

Valentin Christiaens Supervisors: Simon Casassus - Olivier Absil

<u>Collaborators</u>: C. Gomez, **R. Ramirez**, S. Kimeswenger, **J. Girard**, O. Wertz, **A. Zurlo**, S. Lacour, **Z. Wahhaj**

ESO workshop: Resolving planet formation in the era of ALMA and extreme AO 16-20 May 2016

Valentin Christiaens Supervisors: Simon Casassus - Olivier Absil

<u>Collaborators</u>: C. Gomez, **R. Ramirez**, S. Kimeswenger, **J. Girard**, O. Wertz, **A. Zurlo**, S. Lacour, **Z. Wahhaj**

and non-extreme

ESO workshop: Resolving planet formation in the era of ALMA and extreme AO 16-20 May 2016

HD 142527

Herbig Fe star, 145pc, 1-6Myr old, ~2 M_{Sun}

um-dust

- Spiral arms Shadows
- Large gap

Fukagawa+06

Avenhaus+14

- Dust trap
- Large gap

Casassus+13

gas

Large-scale spiral arms

Christiaens+ 14

HD 142527

- Dust trap

- Large gap

Herbig Fe star, 145pc, 1-6Myr old, ~2 M_{Sun}

um-dust

- Shadows
- Large gap

- Spiral arms

100 --100 --100

Avenhaus+14

mm-dust

Casassus+13

gas

Large-scale spiral arms

Christiaens+ 14

Non-keplerian motion

HD 142527

- Dust trap

Herbig Fe star, 145pc, 1-6Myr old, ~2 M_{Sun}

um-dust

- Shadows
- Large gap

- Spiral arms

Avenhaus+14

mm-dust

Casassus+13

gas

Large-scale spiral arms

Christiaens+ 14

Non-keplerian motion

HD 142527 B

Detection/confirmation of companion B at ~80mas (12au)

Dataset

Initial goal: finding forming planets in the gap
Instrument: VLT/SINFONI (H+K) Integral field spectrograph
Data: 40 spectral cubes of 1992 channels
Observation strategy: pupil tracking + 4 points dithering
Post-processing algorithms: ADI+SDI, ADI in each spectral channel

Dataset

Initial goal: finding forming planets in the gap
Instrument: VLT/SINFONI (H+K) Integral field spectrograph
Data: 40 spectral cubes of 1992 channels (photometric conditions)
Observation strategy: pupil tracking + 4 points dithering
Post-processing algorithms: ADL+SDI, ADI in each spectral channel

Re-detection of HD 142527 B

Example for the Br-g line (2.166um) channel:

Re-detection of HD 142527 B

For all spectral channels:

The detection of the companion is > 3-sigma in all but 20 channels

NEGFC technique (Marois+10, Lagrange+10, Wertz+16)

- Inject **negative** fake companions with slightly different *r*, *PA* and -*f* in the original cubes
- PCA-ADI
- Optimal parameters minimize residual flux or stddev in post-processed image
- Optimization with a simplex algorithm

PCA-processed image on original cube

PCA-processed image after injection of an optimal negative fake companion

figure of merit: minimize either residual flux or stddev in this area

NEGFC technique (Marois+10, Lagrange+10, Wertz+16)

- Inject **negative** fake companions with slightly different *r*, *PA* and *f* in the original cubes
- PCA-ADI
- Optimal parameters minimize residual flux or stddev in post-processed image
- Optimization with a downward simplex algorithm

PCA-processed image on original cube

PCA-processed image after injection of an optimal negative fake companion

Position and contrast of HD 142527 B

Uncertainties estimates due to residual speckle noise In one channel (Br-gamma)

- Remove the companion from original frames
- Inject 360 positive fake companions on a same annulus as the companion, at its estimated flux
- Use NEGFC to determine (fake) companion parameters
- Measure the deviations with known injection parameters (r, PA and contrast)

Uncertainties estimates due to residual speckle noise

Across all channels (preliminary)

=> 5-10% rel. uncertainty on the contrast across the spectrum

Spectrum of HD 142527 B

Interpretation of the spectrum of B

- not a very good fit
- the fit gets worse when injecting a 1700K circum-secondary component

Interpretation of the spectrum of B

Conclusions

- VLT/SINFONI combined with ADI allows to extract the spectrum of faint low-mass companions
- We obtained the first medium-resolution spectrum of a low-mass companion at less than 0.1" from the central star
- The biases due to residual speckle noise were estimated with the injection of fake companions
- The spectrum of HD 142527 B is well modeled by a 3400K object with log(g)=2.5 => M ~ 0.3 M_Sun => q ~ 0.15

Appendix: the whole spectrum of HD 142527 B

Appendix: Br-g line of the companion

Non-significant detection:

 $\log(L_{\rm acc}/L_{\odot}) = 0.9 \times (\log L({\rm Br}_{\gamma})/L_{\odot}) + 4) - 0.7 \longrightarrow L_{acc} \leq 2.5\% L_{\odot}$

Consistent with the H-alpha detection: $L_{acc} \sim 1.3\% L_{\odot}$ (Close et al. 2014)

Mass accretion rate:

 $\dot{M_B} \sim 2 \times 10^{-9} M_{\odot} \mathrm{yr}^{-1}$ $\dot{M_B} \sim 0.01 \dot{M_A}$

Appendix: extended emission

NEGFC technique (Marois+10, Lagrange+10, Wertz+16)

- Inject **negative** fake companions with slightly different *r*, *PA* and *f* in the original cubes
- PCA-ADI
- Optimal parameters minimize residual flux or stddev in PCA-processed image
- Optimization with a downward simplex algorithm

PCA-processed image on original cube

PCA-processed image after injection of an optimal negative fake companion

figure of merit: minimize either residual flux or stddev in this area

Appendix: Calibration of HD 142527 A spectrum

Simple $1\lambda/D$ aperture photometry measurement centered on the star in each channel Spectrum of HD 142527 A after Molecfit telluric correction

Appendix: Spectrum of HD 142527 A

- $1\lambda/D$ aperture photometry centered on the star in each channel => raw spectrum
- Use of Molecfit to correct it from telluric lines
- Use of the STD star to correct it for the instrumental response
- The spectrum is less reliable in low atmospheric transmission wavelength ranges (light red)

Appendix: Angular Differential Imaging (ADI)

credit: C. Thalmann

Appendix: ADI with Principal Component Analysis

 $\{\phi_1, \phi_2, \dots \phi_N\}$ is an orthogonal basis constructed from Principal Component Analysis applied to our data frames A_i (e.g. using Singular Value Decomposition)

 $\{c_1, c_2, ... c_N\}$ are scalar coefficients