Towards a Multipath TCP Aware Load Balancer

Simon Liénardy, Benoit Donnet
Université de Liege
Montefiore Institute

Belgium
firsthname.name@ulg.ac.be

ABSTRACT

Multipath TCP has been recently introduced in order to
allow a better resource consumption and user quality-of-
experience. This is achieved by allowing a connection be-
tween two hosts through multiple subflows. However, with
the rise of middleboxes and inherent Internet ossification,
the large-scale deployment of this TCP extension is difficult.
In particular, a load balancer at the entry point of a data
center may forward subflows to different servers, cancelling
so the advantages of Multipath TCP.

In this paper, we introduce MPLB, a Multipath TCP
aware load balancer that fixes this particular issue with-
out any modification to the Multipath TCP protocol itself.
We demonstrate advantages of MPLB through a proof-of-
concept.

1. MPTCP AND LOAD BALANCERS

Multipath TCP (MpTcp) [1] is a new TCP extension en-
abling to create multiple subflows between two hosts instead
of the well-known single flow characterized by its 5-tuple
(Protocol, Local address, Local Port, Remote address, Re-
mote Port). Each subflow has its own 5-tuple and thus is
forwarded independently of the others. As a result, the con-
nection will be split among different paths in the network,
leading to a better resources consumption [2]. Moreover, dif-
ferent subflows can be transmitted on diverse physical layer
technologies. As an example, a smartphone can use both
Cellular connection and Wi-Fi. If one of the subflows is lost,
the other pursues the data transmission in a transparent way
from the user, improving so its quality-of-experience [3].

The use of MPTCP is transparent for the application layer.
The TCP concept of a data flow sent from a host to another
still exists: MpTcP splits the data among several subflows
and ensure that is delivered to upper layer in the correct or-
der. Each subflow consists in a regular TCP connection and
thus maintains its own sequence numbers, receiver window,
etc.

In order to use MPTCP, hosts have to exchange MP_CAPABLE

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

ANRW ’16, July 16, 2016, Berlin, Germany
© 2016 ACM. ISBN 978-1-4503-4443-2/16/07.. . $15.00
DOL: http://dx.doi.org/10.1145/2959424.2959426

option during the 3-way handshake of the first subflow. It
enables to exchange Keys between the hosts. Each new
added subflow will authenticate that it belongs to a MpTcp
connection thanks to the MP_JOIN option that contains, for
the SYN segment, a Token, that is a cryptographic hash of
the receiver Key exchanged in the first subflow. The rest of
the handshake pursues authentication thanks to nonces and
HMAC [1]. This is partially shown on Fig. 1(b).

With the rise of middleboxes [4], TCP extensions and new
transport protocol are difficult to deploy [5]. In particu-
lar, middleboxes have also heavily influenced the design of
MpTcp [1, 5]. However, if MPTCP is able to cope with sev-
eral types of middleboxes, load balancers spreading the traf-
fic among several servers are still an issue. Indeed, if the load
balancer is unaware of MPTCP, as each subflow of a given
MPTcCP connection has its own 5-tuples, those subflows will
be balanced to distinct servers, as illustrated on Fig. 1(a).
As a consequence, MPTcp falls back to standard TCP, lead-
ing to a potential loss in the user quality-of-experience.

In this paper, we tackle this particular problem by propos-
ing MpPLB, a MpTcp aware load balancer that is able to
redirect all subflows of a given MPTCP connection to the
same server. MPLB does not require any modification in
the MpTcCP protocol. In the section 2, we present the MPLB
concepts and demonstrate its advantages through a proof-
of-concept.

2. MPLB

First, a client (i.e., a connection initiator) that wants to
use MPTCP with the server will add in the 3-way handshake
of the first subflow the MP_CAPABLE option. The exchanged
MP_CAPABLE options contain two pieces of information that
the load balancer needs to correctly handle the subsequent
subflows: the server Key and the cryptographic hash algo-
rithm to compute the Token from the key. This algorithm is
negotiated between the client and the server: the client pro-
poses a list of hash algorithms in the SYN, the server selects
one of them in the SYN+ACK, and the client confirms it in the
ACK. Hence, the third packet of the 3-way handshake suf-
fices to compute the server’s Token because it contains both
client and server Keys and confirms the hash algorithm.

Second, MPLB uses a hash map (hereinafter referred as
<flow;q, output> map) to keep track of the link between
the flow identifier, computed on the basis of the 5-tuple,
and the outgoing interface. This enables to quickly for-
ward to the same server all the datagrams that belong to
the same flow. The outgoing interface of the first subflow
is decided when the SYN segment is processed. Since it is

Client LB Servers

Addr, Add Addr, Add
A ' S5 A0 . St S --k-- MPLB (Throughput) —— MPLB (Time)
SYN + MP_CAP(Key.) SYN + MP_CAP(Key) .-~ LB (Throughput) —4— LB (Time)

Client MpLb Servers

SYN/ACK + MP_CAP(Key,)

(a) Flows between MpPTcP and un-
aware load-balancer

SYN/ACK + MP_CAP(Key,)

i] i I =z 90
ACK + MP_CAP(Key,, Key,) ACK + MP_CAP(Key,, Key,) B

T I & %

SYN + MP_JOIN(Tok, Nonce,) SYN + MP_JOIN(Tok, Nonce,) ‘g 70
,,,,,, <

. > ® 60

RST SYN/ACK + MP_JOIN(HMAC, Nonce,) £ 50

ACK + MP_JOIN(HMAC,) S o

(b) Flows with MpLB

100

File sizes [MB]

| A

(c) MPLB performance vs. unaware load-balancer

Figure 1: MPLB principles and performance

the first subflow, the MPLB can choose on which interface
it will be forwarded either on a round-robin basis or on a
more complex load balancing policy basis. When the ACK is
received, MPLB computes the server’s Token and a second
hash map (hereinafter referred as < Token, output> map) is
used to maintain state about the relationship between the
Token and the outgoing port of the first flow.

Third, when a new subflow connection is detected, the
Token is extracted from the MP_JOIN option. The <Token,
output> map is queried. If the token is unknown, MprLB
chooses an outgoing interface at random. If the token corre-
sponds to a previously seen MPTCP connection, the subflow
is forwarded on the same output interface. The mapping
between the subflow id and the output is also remembered
in the <flow;q, output> map. Then, all the datagrams of
the newly added subflow can be balanced towards the same
destination. All this process is illustrated in Fig. 1(b).

We implemented a proof-of-concept using the Click Mod-
ular Router [6]. Click enables to design a router by connect-
ing pre-implemented boxes that perform basic operations.
Once combined, these boxes form the processing flow of a
packet in a router. We implemented a box that has one in-
put and multiple (the number is configurable) outputs. This
box balances an incoming packet among the output accord-
ing to what we explain above. To respect Click philosophy,
the balancing box does not tackle the forwarding decision: a
previous box in the packet flow cope with that problem. In
fact, the packets forwarded to the servers are given in input
of the balancing box.

Based on our Click implementation, we demonstrate, as a
proof-of-concept, the advantages of MPLB. The topology we
used is made of four virtual machines: a client, two servers,
and the load balancer (LB). The client and the servers are
MPTcP capable (MPTcP linux version 0.89 [7]). The LB
does not require to have a MpTcP capable kernel since it is
the Click program that is in charge of routing operation.

The client is connected to the LB thanks to two links lim-
ited at 50 Mbps (this is a software limitation). The servers
are located on the same collision domain as one of the output
of the LB. Interfaces of both servers have the same IP ad-
dress but different MAC. Once the LB has chosen the desti-
nation server, the datagram is encapsulated in a frame with
the chosen server MAC address. In our proof-of-concept,
the LB knows the MAC address of the servers and no ARP
request is required (in LB — server direction).

We tested two LB solutions: one LB selects destination
based on a hashing of IPs,.. and I Pges: and is MPTCP un-
aware. We could implement a 5-tuple hash but that was
not necessary to show as, in this case, the LB cannot handle
MpTcp subflows. The two IP addresses of the client were
assigned in order that this LB does not choose by chance
the same output for the two MpTcp subflows. The other
LB solution is our MPLB implementation.

Fig. 1(c) presents the time taken and the throughput to
download, from the client, files of increasing size (the X-
Axis, in log-scale). Each data point on Fig. 1(c) represents
the mean value over 30 runs of the experiment. We deter-
mine 95% confidence intervals for the mean based, since the
sample size is relatively small, on the Student ¢ distribution.
These intervals are typically, though not in all cases, too
tight to appear on the plot. We can see that there is a factor
2 between both time and throughput curves. In fact, MpLB
manages to use both links between the client and the LB
to transmit data. The link between the LB and the server
was set up to not be the limiting factor of the exchange. We
also see on Fig. 1(c) that the simple LB (MPTCP unaware
—red curve) leads to a drop in performance. This is due to
the fact that it balances the second subflow to the wrong
server, that subsequently resets the connection (as already
illustrated in Fig. 1(a)). As a result, only a single regular
TCP flow can be used for the exchange.

3. CONCLUSION

This paper introduces a case of study in which MpTcp
cannot work properly: a load balancer that spreads the sub-
flows among different interfaces, making impossible for a
server behind this balancer to gather all the subflows. To
fix this, we proposed MPLB, a load balancer that is MpTcp
aware. We demonstrated its advantage through a simple
proof-of-concept. In the near future, we will improve MpPLB
and study its behavior on more complex topologies, in par-
ticular when several load balancers are run in parallel at a
datacenter entry. This might be solved by making the dif-
ferent balancers sharing their mappings. We implemented a
solution that does not need to modify MpTcp protocol but
as the protocol is still under development and young enough
to evolve, one could envision the advantages and the feasi-
bility of a protocol modification to handle load balancers.

4.

ACKNOWLEDGMENTS

This work was supported by the European Commission

European Commission H2020-688421 MAMI project, SERI
15.0268.

S.
[1]

2]

REFERENCES
A. Ford, C. Raiciu, M. Handley, and O. Bonaventure,
“T'CP extensions for multipath operation with multiple
addresses,” Internet Engineering Task Force, RFC
6824, January 2013.
C. Raiciu, S. Barré, C. Pluntke, A. Greenhalgh,
D. Wischik, and M. Handley, “Improving datacenter
performance and robustness with multipath TCP,” in
Proc. ACM SIGCOMM, August 2011.
Q. De Coninck, M. Baerts, B. Hesmans, and
O. Bonaventure, “A first analysis of multipath TCP on

(5]

(7l

smartphones,” in Proc. Passive and Active
Measurement Conference (PAM), March/April 2016.
J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy,

S. Ratnasamy, and V. Sekar, “Making middleboxes
someone else’s problem: Network processing as a cloud
service,” in Proc. ACM SIGCOMM, August 2012.

M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh,

M. Handley, and H. Tokuda, “Is it still possible to
extend TCP,” in Proc. ACM Internet Measurement
Conference (IMC), November 2011.

E. Kohler, R. Morris, B. Chen, J. Jannotti, and

F. Kaashoek, “The click modular router,” ACM
Transactions on Computer Systems, vol. 18, no. 3, pp.
263-297, August 2000.

C. Paasch, S. Barré et al., “Multipath TCP in the Linux
kernel,” available from http://www.multipath-tcp.org.

