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We investigate by scanning susceptibility microscopy the response of a thin Pb strip, with a
square array of submicron antidots, to a low-frequency ac magnetic field applied perpendicularly to
the film plane. By mapping the local permeability of the sample within the field range where vortices
trapped by the antidots and interstitial vortices coexist, we observed two distinct dynamical regimes
occurring at different temperatures. At a temperature just below the superconducting transition,
T/Tc = 0.96, the sample response is essentially dominated by the motion of highly mobile interstitial
vortices. However, at a slightly lower temperature, T/Tc = 0.93, the interstitial vortices freeze up
leading to a strong reduction of the ac screening length. We propose a simple model for the vortex
response in this system which fits well to the experimental data. Our analysis suggests that the
observed switching to the high mobility regime stems from a resonant effect, where the period of the
ac excitation is just large enough to allow interstitial vortices to thermally hop through the weak
pinning landscape produced by random material defects. This argument is further supported by
the observation of a pronounced enhancement of the out-of-phase response at the crossover between
both dynamical regimes.

PACS numbers: 74.78.Na 74.78.Fk 74.25.Dw 74.25.Op

I. INTRODUCTION.

The dynamics of vortices in type-II superconductors
strongly depends on the nature and distribution of dis-
order.1 A powerful method to probe the physical mech-
anisms ruling the dynamics and dissipation of these sys-
tems consists in disturbing the vortex ensemble periodi-
cally (e.g. by an oscillating magnetic field or current) at a
time scale comparable with the characteristic time of the
dynamical process under consideration while simultane-
ously acquiring the in-phase and out-of-phase responses.2

Since the vast majority of the techniques implementing
the above described method involve large amounts of vor-
tices, theoretical models need to be applied to derive,
in most cases, a rather crude picture of the microscopic
vortex physics (see for instance Ref. 3 and references
therein).

The ac-susceptibility technique uses a small alternating
magnetic field excitation and measures the total phase-
locked flux change through a pickup coil surrounding the
whole sample.4 Traditionally one records the in-phase
and out-of-phase magnetic response, as they are related
respectively to the macroscopic shielding abilities and
the overall energy losses in the sample5. The drawback
of using such a global method is the indirect relation-
ship with the periodic motion of the vortices within the
sample, as this zero-mean displacement does not result
in a net flux change. However, the pickup coil is sen-
sitive to possible changes in the ac-penetration depth
(i.e. the total sample’s impedance or screening ability)
induced by the vortex dynamics. As such, macroscopic

ac-susceptibility measurements can provide us only indi-
rect, sample-averaged information about the microscopic
vortex motion.

The incapacity to resolve the ac-response of a single
vortex and the indirect relation between the vortex dy-
namics and the integrated response can be circumvented
by the scanning ac-susceptibility microscopy (SSM) tech-
nique,6–8 which allows to probe the in- and out-of-phase
response to an applied ac magnetic field or current with
single-vortex resolution.3,8,9 In contrast to standard sus-
ceptibility measurements, in SSM the periodic change
in flux due to vortex motion and screening currents
is measured locally by scanning a submicron-sized Hall
probe over the surface, thereby revealing the microscopic
vortex response. Moreover, the screening current re-
sponse imaged close to the border, also probed in clas-
sical macroscopic ac-susceptibility experiments, can be
cross-correlated with the present vortex physics and the
theoretical models describing them.

In this work, we use the SSM technique to investigate
the response of a nano-structured superconductor having
a square lattice of antidots. A prominent feature of these
systems is the typically very different mobility of vortices
strongly pinned at the antidots and those sitting at the
interstitial positions, which probe a smooth “cage” po-
tential produced by the vortices at the antidots.10–12 This
reflects in different (according to whether or not intersti-
tial vortices are present) scenarios of the sample response
to an excitation, as indeed observed in a great deal of
macroscopic ac-susceptibility experiments.13–22 The in-
terpretation of the different dynamical regimes usually ig-
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nores the random pinning potential produced by sample
inhomogeneities, considered negligible at the tempera-
tures where the experiments are carried out. However, at
least for experiments performed within the linear regime,
where vortices are driven close to their equilibrium po-
sitions by very small driving forces, the weak material
pinning might become important or even dominant.

Although the effect of quenched disorder in hard-
pinning, nanostructured Nb films has already been inves-
tigated,23 it should be noted that, so far, the interplay of
all relevant energy scales, vortex-antidot, vortex caging,
vortex-random pinning, and thermal fluctuations, has
not been fully addressed, neither experimentally nor the-
oretically. Here, we take profit of the local character
of the SSM technique to tackle this problem on scales
smaller than the screening length, which allows to map
in detail the contribution of the vortex dynamics to the
ac permeability for different fields and temperatures. We
consider a nanostructured film made of Pb, a well-known
soft-pinning material, and find that pinning by material
defects in this sample, as well as thermal activation pro-
cesses, dominate the low-frequency linear response even
at temperatures very close to Tc, where quenched disor-
der is traditionally neglected.

The paper is organized as follows. In Sect. II, we revisit
the general problem of the linear response of a supercon-
ducting strip and propose a simple method to calculate
the ac magnetic permeability in terms of the complex
ac screening length (Λac), which carries all essential in-
formation about the ac-driven vortex motion. Then, we
extend the two-species model introduced in Ref. 24 to
derive a formula for Λac in terms of the vortex-antidot,
vortex-cage, and vortex-defects coupling constants. This
sets the general theoretical framework within which the
experimental results will be interpreted. The results of
the SHPM experiments, performed in both dc and ac
modes, are presented in Sec. III. In Sec. IV we discuss
the procedure for fitting the model to the experimental
data, which allows us to quantitatively estimate all rel-
evant elastic constants and thereby unveil the interplay
between all these energy scales. The conclusions are pre-
sented in Sec. V.

II. THEORETICAL FRAMEWORK

A. Linear response of a thin strip

We consider a thin superconducting strip of width 2a
and thickness d � λ, subjected initially to a perpendic-
ular dc magnetic field H = Hdcẑ and define the super-
conducting sheet current J =

∫
dzj ' jd, with j the local

supercurrent density. In such geometry, the stationary
sheet current distribution satisfies the nonlocal London
equation25

Λ
∂J

∂x
= Hdc − µ−10 Bv +

1

2π

∫ a

−a

J(x′)

x− x′
dx′, (1)

where Λ = λ2/d is the effective London penetration
depth, Bv is the local flux density induced by vortices.
The nonlocal character of Eq. (1) comes from the last
term, which corresponds to Ampère’s law and gives the
magnetic field produced by the sheet current flowing in
the superconductor. However, we are interested in find-
ing the (steady state) time evolution of the sheet current
as the system is dynamically disturbed by an alternat-
ing drive. That is, we seek for an ac version of Eq. (1).
For this, we follow below a procedure similar to that de-
scribed in Ref. 26.

One can establish the connection between the vortex
dynamics and the electromagnetic fields in a supercon-
ductor with the London equation relating the electric
field and the current density27

E = Bv × v + µ0λ
2 ∂j

∂t
(2)

where the first term represents the electric field induced
by the moving vortices (with local mean speed v and
flux density Bv) averaged over scales larger than the in-
tervortex spacing, while the second term accounts for the
contribution of the Meissner effect. This local relation is
due to the fact that in the first term the main contribu-
tion for the electric field comes from processes occurring
inside the vortex cores.28

When a sufficiently small excitation h(t) = ẑhace
iωt is

superimposed with the dc field, the induced sheet current
takes the form J(t) = Jdc+Jac(ω)eiωt, where Jac(ω) is in
general complex, which accounts for a possible phase lag
with respect to h(t). In addition, within the mean-field
approximation, vortices respond linearly and the time
dependence of their displacement field can be expressed
quite generally as u(t) = u(ω)eiωt, with2,29,30

u(ω) = µv(ω)Jac(ω)× ẑ, (3)

where µv(ω) is the vortex response function. In this limit,
v(t) = iωµv(ω)Jac × ẑeiωt and ∂j/∂t ' iω(Jac/d)eiωt,
which by substitution in Eq. (2) leads to a complex
Ohm’s law (here expressed in the frequency domain):

E(ω) = iωµ0Λac(ω)J(ω), (4)

where Λac(ω) is the complex screening length, given by

Λac(ω) = Λ + Λv(ω), with Λv(ω) =
Bv

µ0
µv(ω). (5)

At this point, we will further assume a uniform vortex
distribution (uniform Bv), as is approximately the case
for field-cooled experiments. Within this approximation,
Λac is a position independent parameter. In fact, as we
shall discuss later (cf. Sec. III B), the vortex distribution
can be depleted within a distance ∼ Λ close to the sample
edge. This leads to a position-dependent Λv. However,
in our sample, the effect of this flux depleted region can
be neglected (see the Supplemental Material for more
details).
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Within the approximations described above, the ac
vortex dynamics can be inferred from measurements of
the effective impedance (ac resistivity) of the sample,
since ρac(ω) = iωµ0dΛac(ω). For instance, for the cases
where vortices are immobile due to very strong pinning
or absent in the sample, ρac = iωµ0λ

2 is purely imag-
inary and the sample is in a dissipation-free Meissner
state. More generally, however, vortex motion induces
dissipation resulting in an additional, complex screening
length, Λv(ω), which ultimately leads to a phase-lagged
(complex) current distribution throughout the sample.

For a long, thin strip, J = J(x)ŷ by symmetry and
the relation between the z component of the local mag-
netic induction, bz(x), and the sheet current, J(x), fol-
lows from Ampère’s Law:

µ−10 bz(x) = H +
1

2π

∫ a

−a

J(x′)

x− x′
dx′, (6)

By taking the time derivative of Eq. (6) and using Fara-

day’s law, ḃz = −∂E/∂x, and the material relation
[Eq. (4)], one obtains an equation for Jac(x, ω):

Λac
∂Jac
∂x

= hac +
1

2π

∫ a

−a

Jac(x
′, ω)

x− x′
dx′. (7)

This equation is formally identical to the Meissner (Bv =
0) version of Eq. (1), except that here the effective pen-
etration depth, Λ, is replaced by the complex screening
length, Λac, and the external dc field is replaced by the
amplitude of the ac excitation, hac. The integral form of
Eq. (7) was derived before by Brandt.26

Exact analytical solutions to Eq. (7) are only available
for the limiting cases Λ = 0 and Λ → ∞.26 Therefore,
in general, J(x) is to be determined by numerical inver-
sion of Eq. (7), which can be computationally demanding.
However, an empirical interpolation formula proposed by
Vodolazov and co-workers31,32 provides a very useful ap-
proximate solution for the dc version of Eq. (7) [i.e. for
Eq. (1) with Bv = 0] which covers a wide range of the
superconducting strip parameters. We have found (c.f.
below) that this approximate solution for the dc Meiss-
ner sheet current, which is a real function of real Λ, can
be extended to the complex Λac plane and is also an ex-
cellent approximation for the complex ac sheet current,
that is

Jac(x, ω) ' hacx√
α(a2 − x2) + 2βaΛac(ω)

, (8)

where the empirical parameters α = 1/4 −
0.45(Λac/a)0.5 + 0.69(Λac/a)0.8 and β = 1/2π + Λac/2a
are the same obtained in31,32, but with Λ replaced by its
complex counterpart Λac.

In Fig. 1, we present the profiles of the local mag-
netic permeability bac(x)/hac of a superconducting strip,
which is the typical quantity accessed in ac susceptibility
imaging experiments, using either scanning Hall probes
or SQUIDs.3,8,9,33 This quantity was calculated for dif-
ferent values of Λ and Λv, covering 0.05a ≤ |Λac| ≤ 2.5a,

FIG. 1. (Color online.) Profiles of the in-phase (top) and
out-of-phase (bottom) components of the ac magnetic per-
meability, bac(x)/hac (in units of µ0) calculated using a full
numerical inversion of Eq. (7) (dashes) and the analytic ap-
proximation Eq. (8) (full lines). The middle panel presents
similar profiles for the vortex contribution to b′/hac (see text).

at a height z0 = 0.005a above the plane of the strip.
This value for z0 is close to the typical probe height used
in our experiments.34 The real (b′) and imaginary (b′′)
parts of bac(x) were obtained by numerically integrating
Ampère’s law,

bac(x, z0) = µ0hac +
µ0

2π

∫ a

−a

(x− x′)Jac(x′)
(x− x′)2 + z20

dx′, (9)

and using the sheet current calculated numerically from
Eq. (7) (dashes) and its analytical approximation, Eq. (8)
(full lines). It is clear that, within a broad range of sce-
narios for the ac screening length, Eq. (8) provides an
excellent approximation to the linear ac response of a
superconducting (or metallic, for that matter) strip.

It is instructive to go further and analyze separately
the contribution of vortices to the ac response, bv. This
can be accomplished easily by noticing that bac = bM +
bv, where bM is the response of the Meissner screening
currents, which can be obtained by setting Λv = 0 in
Eq. (9) (that is, by ignoring vortex motion). Since bM is
purely inductive (real), we have

bv = b′v + ib′′v = (b′ − bM ) + ib′′. (10)
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The profiles of b′v and b′′v = b′′ are depicted in the middle
and bottom panels of Fig. 1, respectively. In particu-
lar, in the regions near the sample edge, b′v and b′′v are
very sensitive to the specific value of Λv. Typically b′v
(b′′v) presents a strong negative (positive) signal near the
sample edge that changes to positive (negative) when en-
tering the superconductor from outside in. This suggests
that imaging experiments performed in this area can re-
veal valuable information regarding the vortex dynamic
in the sample.

Eq. (7) and its approximate solution, Eq. (8), provide
a general picture of the macroscopic response of thin,
wide strips of any type-II material as long as the linear
approximation can be used. Now the problem is reduced
to finding the complex ac screening length Λac, which is
associated with the vortex dynamical response function
through Eq. (5).

B. Response function of a nanostructured
superconducting strip

We consider a superconducting strip with a square ar-
ray of artificial pinning centers regularly spaced by the
lattice constant ap. We assume the artificial traps sat-
urate above one flux quantum per trap, in a way that
above the first matching field B1 = φ0/a

2
p (where ap is

the lattice constant of the square pinning array) vortices
not fitting the traps occupy the interstitial positions.

In order to estimate the response function and thereby
the ac penetration depth of this nanostructured super-
conducting film, we use the two-species model introduced
in Ref. 24. In short, this model considers the vortex lat-
tice as comprising a sublattice of vortices trapped in the
antidots and a sublattice of interstitial vortices. Both
sublattices are assumed to move rigidly and are con-
nected elastically to each other via vortex-vortex interac-
tions. This is a good approximation at the first and sec-
ond matching fields, where the sublattices are, typically,
square lattices and vortex-vortex interactions within each
sublattice cancels out. This is not the case at non-
matching fields. However, we keep this approximation
in the whole 0 < B < 2B1 field range in the expectation
that the dynamical response at non-matching fields will
be captured at least qualitatively.

Within the two-species model, the interstitial vortices
are subjected to a cage potential induced by the pinned
vortices, while the pinned vortices probe in turn a po-
tential energy resulting from the superposition of the ar-
tificial pinning potential and the cage induced by the
interstitial vortices (see for instance Refs. 12 and 24 for
more details). A schematic representation of the poten-
tial energies of each vortex species is depicted in Fig. 2
(thin red curves).

In what follows, we will extend the two-species model
in order to include explicitly the effect of natural sam-
ple inhomogeneities. These induce a random pinning po-
tential that superimposes to the potential energies con-

sidered in the original two-species model. Cartoons of
the total energy potentials are depicted in Fig 2 as the
thick blue lines. The typical barriers, U0, of the random
pinning landscape are expected to be small compared
to the cage potential. However, the restoring force of
a potential well near its local minimum is determined
by its curvature, roughly given by U0/r

2, where r the
characteristic well size. For the cage potential, r ∼ ap
whereas for a sample inhomogeneity r ∼ ξ, which is typi-
cally much smaller than ap. Therefore, the typical spring
constant due to sample inhomogeneities can be consider-
ably stronger than the cage spring constant. Moreover,
because the energy barriers are typically small, thermal
activation through the randomly distributed pinning cen-
ters can play an important role in the vortex dynamics.

Within the linear approximation, the equations of mo-
tion for the local displacement field of the pinned vortex
sublattice (up) and the interstitial vortex sublattice (ui)
can be written as:35

ηu̇p = −αpup − αrup − (n− 1)αv(up − ui) + φ0J, (11)

ηu̇i = −αrui + αv(up − ui) + φ0J, (12)

where n = B/B1 is the occupation number, αp is the
spring constant representing the interaction between a
pinned vortex and an artificial pinning center, αv is the
spring constant due to the cage potential, and αr rep-
resents the effect of weak random pinning. Following
Brandt,30 αr is a time-dependent relaxing elastic coef-
ficient which accounts for thermal activation processes
over the random pinning landscape. In the frequency
domain, it is given by

αr(ω) =
αr0

1− i/ωτ
, (13)

FIG. 2. (Color online) Schematic representation of the poten-
tial energies of (a) an interstitial vortex caged by artificially
pinned vortices and (b) a vortex trapped in an artificial pin-
ning center near the second matching field. In both panels,
the thin-line curves represent the bare potential energy with-
out contribution from natural defects. Cartoons: gray (red)-
shaded disks represent vortices in their (out-of-)equilibrium
position.
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where αr0 is the typical elastic constant of the weak pin-
ning centers, τ ∼ (η/αr0)eU0/kBT is the hoping time, and
U0 is the typical energy barrier.

For the case of a small, low-frequency ac excitation,
J = Jac(x)eiωt (ηω � αp, αv, αr0), one can neglect
the flux-flow term in Eqs. (11) and (12). Within lin-
ear approximation, up(x, t) = up(x, ω)eiωt and ui(x, t) =
ui(x, ω)eiωt, this leads to the following solution for the
pinned and interstitial vortex displacement fields:

up(x, ω) =
(nαv + αr)φ0Jac(x)

αp(αv + αr) + αr(nαv + αr)
, (14)

ui(x, ω) =
(αp + nαv + αr)φ0Jac(x)

αp(αv + αr) + αr(nαv + αr)
, (15)

where the frequency dependence of αr is implicit.
The response function can now be obtained by evalu-

ating the local center-of-mass displacement field, that is,
u(ω) = 1

n [up + (n− 1)ui]. From Eqs. (14) and (15):

µv(ω) = φ0
(1− 1

n )αp + nαv + αr

αp(αv + αr) + αr(nαv + αr)
. (16)

Notice that from the linearity condition implicit in
Eq. (3) the position dependence of µv cancels out. Of
course, this relies on the assumption that the coupling
constants are themselves not position dependent, which
is a reasonable approximation for uniform flux distribu-
tion.

It is also worth mentioning that, by taking αp, αv = 0,
one recovers the single-species models, in which the whole
dynamics is described in terms of a single elastic con-
stant. Accordingly, in the low-frequency limit consid-
ered here one would have the well known Campbell re-
sponse,36 µv(ω) = φ0/αr(ω), but with a dispersive, com-
plex Labusch constant, given by Eq. (13), accounting for
linear flux creep.

III. SCANNING HALL PROBE EXPERIMENTS

A. Sample layout and equilibrium vortex
configurations

The sample under investigation is a nano-structured
high-quality Pb superconducting strip of width 2a =
600 µm, and thickness d = 50 nm, see Fig. 3(a). The
sample contains a square array of square antidots with
an antidot void area of b2 = 0.6 × 0.6 µm2, as ob-
tained by electron-beam lithography and subsequent lift-
off. The periodicity of the antidot lattice is ap = 3µm.
Thereby, the magnetic flux density at which the num-
ber of antidots coincides with the number of vortices is
B1 = φ0/a

2
p = 0.2298 mT. This particular sample layout

is chosen as it is well studied in literature by macroscopic
ac-susceptibility measurements.15,37

(b)

(a)

FIG. 3. (color online) (a) Schematic layout of the investigated
transport bridge with a patterned area. Most of the scanning
Hall probe microscopy images were obtained in a 16×16 µm2

area at the border of the sample. The dc and ac magnetic
fields are applied perpendicularly to the plane of the Pb film.
(b) Atomic force microscopy image of the sample surface.

The sample was deposited on top of a SiO2 insulat-
ing substrate and covered by a Ge buffer layer of 60 nm
to prevent oxidation. An additional gold layer of 50 nm
covers the whole strip and allows to approach the sample
surface in STM mode. Fig.3(b) shows a representative
atomic force microscopy image of the sample surface. In
all cases the magnetic field (ac and dc) is applied perpen-
dicularly to the plane of the film. The superconductor to
normal transition at zero field occurs at Tc = 7.2 K as
measured by monitoring the in-phase and out-of-phase
response to an applied ac magnetic field with the Hall
probe while sweeping the temperature through the nor-
mal metal-to-superconductor transition.

We start by investigating the vortex distributions at
T = 4.2 K generated after field cooling (FC) at a given
value of the applied dc magnetic field, Hdc. This proce-
dure guarantees uniform flux distribution (with macro-
scopic flux density B ' µ0Hdc) and thereby allows us
to explore near to equilibrium vortex states, which are
established at a temperature Tf close to Tc.

38 The corre-
sponding vortex configuration is revealed by measuring
the local (microscopic) magnetic induction, bz(x, y), in
a scan range of 16 × 16 µm2 with a submicro-sized Hall
probe (0.5 × 0.5 µm2), approximately 1.2 µm above the
sample surface. The mapping of bz(x, y) was obtained
using a modified low-temperature SHPM from Nanomag-
netics Instruments.39 The above described procedure is
followed for field values between Hdc = ±3.9H1 (with
H1 = B1/µ0) in steps of ∆Hdc = +0.004 mT/µ0, which
is less than the field necessary to have one additional
vortex per scan area φ0/(16× 16µm2) = 0.008mT. Some
selected experimental results are shown in Figs. 4 and 5
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H=0H1 H=1/4H1 H=1/3H1 

H=0H1 H=1/4H1 H=1/3H1 

H=1/2H1 H=2/3H1 H=3/4H1 

H=1/2H1 H=2/3H1 H=3/4H1 

16µm 

16
µm

 

FIG. 4. (color online) Contour plots: Scanning Hall probe
microscopy images obtained after field cooling down to T =
4.2 K in presence of the indicated dc magnetic field H =
0H1, 1/4H1, 1/3H1, 1/2H1, 2/3H1 and H = 3/4H1. The open
circles represent the antidot positions. The theoretical pre-
diction of Ref. 40 is shown schematically above the respective
image, with filled circles representing the antidots occupied
by a singly quantized vortex.

H=H1 H=1.06H1 H=1.31H1 

16µm 

16
µm

 

FIG. 5. (color online) Scanning Hall probe microscopy images
obtained after field cooling down to T = 4.2 K. From left to
right, for H = H1, 1.06H1 and H = 1.31H1, respectively. The
open circles indicate the position of the antidots.

for fields respectively below and above the first match-
ing field. The color scale is adjusted for every image to
maximize the contrast.

It is clear from Figs. 4 and 5 that the sample shows
commensurability effects. Not only first matching is
nicely present, also fractional matching features can
be identified in agreement with previous theoretical

predictions40 (shown schematically in Fig. 4 for compari-
son). However, the commensurate vortex distributions at
fractional matching fields present a considerable amount
of structural defects, possibly reminiscent of domain for-
mation.41,42 Just above the first matching field, the first
interstitial vortices appear while upon further increasing
the dc field a combination of interstitial and double quan-
tized vortices (at the pinning sites) is established. This
suggests that the saturation number ns of the antidots
at the freezing temperature is 1 < ns < 2.

B. Scanning ac susceptibility images

We track the local ac-response of the different near-
equilibrium vortex configurations obtained after the FC
process described in Sec. III B using the scanning ac
susceptibility microscopy (SSM) technique. The de-
tails of the technique can be found in Ref. 3. In sum-
mary, the superconducting sample is surrounded by a
copper coil, which is mounted coaxially in the bore of
the superconducting magnet and generates an ac field
h(t) = hac cosωt parallel to the dc field. In all measure-
ments we used µ0hac = 0.016 mT. The time dependent
local induction, bz(~r, t), with ~r = (x, y, z0), is picked up
by the Hall probe at a height z0 = 1.5 µm above the sam-
ple surface, and analyzed by a lock-in amplifier using as
a reference the applied ac magnetic field. The mapped
first-order in-phase, b′(x, y), and out-of phase, b′′(x, y),
Fourier components provide us with a first (linear) ap-
proximation to the local in-phase (inductive) and out-of-
phase (dissipative) responses, respectively. The zeroth
order (dc) component, bdc(x, y) maps the time averaged
flux distribution. To avoid unwanted effects such as eddy
current heating, the skin effect of the sample holder or
the frequency dependence of the Hall probe sensitivity,
we performed all measurements at a fixed low driving
frequency of f = ω/2π = 77.123 Hz. The dwell time at
every pixel (τpix) and the integration time of the lock-in
(τint) are chosen appropriately (τpix, τint � 1/f) and the
measured phase between the picked up signal and the ac
magnetic field drive is fixed above Tc = 7.2 K to zero.

Fig.6 shows the maps of bdc(x, y) (first row), b′(x, y),
and b′′(x, y) acquired following the above described pro-
cedure for a few selected values of Hdc at the temper-
atures T = 6.7 K (T/Tc = 0.931) and T = 6.9 K
(T/Tc = 0.958) in a fixed area which includes the sam-
ple edge (represented in the images by the white lines).
The estimated positions of the antidots are shown in or-
der to help distinguish between trapped and interstitial
vortices. In order to isolate the vortex contribution to
the sample response, bv(x, y), we have also subtracted
the pure Meissner response, which corresponds to the
in-phase response at Hdc = 0, following Eq. (10). There-
fore, the third row represents the in-phase component of
bv. Since the Meissner response is purely real, the fourth
row, b′′(x, y) also represent the out-of-phase component
of the vortex contribution. For a better visualization,
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Hdc = 0.5 H1 Hdc = 1.2 H1 Hdc = 1.4 H1 Hdc = 0.9 H1 Hdc = 1.2 H1 Hdc = 1.4 H1

FIG. 6. (Color online) SSM images showing the ac response (mapped in a 16×16 µm2 region near the sample edge) to a 77.123
Hz excitation field of amplitude µ0hac = 0.016 mT for different field values at T = 6.7 K (left) and T = 6.9 K (right). The
first row shows the dc (time-average) flux distributions. The in-phase and out-of-phase components of the total ac response
are mapped in the second and fourth rows, respectively. The in-phase vortex response, defined as the difference between
the in-phase and the Meissner responses, is shown in the third row. In all images, the white dots and the white line show
schematically the position of the square anti-dots and the sample edge, respectively. The dashed circles highlight the position
of selected interstitial vortices. All red-blue colorbars are in units of µ0hac.

we reduced noise in all images using a σ = 2 gaussian
smoothing. The images in rows 2 to 4 are in units of
µ0hac, so the numerical values depicted in the color bars
represent the local magnetic permeability

In contrast to the images acquired away from the sam-
ple edge (Figs. 4 and 5), the dc images shown in the
first row of Fig. 6 reveal that the number of vortices near
the sample edge is in general smaller than that expected
for the external dc field value. This is consistent with
molecular dynamics simulations of vortices in a super-
conducting slab with periodic pinning, which predicted
that, for a wide range of applied field values, vortices
distribute uniformly over the bulk of the sample, while
near the sample surface the vortex density depletes con-
siderably.43 Such configurations stem from the interplay
between the pining potential and the Bean-Livingston
(B-L) barrier,44 which tends to keep vortices away from
the sample surface within a distance of the order of λ.45,46

In the present case, since the field is applied perpendicu-
larly to the sample, the width of the flux-depleted region
is at least of the order of Λ = λ2/d. Additional depletion
can also be attributed to the long range nature of the
screening current.47,48 However, the experimental obser-

vation in antidot systems of pronounced matching effects
at values of the applied field that coincide with the ex-
pected flux-density, µ0H = nB1,10–22 suggests that the
depletion zone is much narrower than the sample itself.
In any case, as shown in the Supplemental Material, our
results do not depend strongly on the width of the flux-
depleted region.

Now we turn our attention to the ac response. We
first note, at 6.7 K, a pronounced enhancement of the
inductive response near the sample edge, which is the
hallmark of the ac Meissner effect in strips, as discussed
in Sec. II A. Such enhancement seems not to fade upon in-
creasing the dc field. However, for Hdc > 1.4H1, localized
responses induced by the oscillation of a few interstitial
vortices could be observed superimposed to the screening
profile. The motion of these vortices can be better ap-
preciated in the images of the in-phase and out-of-phase
vortex responses (third and fourth rows, respectively),
where the typical peak-valley pair profile, centered at the
mean vortex position, reveals the direction of motion.3,9

The direction of motion is not exactly perpendicular to
the sample border, because it is also influenced by the
asymmetries in the local energy landscape probed by the
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vortex.9,33 Since both components of the local permeabil-
ity nearby the moving vortices are typically of the same
order of magnitude, their motion is clearly phase lagged
with respect to the ac excitation. If we take into ac-
count the very small frequency used in the experiment,
this is a clear evidence of thermally activated hopping of
these vortices. In addition, small permeability peaks at
the sample edge can also be identified. We believe these
are small nonlinear effects produced by vortices nucleat-
ing and annihilating at weak spots of the sample edge
as the excitation field is cycled. Apart from these iso-
lated activities, the profiles of the vortex response at 6.7
K are essentially flat for all investigated dc field values,
indicating that, in average, vortices are strongly pinned
and contribute negligibly to the picked up ac-response.
Therefore, at this temperature, Λac ' λ2/d and the strip
responds to the ac excitation as if in the Meissner state.

As opposed to the T = 6.7 K case discussed above,
at 6.9 K the Meissner screening diminishes considerably
upon increasing Hdc above the first matching field. While
for Hdc ≤ H1 the vortex response contributes negligibly
to the overall sample response (as illustrated by the flat
profiles of b′v and b′′ for the H = H1 case), for Hdc > H1

both in-phase and out-of-phase components of bv reveal a
strong, delocalized contribution of vortices to the sample
ac permeability and ac penetration depth. Some local-
ized vortex activities can be observed but this time they
are superimposed to a background permeability profile
that resembles those of Fig. 1, that is, b′v (b′′v) is strongly
negative (positive) nearby the sample edge and smoothly
crosses over to positive (negative) values as crossing the
sample from outside in. This is an evidence that vortex
dynamics contribute strongly to the macroscopic sample
response. Moreover, this contribution is highly dissipa-
tive, indicating that for T = 6.9 K the mean vortex dy-
namics in the sample is dominated by thermal activation
processes.

It is important to mention that, due to the strong non-
locality of the field-current relation in a thin strip under
perpendicular field, the vortex permeability profiles ob-
served in the scan area build up with the contribution
of moving vortices over the whole sample. For instance,
for H1 < H < 1.2H1, no interstitial vortices were ob-
served within the scan area and no feature characteristic
of single moving vortices was observed. However, perme-
ability profiles very similar to those shown in Fig. 6 for
Hdc = 1.2H1 can still be observed, which is a result of the
dynamical response of interstitial vortices that do popu-
late the bulk of the sample. The fact that the SSM tech-
nique allows us to resolve this collective response at scales
smaller than |Λac| provides us with a unique opportunity
to confront the theoretical predictions of Sec. II and ex-
tract details about the vortex dynamics in the nanostruc-
tured superconducting strip.

IV. MODEL VS. EXPERIMENT

To compare our experimental results to the model de-
veloped in Sec. II, we first establish estimates of the dif-
ferent elastic constants. The cage constant has been
calculated exactly for an infinite square array of arti-
ficial pinning centers with period ap � πΛ and per-
fectly ordered vortex configurations:24 αv = πε/a2p, where

ε = φ20/2πµ0Λ is the energy scale. For a narrow strip,
however, the infinite sum over trapped vortices is obvi-
ously an overestimate. Moreover, disorder in the vortex
configuration softens αv even further. Therefore we as-
sume

αv = cv
πε

a2p
, (17)

where cv (typically < 1) is an empirical prefactor, which
we will further assume to be temperature independent.

For an antidot with radius R .
√

2ξ, a lower esti-
mate of the pinning potential can be obtained by cal-
culating the gain in condensation energy as a vortex ap-

proaches the antidot:1 UAD(r) ' U (0)
AD/(1+r2/2ξ2), with

U
(0)
AD = (R/2ξ)2ε/2. αp follows immediately from the sec-

ond derivative of UAD(r):

αp '
(
R

2ξ

)2
ε

ξ2
. (18)

For an antidot system with ns = 1, the prefactor (R/2ξ)2

is of the order 1. For a weak pinning center, such as a
material defect, the potential well can be modeled in a
similar way, Up(r) ' U0/(1 + r2/2ξ2), with U0 = crε/2,
but with a prefactor cr considerably smaller. Therefore,
the typical spring constant of weak pinning centers can
be estimated as

αr0 ' cr
ε

ξ2
(19)

and the hopping time appearing in Eq. (13) can be ex-
pressed as

τ ∼ η

αr0
exp

(
crε

2kBT

)
, (20)

with cr � 1 typically.
Before proceeding with the comparison between the

model and the experimental results for non-zero dc fields,
we fitted Eq. (8) to the experimental data for Hdc = 0. In
this case (ac Meissner state) no vortices are present and
the ac perturbation is expected to be screened within
a length Λac = λ2/d. We performed the fitting for
both temperatures using the zero temperature penetra-
tion depth, λ(0), and the probe height, z0 [appearing in
Eq. (9)] as free parameters and adopting the Ginzburg-
Landau scaling for λ(T ). The best fit was obtained for
λ(0) = 65 nm and z0 = 1.38 µm. These values are in
agreement with those obtained in Ref. 34 by analysis of
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FIG. 7. Contour plots of the inductive magnetic permeability, b′/hac (in units of µ0), measured at (a) T = 6.7 K and (b)
T = 6.9 K and averaged over the direction along the strip, as a function of position across the strip and the applied dc field
(in units of H1). Panels (c) and (d) correspond to similar contour plots calculated using the model described in Sec. II and
the values of the empirical parameters cv and cr appearing in Eqs.(17)-(20). These values were obtained by fitting the model
(lines) to the experimental data (symbols) corresponding to averaging the in-phase (e) and the out-of-phase (f) SSM images
over the scan area.

the permeability profiles of the dc Meissner state.49 The
fitting results are discussed in more detail in the Supple-
mental Material.

With the values for z0 and λ(0) at hand, and using
ξ(0) = 35 nm, estimated from the temperature depen-
dence of the upper critical field, we take cv and cr as the
only free empirical parameters to be determined for non-
zero dc fields. The fitting procedure is as follows. For
each temperature and in the field range 0 ≤ Hdc ≤ 2H1

we integrate both real and imaginary components of the
acquired magnetic response over the whole scan area in
order to obtain the inductive and dissipative components
of the mean magnetic permeability, 〈b′〉/hac and 〈b′′〉/hac
respectively, as functions of Hdc. Since the scan area en-
closes the sample edge and adjacencies, these averages are
highly sensitive to the specific value of Λv and, thereby,
on the vortex dynamics within the strip, as discussed in
Sec. II A. Then, we used Eqs. (8) and (9) to compute
the theoretical local permeability and averaged it over
an area equivalent to that used in the experiment. The
fitting parameters cv and cr were included in the calcula-
tion via the theoretical expression for the ac penetration
depth, Λac = Λ+Λv, with Λv given by Eqs. (5) and (16).
For 0 ≤ Hdc ≤ H1, in which case interstitials are absent,
we used the response function given by Eq. (14) with αv

set to zero.

In Figs. 7(a) and (b), we present the results (for
T = 6.7 K and 6.9 K, respectively) of integrating the in-
ductive component of the sample response only in the di-
rection along the strip. The data is organized as contour

plots in the plane defined by the perpendicular position
with respect to the sample edge and Hdc. This allows
for a better visualization of how the permeability profiles
evolve when increasing the dc field. In Figs. 7(e) and (f),
we present the result of integrating over the whole scan
area (symbols). In both cases, we used the raw data ac-
quired by the SSM system. No smoothing procedure was
used. It is clear that, for T = 6.7 K, the field penetration
is almost field independent within the investigated field
range, although some spreading of the penetrating flux
can be identified above H1. Notice that the data becomes
more noisy for 1.2H1 . Hdc ≤ 2H1, which is a result of
the motion of a few interstitial vortices within the scan
area as discussed in the previous section. At T = 6.9 K,
the flux penetration is essentially field independent for
Hdc ≤ H1 but changes remarkably to a much smoother
profile precisely at Hdc = H1, as can also be observed in
the experimental 〈b′〉(Hdc) and 〈b′′〉(Hdc) curves. As a
result, a strong reduction in the inductive permeability
integrated over the scan area can be observed. In ad-
dition, the dissipative permeability, which is zero below
H1, becomes positive for H1 . Hdc ≤ 2H1, signaling that
thermal hopping effects are triggered just above H1, that
is, as soon as the first interstitials populate the sample.

After exploring a wide range of values of the fitting pa-
rameters, we have found that cv = 0.09 and cr = 0.019
gives the best fit to the experimental data. As can be
observed in Figs. 7(e) and (f), the model (full lines) is
capable of fitting reasonably well and simultaneously the
inductive and dissipative components of the sample re-
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FIG. 8. (Color online.) Symbols: experimental cross-section
profiles of the permeability averaged over lines parallel to the
strip at 6.9 K for selected dc field values. Error bars are stan-
dard deviations from the mean. Lines: theoretical permeabil-
ity profiles calculated using the fitting parameters cv = 0.09
and cr = 0.019.

sponse collected in the whole field range, for both tem-
peratures. The agreement between the theoretical and
experimental cross-section profiles can be appreciated in
Fig. 8, where we show the components of the permeability
for T = 6.9 K and a few selected dc field values. In par-
ticular, for H = 0.5H1, while the agreement is excellent
deeply inside and outside the sample, one can observe a
mismatch between the experimental data and the model
near the sample edge. This can be attributed to the mod-
ulation of the screening current induced by the antidot
rows as discussed in Supplemental Material. A similar
mismatch was observed for all H ≤ H1, in which case
the response is dominated by the Meissner effect rather
then by vortex motion. For higher fields, strong fluctu-
ations induced by the interstitial vortices shaking within
the scanning area can be observed in the experimental
data, which of course is not captured by our mean field
model. In spite of this, the fact that the use of only
two fitting parameters makes it possible to capture the
main trends of our experimental results is a compelling
evidence that the model describes the main physics of
the vortex dynamics in our sample.

In order to better understand the different dynamical

TABLE I. Elastic coupling constants (in pN/µm) due to anti-
dots (κp), random pinning (κr0), and vortex caging (κv), and
thermal hopping time (τ) calculated for both experimental
temperatures using the fitting results of Fig. 7.

T (K) κp κr0 κv ωτ

6.7 20.6 0.269 0.00706 599

6.9 4.44 0.0967 0.00424 0.0739

behaviors observed in the different temperatures used in
the experiments, we give in Table I the values of the
coupling constants calculated for both temperatures us-
ing the fitting parameters. Notice that in both cases
κp � κr0 � κv. However, thanks to the exponential de-
pendence of the hopping time on the pinning parameters
[c.f. Eq. (13)], the product ωτ is four orders of magnitude
larger at 6.7 K (ωτ = 599) than at 6.9 K (ωτ = 0.0739).
Therefore, for 6.9 K the vortices can hop several (about
13) times within one cycle of the excitation force, re-
sulting in a strongly dissipative, creep-like motion and,
consequently, in a prominent out-of-phase component of
the ac screening length and the sample permeability. On
the other hand, for 6.7 K, they keep trapped essentially
at the same pinning site and their motion is nearly re-
versible, leading to a virtually real ac screening length
and, thereby, to an essentially inductive sample response.

If the temperature is further increased, one may expect
that vortices hop so many times within each excitation
cycle that, effectively, the random landscape is washed
out. Only then, the caging of interstitial vortices dom-
inates the response. To better illustrate this point, we
consider, for simplicity, the case of Hdc = 2H1 and take
the limit of strong artificial pinning, that is αp � αr, αv,
for which vortices in the artificial traps are essentially
immobile and the low-frequency response function takes
the simpler form:

µv(ω) ' φ0
2

(
αv +

αr0

1− i/ωτ

)−1
, (21)

where the factor 1/2 reflects the fact that only half the
vortex lattice (interstitial vortices) is moving, while the
other half is immobile. This equation makes it clear that
when ωτ → ∞ (low temperature limit), the response is
purely inductive and characterized by an effective spring
constant αL = αv + αr0. Since typically αr0 � αv, the
response will be dominated by material defects such as
in the conventional Campbell regime. In the other limit,
ωτ → ∞ (high temperatures), µv(ω) is again purely in-
ductive, but now αL = αv and the response is dominated
by the cage potential. Therefore, by controlling either the
temperature or the excitation frequency one can fine tune
the mean number of thermal vortex hops and, thereby,
switch between two very different dynamical regimes: a
low mobility one, dominated by pinning due to sample
inhomogeneities, and a highly mobile one, dominated by
a pinning mechanism based on the cage effect.
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FIG. 9. (Color online.) Temperature dependence of the real
(thick blue line) and imaginary (thick green line) components
of the effective ac penetration depth calculated for the sam-
ple under excitation frequency 77.123 Hz using Eq. 16. Light
dashed lines correspond to the approximate Eq. 21. For com-
parison, we also plot Λac(T ) for the case where random pin-
ning is absent (thin red line) and the case where thermal
fluctuations are ignored (thin black line).

Fig. 9 shows the ac screening length of the sample, Λac,
for an excitation frequency 77.123 Hz, calculated for a
wide temperature window using Eqs. (5) and (16), the
formulas for the coupling constants [Eqs.(17)-(20)], and
the values found for the fitting parameters, cv = 0.09
and cr = 0.019. The solid thick lines were obtained
using the full equation (16), with n = 2, while dashes
represent the large αp approximation [Eq. (21)]. The
transition between the high-temperature, highly mobile
regime, with a large ac penetration depth, to the low-
temperature frozen state, where Λac ≈ Λ, is very clear.
This transition is accompanied by a peak in the imag-
inary part of Λac, resulting in the observed dissipative
component of the sample response at T = 6.9 K.

It is worth mentioning that this effect is not restricted
to nanostructured superconductors. In fact, Eq. (21) can
well represent the low frequency response of a vortex sub-
ject to any confining background potential. For instance,
a similar resonant dissipation has been observed experi-
mentally for the dynamical response of a single vortex in
a plain Pb microstrip9. In this system, dc Meissner cur-
rents and the interaction with a nearby vortex produced
a background confining potential which adds to the ran-
dom pinning landscape. This result can not be explained
in terms of a single Labusch constant. Rather, an addi-
tional spring constant representing the background con-
fining potential is a crucial ingredient for cutting off the
divergence of the complex response function at high tem-
peratures (when pinning is washed out), thus resulting in
the observed dissipation peak.

V. CONCLUSION

In summary, we have conducted scanning susceptibility
microscopy (SSM) experiments that revealed the inter-

play between the different energy scales associated to the
linear response of vortices in a nanostructured supercon-
ducting strip. For that, we took profit of the used local
character of the SSM technique to systematically sepa-
rate the contribution of vortices and screening currents to
the sample response. The behavior of the inductive and
dissipative components of the vortex response near the
sample edge was found to be consistent with a Meissner-
like state in which the external ac field is screened within
a well-defined complex screening length, Λac. By intro-
ducing a simple model which takes into account all rel-
evant elastic couplings in this system (namely, vortex-
antidot, vortex-vortex and vortex-random pinning cou-
plings) as well as thermal activation through weak pin-
ning sites, we derived an expression for Λac in terms of
the respective mean-field elastic constants. This allowed
us to successfully fit the experimental data for different
temperatures and fields and, thereby, to quantify the rel-
evance of each elastic constant to the system response in
the different experimental conditions.

We have found that this system, excited at the low
frequency of 77.123 Hz, is particularly sensible to ther-
mal fluctuations at temperatures close to Tc = 7.2 K. At
6.7 K the interstitial vortices are essentially frozen up by
quenched disorder, whereas at the slightly larger temper-
ature of 6.9 K they become highly mobile, as evidenced
by the strong enhancement of the ac screening length. We
atribute this drastic change of behavior at nearby tem-
peratures to the exponential character of thermal activa-
tion through quenched disorder, which for 6.9 K allows
interstitial vortices to thermally hop several times within
each excitation cycle, thus rendering the observed high
mobility. At 6.7 K, the hopping time is just much larger
than the excitation period, so that at this temperature
the interstitial vortices become effectively pinned by ma-
terial defects. This result highlights the importance of
thermal relaxation in low-Tc nanostructured supercon-
ductors and thereby of the time scales of experiments
performed on these materials.
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