Université de Liège

Exploration of source flexibility in schizophrenia: Specificity and relationships with real world functioning and hallucinations

Julien Laloyaux¹ & Frank Larøi^{1,2}

¹ University of Liège, Psychology and Neuroscience of Cognition Research Unit, Liège, Belgium
 ² University of Bergen, Department of Biological and Medical Psychology, Bergen, Norway

BACKGROUND

- Source flexibility in one important aspect of human cognition (Burgess et al., 2007)
- This cognitive mechanism is hypothesized to be implicated in a number of different activities of real world (Burgess et al., 2007)
- It may also play a central role in the apparition and maintenance of specific symptoms such as hallucinations
- Such a hypothesis is congruent with the self-regulatory executive

METHODS

Participants

- ✤ 36 patients diagnosed with schizophrenia
- ✤ 28 healthy controls

Materials

Computerized tasks

function model (Wells and Matthews, 1994)

- However, it has received very little interest in the literature
- Moreover, this is unclear if such mechanism is independent of cognitive flexibility and processing speed
- The aim of the present study is to explore a potential impairment of source flexibility in a group of persons diagnosed with schizophrenia and to examine whether or not this mechanism is independent from processing speed and cognitive flexibility
- A second aim is to examine the extent to which source flexibility is related to real world functioning and auditory hallucinations
- Source flexibility Alphabet task (Gilbert et al., 2005)
 Cognitive flexibility (Zimmermann and Fimm, 2010)
 Processing speed (Verhaegen and Poncelet, 2013)

Clinical measures

- FROGS
- ✤ PSP
- PSYRATS/Hallucination subscale: Emotion, Cognitive interpretation, Disruption, and Physical characteristics

RESULTS

1. Performance on the cognitive tests in the two groups

2. Correlations between cognitive variables and clinical variables in the patient group

	Patients -	Healthy controls	t (62)	
	Mean(SD)	- Mean(SD)		
Source flexibility		·		
RT – SO (ms)	1076.79 (221.94)	882.60 (149.72)	3.97***	
RT – SI (ms)	1348.28 (406.49)	1040.47 (212.11)	3.63***	
RT – SI to SO (ms)	1584.33 (599.00)	1160.58 (338.10)	3.34***	
RT – SO to SI (ms)	1910.05 (770.15)	1329.62 (366.60)	3.67***	
RT -Mean slowing	534.65 (448.04)	283.56 (221.90)	2.71***	
Switch vs Stay (ms)				
RT - Mean slowing SI vs	298.60 (333.50)	163.45 (176.40)	1.94*	
SO (ms)				
Error % - SO	8.64 (13.66)	2.28 (3.24)	2.40*	
Error % - SI	14.55 (18.75)	4.26 (6.94)	2.75**	
Error % – SI to SO	5.82 (12.37)	4.46 (6.20)	0.53	
Error % – SO to SI	15.30 (19.79)	2.77 (6.92)	3.19**	
Cognitive flexibility				
RT (ms)	1440.44 (502.23)	846.05 (293.54)	5.56***	
Error %	15.18 (12.47)	5.84 (5.65)	3.67***	
Processing speed				
RT (ms)	777.14 (129.40)	645.25 (131.88)	4.01***	
Error %	12.00 (10.56)	6.11 (10.64)	2.20*	

	PSP	FROGS	PSYRATS	PSYRATS -	PSYRATS-	PSYRATS-		
			Emotion	Cognitive	Disruption	Physical		
				interpretation		charact.		
Source flexibility								
Reaction time – SO	0.12	0.06	0.01	-0.21	-0.17	-0.13		
Reaction time – SI	0.09	0.00	-0.03	-0.19	-0.20	-0.17		
Reaction time – SI	0.07	-0.01	-0.08	-0.27	-0.26	-0.17		
to SO								
Reaction time – SO	-0.19	-0.16	0.18	-0.04	0.08	-0.02		
to SI								
Reaction time -	-0.19	-0.17	0.11	-0.08	0.03	-0.02		
Mean slowing								
Switch vs Stay								
Reaction time -	-0.27	-0.21	0.25	0.14	0.27	0.06		
Mean slowing SI vs								
SO								
Error % - SO	-0.18	-0.16	0.12	0.36*	0.23	0.21		
Error % - SI	-0.33*	-0.23	0.20	0.33*	0.32	0.17		
Error % – SI to SO	-0.17	-0.09	-0.04	0.08	0.10	0.02		
Error % – SO to SI	-0.28	-0.23	0.05	0.23	0.22	0.07		
Cognitive flexibility								
Reaction time (ms)	-0.23	0.07	0.11	-0.11	-0.01	-0.08		
Error %	-0.42**	-0.23	0.27	0.12	0.23	0.03		
Processing speed								
Reaction time (ms)	-0.21	-0.07	0.05	-0.35*	-0.20	-0.24		
Error %	-0.11	-0.30	-0.12	0.01	0.02	-0.08		

* = p<0.05; ** = p< 0.015(Benjamini-Hochberg-Yekutieli correction); *** = p<0.001

➔ Controlling for processing speed or cognitive flexibility did not affect the original differences

* = p<0.05; ** = p<0.01 (Benjamini-Hochberg-Yekutieli correction)

DISCUSSION

Persons diagnosed with schizophrenia presented significant slower RT and a higher percentage of errors for all the cognitive measures

- Controlling for the impact of processing speed or cognitive flexibility on the source flexibility tasks did not affect the original differences
 Such results suggest the specificity of source flexibility abilities
- Patient's difficulties in maintaining attention to one's inner thoughts was related to real world impairments
- * Moreover, difficulties in maintaining attention to one's inner thoughts and to the outside world were related to the presence of hallucinations
- The present results have several clinical implication. In particular, Wells (1990, 2006) described an attention training technique designed to reduce the self-focused attention by training the patient to focus on several external sounds introduced in the treatment room. Recently, a case study (Levaux et al., 2011) demonstrated this technique to be effective in reducing positive symptoms in a patient diagnosed with schizophrenia. However, the results of the present study suggest that adding a specific training aiming to increase the focus on the internal world would benefit the reduction of hallucinations

Address for correspondence: j.laloyaux@ulg.ac.be