
coupling between the mechanical and electrical degrees of freedom. The behaviour of the structure is then
dependent of the electrical conditions of the structure. A finite element model of the structure is the starting
point of the studies to emphasise the stiffening by the piezoelectric effect. The initial mechanical FE model
may be improved by adding elementary stiffness corrections to the global mechanical stiffness. These
corrections depend on the piezoelectric properties of the material. External force excitation may be applied
on the structure in two different electrical states in order to measure the forced responses. The identification
problem becomes then a standard model updating problem which can be solved using well established
techniques. However, particular attention has to be paid to the correction process to improve the knowledge
of the structural behaviour without loosing physical insight. Numerical examples illustrate the feasibility of
the proposed method.

1. Introduction

Piezoelectricity is a fundamental process of
electromechanical interaction [ 11. There are two
fundamental electromechanical effects associated
with piezoelectricity, namely the direct effect and
the converse effect. Direct effect can be detected
when applying a force on a piezoelectric material
and monitoring the electrical voltage or charge
generated. Inversely, to emphasise the converse
effect, an electric field can be applied to the
material which will induce stress or strain.
Piezoelectricity is used for a large number of
applications in the field of electromechanical
engineering, e.g. waves-sound generators, echo-
graphic probes, micro-positioner, accelerometer
transducers, pressure transducers,... The success of
active opto-mechanical devices has also emphasised
the generalisation of the use of piezoelectric
materials.

This fact has drawn much attention on how to
accurately identify and monitor the piezoelectric
coupling parameters, especially on structures having
a partition of piezoelectric material which is not
marginal versus the purely mechanical part. These

structures can be defined as massively piezoelectric
structures.

In this paper, it will be shown that the piezoelectric
effect involves a modification of the stiffness due to
the coupling between the mechanical and electrical
degrees of freedom (d.o.f.‘s).  Taking this behaviour
into account, a method for the identification of the
piezoelectric coupling parameters will be proposed :
an initial mechanical finite element model (F.E.)
will be improved by adding elementary stiffness
corrections to the global mechanical stiffness. These
corrections will depend on the piezoelectric
parameters of the material. By applying an external
force excitation on the structure, the forced
response, depending of the electrical state of the
structure, will be measured. Performing a model
updating procedure results in a model behaving like
the measures with an improved knowledge of the
structure behaviour without loosing physical
insight. A numerical example of a piezoelectric bar
will illustrate the feasibility of a piezoelectric model
correction. Emphasis will be done on the numerical
problems inherent to the bad numerical conditioning
between mechanical and piezoelectric partitions and
solutions will be proposed to overcome these
difficulties.



2. Modelisation of Piezoelectricity 2.2 Finite Element Formulation

2.1 Piezoelectric Constitutive Equations

Linear piezoelectricity is described by the following

The first step is to operate a discretisation of the
piezoelectric medium into volume elements and to
express :
l the mechanical displacements U in terms of

nodal values by
U=N,Ui (6)

with
‘i displacement at node i

N” interpolation matrix of displacements;

l the electrical potentials cp in terms of nodal

values by:

equations [2]:
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stress vector,
strain vector,
electrical displacement vector,
electrical field vector,
elasticity matrix

(at constant electric field),
= 3 x 6 piezoelectric matrix,
= 3 x 3 dielectric matrix

(at constant deformation).

electrical and mechanical balances will
complete this set of fundamental equations of
piezoelectricity :
l the electrical field E is linked to the electrical

potential cp by

E=-VT (2)

l for an electrical insulator, the Gauss theorem
express the conservation of electrical charges as

VD=O (3)

l the Newton’s law express the force balance as

a%
-=VTp at2 (4)

with

P the mass density,

V the divergence operator,
U the 3x1 displacement vector, linked to the

deformation vector by

s, =A  aui  I auj
l 1d 2 axj axi = (hJ), (5)

Equations (1) to (5) constitute a piezoelectric model
which is practically impossible to solve directly
due to the complexity of this set of differential
equations.

cP=N, ‘Pi (7)

with

Cpi potential at node i,

N, interpolation vector of potentials,

The second step is to transform the differential
problem (1) - (5) into an integral form on the
discretised volumes. Defining the differential
operator B as :
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the following elementary contributions are obtained
l the mechanical inertia :

Mr;  =jjlpN,* N, dV (9)

l the elastic coupling :

K WI
uu = 111 (BN,jC”BN, dV (10)

l the piezoelectric coupling :

Kg; = jjj(B  N,)t e’ VN, dV (11)

l the dielectric coupling :

Kz = -jjj-(VNp)t  sS VN, dV (12)

l the electrical charges at electrodes :

QvOl  = -jj Nqt o dS (13)

l the mechanical forces applied on the volume :



F””  = jjj N,’ P,dV+ jj N,’ P,dS+ N,’ P, (14)

w h e r e  P,, P,, P, represent respectively the

volume, surface and nodal forces and o is the
electrical charge density on electrodes.

The assembling of the elementary matrices (9) to
(14) leads to a system of equations which is the 3-D
F.E. representation of an undamped piezoelectric
structure :

(15)

where subscript i is referred for ‘internal’ electrical
d.o.f.5 and subscript el for electrical d.o.f.5 at the
electrodes of the structure (figure 1).

electrodes

Figure 1: Electrodes on structure

Four important remarks have to be done regarding
to equation (15) :
l no terms of inertia are associated with the

electrical d.o.f.‘s;
l the piezoelectric stiffness matrix is symmetric;
l some experiments have shown a small complex

part of the piezoelectric coefficients, involving
an imaginary partition of the stiffness matrix; the
theory developed here is based on the
assumption of a non damped model;

l due to the Gauss theorem applied on an insulated
material, electrical charges only exist at the
electrode level.

In order to simplify equation (15), a condensation of
the internal electrical potential,  (pi may be

performed using a Guyan static reduction [4]  :

i

Muu
0

where H

Note that the condensation of the internal d.o.f.‘s  is
exact since no terms of inertia are associated with
the cpi.

2.3 Electrical Boundary Conditions

Two kinds of electrical boundary conditions [2] can
be prescribed, which involve two different stiffness
matrices [3]  :

I) Conditions on electrical charges Q,, .

In this case, potentials (Pi, are directly linked to

displacements U by the second equation of (16)
involving :

MUU ti+(HUU-AH)U=-HUq p, H&+x, Qd + F (17)

where AH=  H
UV, H&%l %p,

Physically, this condition results from a short-
circuit of the electrodes. It can be performed by
connecting them to a charge amplifier or by exciting
the piezoelectric structure in current.

2) Conditions on the potentials qe,  .

In the first equation of (16), the electrical potentials
can be considered as excitation, involving :

. .
MUU U+HUU  U= -HUT, (Mel  +F (18)

Physically, this condition corresponds to an open
circuit of the electrodes. It can be performed by
connecting them to a voltmeter or by exciting the
piezoelectric structure in voltage.

From equations (17) and (18),  it is interesting to
notice that the coupling between the mechanical and
electrical d.o.f.‘s induces a stiffening effect of the
structure . Naillon et al. [2], have shown that the
eigen frequencies of a piezoelectric structure with
boundary conditions on the electrode potentials are
always smaller than the corresponding eigen



frequencies with boundary conditions on the
electrode electrical charges. Moreover, these two
sets of ‘piezoelectric’ eigen frequencies are always
greater than for a purely mechanical structure with
the same geometry and same mechanical boundary
conditions.

2.4 Example: the Piezoelectric Bar

In order to illustrate the piezoelectric effects, a
numerical simulation has been performed on the
example of a piezoelectric bar, clamped at one side,
and excited by a mechanical force at the other side
as presented in figure 2.

Figure 2: Piezoelectric bar in extension

Table 1 shows the physical parameters used in this
numerical test-case.

Values una
Bar radius 0.0025 m
Bar length 0.2 m
Young modulus 62.5 10’ N/m2
Mass density 7500 kg/m3
Piezo est. e(3,3) 14.1 C/m2
Dielectric est. $(3,3) 5.84 lo-’ F/m

Table 1: Piezoelectric bar parameters

In figure 3, the frequency response function at the
end side of the bar is presented for three different
cases (purely mechanical structure, piezo-structure
with electrodes in open circuit, piezo-structure with
electrodes in short circuit).

Figure 3 and table 2 emphasise the frequency shifts
and the influence of the piezoelectric coupling on
the static stiffness.

The correlation between the eigen modes of a
purely mechanical structure and the eigen modes of
the same structure but considered as piezoelectric
may be calculated using the MAC matrix defined
by equation (19).

mode no open-circuit short-circuit
1 2.1% 13.9%
2 12.6% 13.9%
3 13.3% 13.9%

Table 2: Relative frequency shifts for the
piezoelectric material with respect to the purely

mechanical structure

IQ-
IO3 IO'

Frequency(Hz1

Figure 3: Stiffening effect on a piezoelectric
clamped bar

- Mechanical structure
- Electrodes in open circuit
-.-.- Electrodes in short-circuit

M A C = , I -1
\ ,

(19)

S6

Figure 4: MAC matrix between purely mechanical
modes and piezoelectric modes



As shown in figure 4, a perfect correlation exists
between the eigen modes of the purely mechanical
structure and the piezoelectric structure. This means
that, in the example of the piezoelectric bar, the
piezoelectric effect does not change the modal
shapes, but only induces a frequency shift. It is
important to notice that, in the case of a structure
with partitions of piezoelectric material and
partitions of purely mechanical material, this
conclusion remains no longer valid since the
piezoelectric parts will induce local changes of
stiffness which will certainly perturb the initial
purely mechanical mode shapes.

3. Scaling of the Piezoelectric
Stiffness Matrix

3.1 Order of Magnitude of the Stiffness
Matrix Coefficients

In equation (l-5),  the stiffness matrix

K
COUPled (20)

exhibits terms with different orders of magnitude.
The elastic terms have generally a magnitude of
10 lo, in comparison with 10 ’ for the piezo-elastic
coupling terms and with 10 -lo for the dielectric
terms.

K coupled +
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. . .. . .
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This numerical ill-conditioning of the piezoelectric
stiffness matrix requires some cares [5] for the
resolution of equations (15), (17) or (18).

3.2 Scaling Method

To overcome this problem, one solution is to scale
the stiffness matrix Kcoupled  by constructing a
diagonal matrix P which contains the square root of

the diagonal terms of Kcoupled. For example, the
static problem:

K coupled ’ = F (21)

can be transformed by using the following relations:

P P-’ Kcoupled  P-’ P x = F

1

P-' K c,,up,ed P-' P x = P-' F

1

where

K scaled Xsc.led  = Fseakd (22)

K sca led  =  ‘-’ Kcoupled  ‘-’ (23)

X scaled = px (24)

Fsea,ed = P-' F (25)

After transformation, equation (22) exhibits a good
numerical conditioning.

The eigen value problem resulting from the
piezoelectric system (15) can also be conditioned
using the same procedure. It gives :

(K~caled-~~~scaled)~ (26)

with

M sdd = P-' Mpiem P-' (27)

3.3 Singular Value Decomposition

As discussed in $3.1, the magnitude difference of
the piezoelectric stiffness matrix coefficients could
induce ill-conditioning and numerical instabilities
when solving static and dynamic problems or-when
performing model updating on piezoelectric
structure. A solution is to filter out instabilities
using the well-known singular value decomposition
(SVD) algorithm and to reject singular values that
are smaller than an average threshold [6]. For
example, in the case of the resolution of the static
problem (21) :

K coupled x=F



the stiffness matrix is factored as :

where

K coupled = ’ ’ ” (28)

- U and V are orthogonal matrices which contain
the left and right singular vectors,

- C is a diagonal matrix that contains the singular
values oi of Kcoupled which are representative of

the ill-conditioning.

The advantage of the SVD algorithm is that if a line
or a row i of Keoupld  is not totally linearly

dependent, we would obtain a small value for oi ,

instead of zero. Therefore, it is easy to establish a
criterion for the rejection of small singular values
by comparing them for example to a threshold
proportional to the singular value average :

0 threshold = lo-’ (29)

where q is a user defined integer and N is the
number of non-zero singular values of Kpiezo  . Using

the filtered singular values of Z and the
orthogonality properties of U and V, the inversion
of problem (21) becomes easy. Note that this
procedure is also widely used in the case of the
resolution of over-determined systems.

4. Identification of the Piezo-
electric Coupling Parameters

In order to identify the piezoelectric coupling
coefficients of a structure, it is possible to start with
the finite element model of the non piezoelectric
structure and to correct it using experimental data.
This updating procedure allows to build a model
that improves the knowledge of the structure
without loosing physical insight. In the following,
two well established updating techniques will
successfully applied the example of a piezoelectric
structures taking into account scaling problems
mentioned previously.

4.1 FRF-based Updating Procedure

The finite element model updating method
described hereafter [7-81  is based on the existence
of two discretized experimental stiffness [Kx] and

mass [Mx] matrices that have the same properties

as the corresponding analytical matrices [Ka ] and

[Ma]  (in terms of symmetry , connectivity,...) and

such that the dynamic equilibrium equation is
satisfied, using measured frequency responses, i.e. :

LKxl  {Hxlj = 0: [Mx] (H,}j + (f] (30)

where
-

1 IHX j
is the j-th experimental FRF vector

measured at frequency CO,  ,

- f11 is the vector of excitation forces.

In the following, the notations [...I and {...} will be
used to emphasise respectively matrices and
vectors; subscripts a and x will relate to the
analytical and experimental quantities respectively.

It is also assumed that the matrix corrections take
the form :

where
- [Z a (a)] states for the dynamic stiffness matrix,

- (Ap} is defined as the vector of updating

parameters,
- 0 refers to the Kronecker product.

In the following, the inadequacy of the finite
element model will be expressed in terms of
N,error elementary stiffness matrices in the form

E41 :

[AK] = 2 ‘Pi [Kekrn]i (32)
i=l

This assumption leads directly to the expression of
the stiffness sensitivity in the form :

(33)

The dynamic stiffness matrix correction can also be
expressed as :

[AZ(W,{AP})]  = [zx WI - Pa WI (34)

Pre-multiplying this equation by the analytical FRF
matrix [HBMl and post-multiplying by an

experimental FW vector (H,(w)}~ yields to the

following over-determined system of equations (the
number of equations depending of the number of



measured points at N, different frequencies) in

terms of the unknown vector {Ap} :

[K(o)]  [~(‘+‘~]{H&‘)},  = {Hb’)}, -{H,(w)}, (35)

which can be easily solved by least square
techniques.

4.2 Updating Method Based on Modal
Parameters

In this approach, model updating is performed using
the experimental mode shapes [9].  As only a subset
of the model co-ordinates are actually measured,
this procedure requires an expansion of the
experimental eigen vectors to the size of the finite
element model eigen vectors.

The expansion method may be achieved using a
method based on the minimisation of errors on the
constitutive equations, which results in the
following objective function :

mwJ> - PI)= Fl (PI - PI) +

a ({v~}-{q)=  [JLdl(Pll-~Vl) (36)

where
-

11v is the experimental eigen vector,

- {V> is the experimental expanded eigen vector,

- (V, } is the measured partition of {V} ,

- {U} is an instrument eigen vector that verifies a

priori the equilibrium equations :
[&I PI = cJJ* [MaI {VI (37)

- [Kred] is the analytical stiffness matrix reduced

to the partition of measured degrees of freedom,
- a is a user defined weighting coefficient that

indicates confidence in the measurements.

If the existence of experimental mass and stiffness
matrices that satisfy equilibrium equation is
assumed :

[Kxl PI = aI2 [Kl Iv> (38)

the following system can be found for parameter
corrections :

[K]-’ [AZ(w,Ap)] {V} = {U}-{V} (39)

[AZ(o,Ap)]=  [WAp>]-o*  [ANI( (40)

is the correction matrix for the dynamic stiffness.

Updating may be performed using the same
development as in equation (32).

More details about the updating methods presented
in sections 4.1 and 4.2 can be found in references
[8] and [9].

4.3 Numerical example

The piezoelectric bar model, described in section
2.4 is used to demonstrate the ability of the FRF and
modal response based updating methods to identify
the piezoelectric coupling parameters in the
stiffness matrix.

The clamped bar is discretised with 5 elements
leading to 5 mechanical degrees of freedom and 5
electrical degrees of freedom (the clamped side of
the electrode is assumed to be grounded).
Experimental’ data are generated using the complete
piezoelectric ‘true’ model. In order to take into
account the incompleteness of experimental data,
only the frequency range covered by the 3 first
modes is considered and only half  of the
displacement d.o.f.‘s along with the electrode
(voltage or charges) are assumed to be monitored.

1
_+:I:::::

K6  v, ~8 K9
r. - 10
I

Figure 5: Analytical model correction using FRF
(no noise data, no structural damping)

The ‘analytical’ model was generated by
withdrawing completely the piezoelectric partition
of the bar model given in equation (15).

Updating results are presented in figures 5 and 6.
The modal response based updating technique gives

where



a perfect result while the FRF based method
exhibits less than 0.35% error.

Evolunon  of ‘ol~ect~~n  parameters

_.__.!G___ K7 K6 _!%..._ 10

-021 I
0 2 4 6 8 18

Iterations
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Figure 6: Analytical model correction using modes
(no noise data, no structural damping)

The mechanical stiffness correction (Kl to K5) is 0
since the ‘analytical’ model has 0% of error on
mechanical stiffness. The piezoelectric stiffness
correction (K6 to KlO) is 1 since the ‘analytical’
model has 100% of error on piezoelectric stiffness.

Figure 7 presents the ‘realistic’ FRF’s  generated by
introducing 1% of modal damping and l/1000  noise
factor on the maximum acceleration.

Id'
0 1 2 3 4 5 6 7

Hz
x10’

Figure 7: Noisy FRF’s on the damped system

In this case, the FRF based method exhibits an error
of 10% while the modal response based procedure
achieves less than 7.2%. As shown in figure 8, the
introduction of damping and the presence of noise
induces mechanical stiffness residues that perturb
the identification of piezoelectric coefficients.

1.2
Evoluhan  rf cerrecbon  parameters

1 I K6 K7 K8 K9 ID

-0 2
0 2 4 6 8 IQ

lteratlons
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Figure 8: Analytical model correction using modes
(noisy data, structural damping)

A modal parameter based updating has also been
performed starting from an initial perturbed model
in which the mechanical stiffness of element 3 (K3)
was raised by 50%. Figure 9 shows the success of
the model correction where a maximum of 13% of
error has been achieved using ‘realistic’ data.
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Figure 9: Piezoelectric and stiffness model
correction using modes (noisy data, structural

damping)

5. Conclusion

An identification method of the coupling parameters
of a massively piezoelectric structure based on
model updating techniques was presented.

Numerical ill-conditioning problems resulting from
piezoelectric modelling were taken into account in
the different steps of the model correction
procedures in order to improve convergence :



l scaling of the piezoelectric stiffness matrix
before reduction (or expansion) of the
experimental mode shapes,

l solution of the pre-scaled eigenvalue problem,
l solution of the least squared problem using the

SVD filtering technique.

Influence of noise and damping on experimental
data has also been shown for the piezoelectric and
stiffness model correction procedures.
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