Drilus flavescens FOURCROY, prédator d'escargots

(Coléoptère, Drilidae)

par Noël Magis

Les coquilles vides de Gastéropodes terrestres hébergent une faune très variée de petits invertébrés. Dans certaines biocénoses, elles représentent une niche écologique de première importance. C'est ainsi qu'en Camargue, où les pierres sont particulièrement rares, ce sont les excréments déséchés des taureaux et les coquilles de Mollusques morts qui, principalement, sont utilisés comme refuge par les Arthropodes de ce milieu (Bigot, 1957).

Certains insectes ne se contentent pas d'habiter ces coquilles vides mais peuvent également, soit au stade larvaire, soit à l'état adulte, faire leurs proies des Mollusques eux-mêmes. Parmi les Coléoptères, on cite le plus souvent divers adultes de la famille des Silphidae (*Aclypea Reitter*, *Phasphyla Leach*) ainsi que les larves de nombreux Lampyridae. Certaines de celles-ci, devenues secondairement aquatiques, ont néanmoins conservé les spécialisations alimentaires des Lampyridae terrestres et s'attaquent aux Mollusques d'eau douce (Okada, 1928).

L'intérêt particulier qui s'attache aux larves de *Drilus flavescens* réside en ce que leur comportement réunit les deux tendances précédentes. Outre qu'elles attaquent et dévorent des escargots, elles colonisent simultanément les coquilles de leurs proies pour y muer et s'y métamorphoser. Aux particularités éthologiques du *Drilus* s'en ajoutent d'autres, intéressant des aspects importants de la biologie des Coléoptères.

1. **Le dimorphisme sexuel.**

En décrivant sous le nom de *Cochleoctonus vorax* « un insecte dont la larve attaque *Helix nemoralis* », Mielzinsky (1824) hésitait beaucoup sur la position qu’il devait lui attribuer dans la classification. Latreille (1824), à qui le mémoire fut soumis, y voyait un Coléoptère voisin des Lampyridae, mais conseillait à l’auteur de poursuivre ses recherches sur l’animal. Desmarest (1824) répondit le premier...
à ce souhait et donna réponse à plusieurs questions laissées initialement en suspens.

Par dissection, il acquit d’abord la preuve que tous les insectes auxquels s’appliquait la diagnose du Cochleoctonus, étaient des femelles. Ensuite, il observa «un Cochléoctone accouplé avec un Insecte d’un volume quinze fois moindre que le sien». Frappé par les différences de taille et de forme, Desmares s’entoura de précautions remarquablement rigoureuses pour s’assurer de la spécificité de cet accouplement. Il dut se rendre à l’évidence : ce petit insecte, qu’il identifiait sans hésitation au Drilus flavescens, était bien le mâle du Cochleoctonus vorax. L’examen, même sommaire, des fig. 1 et 2, permet aisément de comprendre et d’excuser une méprise qui a du se reproduire plus d’une fois dans l’incognito des cabinets d’entomologie.

La femelle mérite indiscutablement la qualification de larviforme puisque les signes extérieurs de la métamorphose se limitent presque exclusivement aux pattes et aux antennes. Les femelles de Lampyris noctiluca L. et de Phausis splendidula L. sont également larviformes. Le thorax de ces Lampyrides porte cependant des rudiments d’ély-
Fig. 2. — Fémelle de la même espèce longue de 16 mm. Le segment génital légèrement sorti est partiellement visible à l'extrémité de l'abdomen.

tres et des moignons d'ailes dont on ne retrouve aucune trace chez Drilus. On peut dire, à ce titre, que la femelle du dernier est encore « plus larve » (ou « moins adulte ») que celle des Lampyrides. La convergence anatomique y est, par conséquent, encore plus achevée (1).

Le mâle, comme celui des Lampyrides, est un imago à part entière. Il est d'autant mieux l'image de son espèce que son activité diurne, sa faculté de vol et son attirance vers les fleurs, le rendent, beaucoup plus que la femelle rivée au sol, vulnérable aux filets des entomologistes. Le comportement très différent des deux sexes

(1) Les femelles des différents Drilus, comme celles d'autres Drilidae (Malacogaster Bassi, Selasia Castelnau) sont construites sur un plan morphologique absolument semblable.
explique pourquoi les collections, même spécialisées, renferment régulièrement beaucoup plus de mâles que de femelles et donnent une idée absolument erronée du « sex ratio » (1).

Les tableaux dichotomiques usuels permettent aisément d’identifier Drilus flavescens, en dépit d’une assez large variation de taille (1).

2. — **Exigence ou tolérance vis-à-vis des proies?**

D’après les renseignements bibliographiques, les larves de *D. flavescens* ont été trouvées dans les coquilles de divers *Helix* (dont l’Escargot de Bourgogne), *Cepaea, Hyalina, Monacha, Hygromia et Helicella*. Cet éclectisme est entièrement corroboré par les observations de Crawshay (1903) qui a élevé une larve en lui donnant successivement plusieurs espèces de Gastéropodes.

Cette tolérance n’exclurait pas l’existence de préférences alimentaires. Telle est, semble-t-il, la conclusion des travaux de Crois (1926) sur l’espèce voisine *D. mauritanicus*. Dans certaines régions d’Algérie, c’est dans les coquilles d’un *Cyclotoma* que l’auteur a trouvé le plus de larves. Dans les biotopes où ce mollusque fait défaut, *Drilus* s’attaque au *Rumina decollata* alors que les *Helix* abondent et, bien plus, sont facilement acceptés par des larves captives.

Les données suivantes, empruntées au travail déjà cité de Crawshay, démontrent l’existence indubitale d’un rapport entre la taille de la larve et les dimensions de la coquille attaquée.

<table>
<thead>
<tr>
<th>Longueur successive d’une même larve</th>
<th>Plus grand diamètre des coquilles</th>
</tr>
</thead>
<tbody>
<tr>
<td>± 8 mm</td>
<td>8 mm (Helix virgata)</td>
</tr>
<tr>
<td>± 10 mm (après hivernage)</td>
<td>8 mm (H. aspersa)</td>
</tr>
<tr>
<td>± 13 mm</td>
<td>28 mm (id.)</td>
</tr>
<tr>
<td>± 21 mm</td>
<td>25 mm (id.)</td>
</tr>
</tbody>
</table>

L’observation directe du comportement d’attaque des larves (cf. 3 ci-dessous) confirme entièrement le rapport entre la taille du prédateur et celle de sa proie.

En conclusion, les connaissances acquises montrent que la prédation des larves du *Drilus* n’implique aucune spécificité alimentaire. Cette tolérance n’exclut pourtant pas la possibilité d’un tri dans les populations disponibles. Ce choix dépendrait de plusieurs facteurs, les uns mécaniques (rapport entre la taille de la larve et du mollusque), les autres tactiques de la proie (idem ci-dessous).

2. J’envisais l’hypothèse que cette variabilité individuelle prononcée est d’origine trophique, correlative des antécédents larvaires des individus (cf. 5° ci-après).
...renferment des larves et donnent
...ment d'identi-
...e de taille ().

3. Les préférences alimentaires?

...s de *D. flavescens* (dont l’Es-
...ations de ces observations successi-

...ces alimenta-
...aux de Cros
...ses régions
...l’auteur a
...finit que fait
...ix abondent
...moteurs.

...céphalique de Craw-

...ert entre la
...

...d les coquilles

...n larves (cf.

...ille du pré-

...e la préda-

...limentaire.

...tri dans les
...eurs facteurs,

3. La chasse proprement dite

Le comportement de chasse de la larve de *D. flavescens* a été décrit par Mielzinsky (1824) et Crawshay (1903). En voici l’essentiel.

La larve ne paraît pas attaquer un escargot errant. Lorsqu’une telle rencontre se produit, l’insecte se borne à grimper sur la coquille et à s’y fixer à l’aide de son pygopode, la larve se laisse ainsi véhiculer par l’escargot. L’inactivité du mollusque constituerait donc une condition indispensable et préalable au déclenchement de l’attaque.

Lorsqu’elle trouve un escargot au repos, la larve se hisse sur sa coquille et en inspecte soigneusement l’ouverture pour s’assurer de la présence d’un occupant. C’est ici qu’intervient la notion de choix dont il a déjà été question. Crawshay fait en effet remarquer que s’il existe une disproportion entre l’ouverture de la coquille et la taille de la larve, cette dernière délaisse l’escargot et se met en quête d’une autre proie.
C’est par des morsures répétées que le Drilus tue l’escargot. Les réactions de la victime sont vives, elle secrète un mucus abondant et ses contorsions brutales peuvent forcer la larve à lâcher prise, parfois de façon définitive. La blessure subie n’entraîne pas automatiquement la mort du mollusque. En cas de réussite, la larve dévore entièrement sa proie en pénétrant progressivement dans la spire.

Crawshay a également analysé les manœuvres employées par la larve pour amener l’escargot dans un endroit où elle puisse le cacher, lorsque la proie a été découverte en un lieu trop exposé. Dans ce but, à l’aide de son pygopode, elle prend solidement appui sur la coquille puis, s’agrippant au sol avec ses pattes et ses mandibules, elle s’arc-boute de façon à entraîner l’escargot. La même tactique est utilisée par D. mauritanicus (Cros, 1926). Cette réaction de dissimulation caractérise le comportement des jeunes larves et disparaît chez les plus âgées qui attaquent immédiatement leurs proies, quel que soit l’endroit où elles l’ont trouvées.

Pour être complet, on ajoutera que l’opercule ou l’épiphragme qui obture temporairement les coquilles ne constitue pas une protection absolue contre le prédateur. Par un travail de sape, qui peut s’étendre sur plusieurs journées, les larves sont capables d’y pratiquer une brèche à l’aide de leurs fortes mandibules.

4. — Ingestion et digestion de la nourriture

Comment la proie est-elle tuée ? Comment est-elle ensuite ingérée et digérée ? Les observations réalisées dans le but de répondre à ces questions n’ont pas été conduites de façon suffisamment ordonnée et objective. On a tenté très tôt de transposer au Drilus les notions qui se dégagent des travaux nombreux consacrés aux larves des Lampyridés.

On admet généralement que les «vers nuisants» inoculent d’abord à leur victime un poison qui en accélère la mort. Les chairs sont ensuite réduites en «bouillon» par l’action d’enzymes contenues dans une bave que la larve secrète via un canal creusé dans les mandibules. Cette digestion «extra-intestinale» précède l’ingestion du bol alimentaire par la bouche.

Cette interprétation classique a reçu récemment les critiques de Schwald (1961).

D’après lui, la sécrétion abondante libérée par la larve de Lampyris noctiluca (manifestation observée également chez le Drilus par les auteurs précédemment cités) serait plutôt un moyen d’enrobage...
de l'aliment, destiné à faciliter son passage dans les voies digestives. Cette conception, opposée à la notion d'une digestion extra-intestinale telle qu'elle a été mise en évidence chez la larve du Dytique, s'appuie sur deux arguments. Le premier est la persistance de particules alimentaires volumineuses dans les contenus intestinaux. Le second résulte de l'existence, selon Schwalb, d'une membrane péritrophique dans l'intestin moyen de la larve du Lampyre, membrane faisant défaut chez les insectes pratiquant une digestion extra-intestinal (1). Schwalb confirme expérimentalement l'intervention

(1) Il s'agit une nouvelle fois d'une assertion qui se reproduit de traits en traits et qui repose sur des sources bibliographiques anciennes. Or cette structure est à peine visible à l'œil nu et son étude par les méthodes histologiques classiques s'avère fréquemment décevante.

La microscopie électronique est un auxiliaire plus précieux, mais ses techniques n'ont pas encore été appliquées aux espèces dont il est question ici.

463
préalable d’un venin. La qualification courante de « neurotoxine » reste toutefois prématurée, car la nature, l’origine pas plus que le mode d’action du principe toxique ne sont encore éclaircis.

Ces considérations démontrent, s’il est encore nécessaire, les dangers des raisonnements analogiques et des généralisations hâtives.

Pour répondre objectivement aux questions posées au début du paragraphe, il conviendrait d’entreprendre corrélativement l’étude anatomique de l’appareil buccal des larves de Drilus et l’analyse des processus physiologiques de la digestion.

5. — **Cycle larvaire**

En brisant délicatement la coquille de l’escargot qui vient d’être dévoré, on isole une larve pratiquement inerte tant elle est gonflée par la masse du repas qu’elle vient d’absorber. Après une période de digestion, variant de 8 à 16 jours (Crawshay), le Drilus entreprend alors le nettoyage de la coquille. Les déchets grossiers non consommés sont d’abord expulsés au moyen des mandibules, les parois de la spire sont ensuite brossées par les longs pinceaux de poils qui garnissent le dos de l’animal. Ces opérations précèdent de peu la mue qui s’effectue donc dans la coquille.

Chez Drilus flavescens, comme chez D. mauritanicus, le stade larvaire qui précède la nymphose, s’accompagne d’un changement radical d’aspect. Cette nouvelle larve (fig. 4) diffère des stades précédents (fig. 3) par son corps mou et surtout pratiquement glabre ; ses antennes, ses pièces buccales et ses pattes montrent également divers signes de régression. Cette larve, remarquablement peu sclérisée, est tout à la fois inapte à se déplacer et incapable de se nourrir (1).

La signification de ce stade quiescent demeure assez obscure. Il arrive assez fréquemment, tout au moins chez D. flavescens, qu’à une larve glabre succède un nouveau stade actif, dont le comportement ne diffère nullement de ceux qui l’ont précédé. C’est respectivement en automne et au printemps suivant que Crawshay voit se produire ces transformations, aussi considère-t-il la larve glabre comme une « forme d’hiver », tout en signalant l’existence de quelques exceptions à cette règle. Ruschkamp (1920) constate que les larves de 2 vaisseaux comptent par compteur, ce qui est considéré comme une façon de les compter.

Il conviendrait d’entreprendre des recherches plus approfondies.

Chez les espèces actives de la partie nord du bassin méditerranéen, il est probable que la transformation se produise en dehors de l’été. Cette larve épargne le hachage, comme le précise l’auteur. On peut même prétendre que le cycle complet se déroule en dehors de l’été et du printemps.

(1) Il en est de même chez le Malacogaster passerinii Bassi, autre Drilidae du bassin méditerranéen occidental, étudié par Croos (1930).
larves glabres se rencontrent en été beaucoup plus souvent que l'escomptait son prédécesseur. Quelques expériences l’amènent à considérer l’importance de la sécheresse plutôt que de la température. Il conclut que les termes « forme de besoin » ou « de repos » seraient plus heureux pour qualifier la larve quiescente.

Chez D. mauritanicus, Cros signale avoir vu maintes fois des larves actives passer l’hiver méditerranéen en état d’immobilité complète. Cette observation permet de croire qu’il n’y a pas de liaison directe entre un arrêt momentané de la croissance larvaire et la formation d’un stade quiescent. Chez cette espèce, d’autre-part, l’intercalation de ce stade entre deux larves actives paraît beaucoup moins fréquent que chez le Drilus d’Europe. Sur 25 cas suivis par Cros, 2 seulement ont montré cette anomalie, mais ces 25 larves sont passées obligatoirement par la forme glabre avant la mue nymphale. Si l’on se base sur cette espèce et sur les résultats de Cros, la signification du stade larvaire inactif devient plus claire : avec l’auteur, on peut le considérer comme représentant le stade prénymphal. Il resterait à élucider le problème de son apparition précoce, cas d’hétérochronie particulièrement intéressant.

Chez les Coléoptères, les signes avant-coureurs de la nymphose s’expriment habituellement par une modification du comportement de la larve plutôt que par une transformation profonde de son aspect. Toutefois, chez les prédateurs spécialisés et les parasites, on constate très fréquemment une individualisation beaucoup plus accusée du stade prénymphal.

Ces rapports s’appliquent parfaitement aux Drilus et, dès lors, il paraît certain que ces insectes sont des prédateurs d’escargots bien plus hautement spécialisés que les Lampyridae hélécivores (1).

Université de Liège,
Lab. d’Écologie et de Systématique animales.
22 Quai Ed. Van Beneden, Liège.