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Abstract

Remote observation of cometary atmospheres prodacesasurement of the cometary
emissions integrated along the line of sight. Tiisgration is the so-called Abel transform of
the local emission rate. The observation is geheiaterpreted under the hypothesis of
spherical symmetry of the coma. Under that hypashelse Abel transform can be inverted.
We derive a numerical inversion method adapted dmetary atmospheres using both
analytical results and least squares fitting tegis. This method, derived under the usual
hypothesis of spherical symmetry, allows us toeeé the radial distribution of the emission
rate of any unabsorbed emission, which is the fomeddal, physically meaningful quantity
governing the observation. A Tikhonov regularizattechnique is also applied to reduce the
possibly deleterious effects of the noise presenihe observation and to warrant that the
problem remains well posed. Standard error propay&tchniques are included in order to
estimate the uncertainties affecting the retrieseulssion rate. Several theoretical tests of the
inversion techniques are carried out to show itglig and robustness. In particular, we show
that the Abel inversion of real data is only weaggnsitive to an offset applied to the input
flux, which implies that the method, applied to 8tady of a cometary atmosphere, is only
weakly dependent on uncertainties on the sky backgt which has to be subtracted from the
raw observations of the coma. We apply the metbaabservations of three different comets
observed using the TRAPPIST telescope: 103P/ Ha#leF6/ Lemmon and Al/ Siding
Spring. We show that the method retrieves realistiission rates, and that characteristic
lengths and production rates can be derived froendmission rate for both CN and C
molecules. We show that the retrieved characterisiigths can differ from those obtained
from a direct least squares fitting over the obsdritux of radiation, and that discrepancies
can be reconciled for by correcting this flux byafset (to which the inverse Abel transform
is nearly not sensitive). The A1l/Siding Spring aliadons were obtained very shortly after
the comet produced an outburst, and we show thatethission rate derived from the
observed flux of CN emission at 387 nm and from@emission at 514.1 nm both present
an easily-identifiable shoulder that correspondshi® separation between pre- and post-
outburst gas. As a general result, we show thandising properties and features of the coma
using the emission rate is easier than directiygishe observed flux, because the Abel
transform produces a smoothing that blurs the siges left by features present in the coma.
We also determine the parameters of a Haser mdtegfthe inverted data and fitting the
line-of-sight integrated observation, for which w@vide the exact analytical expression of
the line-of-sight integration of the Haser model.
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1. INTRODUCTION

Comets are relatively small size bodies formedhatdarly stages of the solar system
evolution some 4.6 billions of years ago. They aiften considered as potential tracers of
conditions prevailing at that time (Ehrenfreund &ainley, 2000). They mainly consist of an
icy water nucleus with other constituents such @¥an monoxide (CO), carbon dioxide
(CO,), and dust. When these bodies escape their reserneainly the Oort cloud and the
Kuiper belt, and approach the sun, they slowly wapunder the effect of solar radiation and
their ices start to sublimate, releasing water vaf@®, CQ, dust and other minor species.
This process produces a large, highly rarefiedaegmg atmosphere: the coma, surrounding
the icy nucleus.

The coma is exposed to the sun radiation and iticp&ar to the ultraviolet solar flux,
which is capable to trigger photochemical processes as dissociation and ionization of the
gaseous material. Many previous studies focusethi@eomplex photochemistry of the coma
from a theoretical and observational standpointoAgiothers, Bhardwaj & Raghuram (2012)
developed a photochemical model of the coma of ¢d&diE096 B2 (Hyakutake) to analyze
the metastable oxygen 1) and O!S) populations and emissions accounting for
photodissociation and electron impact dissociatbil,O, OH, CO and C¢ as well as the
dissociative recombination of ions®", OH", CO" and CQ" and direct electron impact on
oxygen atoms. Loss mechanisms of metastable oxwgee the radiative decay, quenching
and reaction with D, CO and CQ@ The densities of the major species of the com#®(H
CO, CQ and OH) were given by a Haser model (Biver et1#99). Bhardwaj & Raghuram
(2012) conducted an analysis aimed at matchingotiserved and computed ratio of the
557.7 nm green emission of ‘Sf to the 630.0 and 636.4 nm red emissions 0D} from
which they derived the C{abundance and several photochemical parameteghuRan &
Bhardwaj (2012) also applied the same model withipsetl parameters to comet C/1995 Hale
Bopp. Bisikalo et al. (2015) developed a modelh& photochemistry of D) and OfS)
using a Monte Carlo method to solve the Boltzmamuaton to retrieve the energy
distribution of these species across the expandamga. They showed that the exothermic
nature of the photochemical mechanisms producin@gsteble oxygen yields a strongly non-
thermal distribution of their kinetic energy, whiah turn produces a strongly non-gaussian
emission line profile.

The radial distribution of cometary constituentsoiten described using a Haser model
(Haser, 1957). This model is used for its simpfi@nd its ability to describe a spherically
symmetric expanding coma. It relies on flux conagon and includes the effect of

photochemical production and loss of any speciemiad hoc manner, instead of solving for
the detailed photochemistry. Simple flux consenrajproduces a radial profile that varies as
1/, with r the radial distance:

- Q

4mr? v (1)
with n the density of the species consideredQHfor example),Q the rate at which the
comet’s nucleus releases that species,vahe radial outflow speed of the emitting particles
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The concentration of a species that gets destrdyyegphotochemical processes decays
exponentially with time, with a life time, This life time depends on solar activity,
heliocentric distance etc. and translates intoaastteristic length., in the expanding coma,
so that the density profile becomes:

,
__ Y

= e
2
4ty Up

(2)

Here, the subscrigt stands for “parent”, as we are considering mokswautgassed by the
comet’s nucleus that decompose and produce “datigégecies, and which will be denoted
by subscriptd. The production rate of the daughter species tisragned by the loss rate of
their parent molecules. Daughter species can in te destroyed by photochemical
processes, with a characteristic lengihTheir density profile in the expanding atmosphsre
then given by

- Qp Lq4 (e—é _ e‘g)_ 3)

= 42 vgLg — Ly

np

The model could even be further complexified tavaethe density profile of grand-daughter
species. Expression (1) is however not integraller B3 (accounting for the Jacobian of
spherical coordinates) as- o, which clearly shows equation (1) does not suffidee Haser
model also assumes the characteristic length doesany across the coma and that there
exist only one production and one loss mechanisnthefdaughter species, which is not
warrantied. As the daughter molecules are produsetiopically in a frame of reference
moving with the expanding gas, there is no reasoassume that the expansion velocity of
the different species can largely differ, and agleinexpansion velocity is generally used.
However, the Haser model neglects molecular difiusthat can influence the density
distribution. Integration of expressions (2) and (Rwltiplied by the appropriate Jacobian)
overR*can be easily carried out analytically, giviQg Ld/vq4 for the total content of daughter
species particles of the coma. Models of the comither idealized using the Haser
approximation or based upon a mechanistic reprasentsuch as those of Bhardwaj and
Raghuram (2012), Bisikalo et al. (2015), Combi @9%®Rubin et al. (2011), Weiler (2007,
2012), Combi and Fink (1998nd others have to be compared against observiatiatea
However, the local densities, which are the natataputs of the models, cannot be directly
observed remotely, as we discuss in the next sedloreover, comets are dynamic objects,
and time variations of the activity translate taligh gradients in the density, that are not
accounted for by steady-state models, whatever ttiegree of sophistication. This is
particularly significant when a comet produces atborst.

Here, we present a method to retrieve the locaksiom rate from remote sensing
observations of cometary atmospheres. Remote geaktometary emission provides only a
line-of-sight integration of the emission rate,ocatsalled its Abel transform. We develop a
method that inverts the Abel transform in the splecase of cometary atmospheres. Section 2
presents the mathematical developments on whichinverse Abel transform relies. The
result of this inversion must not be confused véitmodel of the coma. It is rather a direct
processing of the observational data. Fundamentakyresult of the inverse Abel transform

5
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of the data contains essentially the same infoonadéis the initial line-of-sight integrated
radial profile. In section 3, we present resulsyfrnumerical tests that were done to validate
the inversion method and highlight its benefits.skction 4, we present the results from
applications of our inverse Abel transform methas three comets. These results are
compared with Haser model fits to the data. Pdercattention will be given to an outburst
case. In section 5 we discuss the reach of thétsesotained with the inverse Abel transform.
We conclude with a short summary of our resultseiction 6. Appendix 1 provides additional
analytical results that allow for a further refinemh of the inversion method. These results do
not appear to offer a crucial improvement in theecaf cometary atmospheres but they could
nevertheless prove useful for planetary atmosphétieslly, appendix 2 gives the results
needed to perform the exact analytical computatiotihe Abel transform of a cometocentric
profile described using a Haser model,which is sultethat can be used for any study
dedicated to the analysis of observations of comneder the Haser hypothesis.

2. THE ABEL TRANSFORM INVERSION

A distant observer looking at the coma of a conast o direct access to the density
profile of the constituents. Excited species retgxemitting photons and the observation
sums up the emission rates along a full line ofitsagcording to the geometry described in
Figure 1. If we denote by(r) the density of an excited atom or molecule (fcaraple) and
by Ay the Einstein transition parameter for spontanemassion of this excited particle by a
transition from upper state to lower statd, the emission rate at that radius is given by
f(r) = Aun(r). In principle, the local density can thus be indiagely obtained, if the local
emission rate profile is known. When molecular lsarade observed and their spectral
structure remains unresolved (which is generaklydase), the characterization of the excited
molecule density based on the emission rate mayireeq more sophisticated treatment. The
fundamental principle remains nevertheless uncldingés possible to relate emission rates
to molecular densities. In the geometrical framéwafrFigure 1, the line-of-sight integrated
emission can be written:

r

whererg is the tangent radius, i.e., the distance betwkercomet’s center and the point of
the line of sight closest to this centkis the quantity to be integrated along the linsight,
such as the emission rate of a given excited speocieany other quantity. The coma is
supposed to have a spherical symmetry (which allesm® change the integral ovsfirom -co

to +co to the double of the integral from O teo+and to apply the variable change=

\J 72 — £, which has a jacobigh= r/,/r?2 — rZ. The right-hand side of equation (4) is called
the Abel transform of(r) (Bracewell, 1999). It has a well-known inversangform:

F(r0)=j_oo dsf(s)=2J;) ds f(s) =2 J;O dr f( (4)

1 dF (rp)

/roz —r2 drg 5)

_1 By
fry=— j dr,



177
178
179
180
181
182

183

184
185
186
187
188
189
190
191

192
193
194
195
196
197
198
199

200
201

This expression is, however, of little practicahgs, as it requires the computation of the
derivative ofF(rg), a difficult task especially when values férare actually only available
from a limited, discrete set of noisy data. Numarimversion methods have thus been
derived that use least squares fitting techniquessanple analytical expressions of the direct
Abel transform, that can be obtained whg) =r", for n > -1. Indeed, let us denote by,

ro) the indefinite integral

jdr = TO . (©)

An integration by parts shows that thesatisfy a simple recurrence relation:

m+DL+nril_,=1"|r2—1?
n 0 in-2 0

I, = h(r>—l LA LA
-1 =arcosh (=) = In{ — " @)

— 2 _ 4.2
Iy = ’r T4

I.1 andly can be directly obtained from equation (6). Altgbuhe recurrence relation
(7) is formally of order 2, it can actually be sedivas two joint first order linear recurrences,
one forn = 2m and one fon =2m+ 1, starting fromg andl ., respectively. Each, is defined
up to an additive constant, which we can take asdause we will only use the results to
compute definite integrals (so that the constaatgel out). These results have been used to
derive numerical inversion techniques by sever#gh@s to study the emissions of planetary
atmospheres (e.g., Qémerais et al., 2006, Stiepah,e2012; Cox et al., 2008) using the
following ideas.

Any observation of the line of sight-integrated ssmn (i.e., brightness) of a given
atmospheric emission will produce a discretizedsyprofile of values obtained for a series
of tangent radii. Such profiles are generally achNertical profiles in the case of a planetary
atmosphere or nucleo-centric profiles in the caS&a @oma. It then becomes natural to
represent the emission rate profile as a set of linear segments across well-chogervals
that might, for instance but not necessarily, gpond to the set of tangent radii of the
observation. This set of linear segments can beesepted as a linear combination of
triangular functions, as shown kiigure 2. These trianglet(r) can be written as

7= Tg—1 r—71
tk(r) = —rk — Tk_l)( Tk—1Tk[ (7") + <1 - —Tk — Tk> )(]rk’rk+1[(r)
_ r—Tk—1 Tky1 — T (8)
- rk J— rk_l)(]rk_l'rk ( ) + m)(]rk,rkﬂ[(r):

where we use the characteristic functjgs(r), which takes the value 1 wherid Q and O
otherwise and where= 1, ...,n enumerates the different nodgsThe first (second) term of
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expression (8) can be ignoredkat 0 k = n, respectively). Any piecewise linear, continuous
functionf can then be written as a linear combination otithe

F0) = axti). o)

k

The Abel transforniy(ro) of each triangle, can be easily computed usihg lp andl; from
equations (6) and (7). The Abel transform (4)ngér forf and we thus have

F(ry) = Z ay Ty (1o). (10)

k

Figure 3 shows the Abel transform of a triangular functiém.this figure, the Abel
transformF(ro) is zero for any value ap larger than the upper boundary of the intervalove
which the triangle is defined. The Abel transfoFtry) varies rather smoothly, despite the
discontinuous first derivative of the triangle ftinoa. Now, whenf(r) has to be estimated
from line-of-sight integrated measureme@jobtained for a set of radial distanegg, j = 1,

..., J (for simplicity, we assume that thg; are sorted by increasing) one just has to
minimize the chi-square expression

2
X* = Z <Gj - Z aka(To,j)> w; (11)
' X

j=1
using standard linear minimization techniques. Wegghtsw; will generally be set equal to
the inverse of the variance and they will be thagdnal elements of the inverse of the
variance matrix/¢ of the measure@; (which we assume do not co-vary). They may also be
set to 1 for unweighted least squares fit. Indesdler the assumption of homoscedasticity,
the Gauss-Markov theorem states that an optimahason of the parameters is provided by
the weighted least squares fitting. The suitalleare thus obtained by solving the system

Hi=»b (12)
For a, with

J

Hy, = z Ti(ro,) Te(ro;) wy = (TVE Ty Ty = Ti(ro)
=1

]
bl' = Z G] Ti(rO,]') W]
j=1

Many terms of the sums of equation (13) are zesGy@o;) = O for anyrg; > rw1. By solving
system (12)F is adjusted to the set of observatio,{ = 1, ...,J}. The solutions of the
system,ax, are then used in expression (9) to constructatljastedf. The quality of the
solution of such an inverse problem can often berawved by applying Tikhonov
regularization, especially when the problem idhditioned. We outline here the principle
of such regularization; details can be found, ergRress et al. (1992). The key idea behind
the Tikhonov regularization is to modify the quéntihat is to be minimized by adding a

(13)
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contribution that penalizes a property of the dittesult that is considered as inappropriate.
For example, if the result is expected to be fazdystant, we can add a term proportional to
the square of the first derivative (or its inteyial order to penalize any solution with strong
variations or, if the result is expected to be @amooth (a special case being close to linear),
we can attenuate possible noisy variations of ittedffunction by adding a term proportional
to the square of the second derivative (or itsgr#, to be represented in discrete form. This
is indeed a way to protect the inversion procedganst the deleterious effects of noise. The
usual method to regularize the fitted functionhiert to replace equation (12) by

(H+AQ)d=h (14)
whereA can be viewed as a suitable weight applied taelgelarization matrixQ, the other
symbols keeping their original definition. The r&gization matrix Q must now be
determined. Press et al. (1992) provi@desuitable for equally-spaced observational points.
The derivatives can then be approximated by (fojvdinite differences of the fitting
parameters, and the resulting regularization nedriare naturally simple and almost
symmetric. Note that a sophisticated and very ateumethod of computation of the
derivatives is indeed not necessary as it wouldtH®e case in a solver for differential
equations: we are only searching for an expredbiainpenalizes a property that we consider a
priori should remain small. We adapt the algorithom Press et al. (1992) to the specific
case of equation (10) in which the derivatives rast estimated by differences of the fitting
parameters. We can write the second derivativE cbmputed at the observation poings
and pack them in a vector:

0%Ty,
- Zak 01y?

T=Toj k

0%F

D=
dry?

k

where the components of the mat&are

T=To,j

(16)

jk — 01,2
The sum of the squares of the second derivativareanbe written in matrix format as

D2=D*D = a+s+sazzak5iksijaj

ijk (17)

We may prefer to compute the integral of the squérine second derivative, which can be
estimated numerically as

frwd (62F>2 z z 02Ty,
rl—]| = ay —
rox 071> —\ & 071>
2 (18)
92T,
22 Zak org?| \/;] ’

i \k r=ro,

h;

rzrolj
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whereh; can be taken as =roj+1 — roj (with hy=hy4) or as any other suitable discretisation
step length. The derivatives of tlig can be estimated by any suitable mean: analyyicall
numerically (using a central difference scheme efcample). We can then define a maix

by
_ \/E ' (19)

Formally, computing the sum of the square or thegral of the square of the second
derivative can both be done similarly using expoesg17). We now want to obtain the
matrix Q of equation (14) in order to perform a minimizati®e then need to compute the
first derivatives oD? with respect to they:

92T,
Sike = dry?

dD? d +Q 7
e = Ta zk A Sik Sij @ | = 22}( aSiSy = 287S al; (20)
ij t

so that we can defin@ by

Q=2S"S (21)
We still have to determine the factdrin equation (14). We follow Press et al. (1992l an
chose

A=Tr(H)/Tr(Q), (22)
where Tr@) denotes the trace of matéx Note that the factor 2 in equation (21) is sirfigdi
out of equation (14) when adopting this valueXor

The method outlined above is very general and riat specifically designed for the
case of cometary atmospheres. It was already intexti by Quémerais et al. (2006) for the
study of the atmosphere of planet Mars. We willpadéie inversion method for cometary
atmospheres in two steps: First, we will modify tiegularization method, and second, we
will modify the tx introduced in equation (8).

The regularization method proposed occasionalljessifrom a severe drawback: if
the observed quantity and its derivatives vary aareral orders of magnitude across the
observed atmosphere (and this can be the casemnatany and planetary atmospheres), then
D? will be dominated by the largest values, and raggation will become less efficient in
those regions of the atmosphere where the emisaten(for example) is smaller, i.e. where
regularization may be the most needed. We then gehdhe regularization method by
considering they as a list of discrete values of a functi(n), and we regularize the fit by
minimizing its second derivative. Equivalently, vmeay consider theax as a suite and
minimize its second-order discrete difference, vgithilar results. We can write = ry+1 — rg
(hn = hn1) and use a simple finite difference scheme aspgmoaimation for the second
derivative

10
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da Ar+1 — Ak

drly hi
X da| da|
d”a drl,  drliy 2 a4 2 ay 2 Apyq
= = - + (1<k<n) 23
dr?| (k- +h)  REg+ heoihie hichieey heoahi + BR (23)
d*a a; — a4, d*a Apn_q1 — Qp
T2 = 2 - = —
dr fe1 h{ dr e h2

Expressions fok = 1 andk = n are obtained by considering virtual val@gs a; , ho = h; and
an+1 =&, , hne1 =hn=hpp and applying the expression given for 1k<< n. The vector
collecting the second derivative values can therwbiéen in matrix format using a tri-
diagonal matrix, notingy = 1/(1>+ her he) andvi = 1/(1 h + hd):

D,=B,d
-1 1
2h; 2k}
@1 —q1— " U1
az —q2— V2 V2 (24)
By =2 - :
dn-1 —q9n-1 — Un-1 Un-1
an —qn — VUn Un
1 -1
2% 2h%

The numerical scheme adopted in equation (23) makesri-diagonal and diagonally
dominant. We can now write the sum of the squaféeensecond derivatives as in equation
@an:

D? =ad* B, B, d. (25)

Its derivative with respect @@ is again obtained as in equation (20):

2

aDa:i ZakBO. BO"a' =22akBO. B()- =2BO-i_BOC_il (26)

da; 0Jq i te =04j — He :
ij l

And the regularization matrix can now be written

Q=0Qp, =2 B, " B. 27)
The multiplicative factorA of equation (14) is again given by equation (2#)d we can
transformBy the same way & in equation (19) in order to numerically compute integral

of the square of the second derivative, which dao be viewed as a weighted sum of the
square of the elements dTIa with the lengths of the interval over which thenigular

elementdy are defined (equation 8) chosen as weights. ThematricesB andQ, become
then

11



Byi = Boyn/hic

Q. =2B"'B.
295 We now turn to the task of defining new “triangulalements instead of the
296  expression given in equation (8). Our purpose ifirtd an expression that would be more
297 suitable to the description of the constituents aofcometary atmosphere. In a first
298 approximation, the Haser model given by equatidis ) and (3) for inert, mother and
299  daughter species, respectively, provides an adedlescription of the distributions of these
300 constituents. We want to derive triangular elemevitese Abel transform can be calculated
301 analytically, in order to reduce the computationakt. The presence of the exponential
302 function in expressions (2) and (3) severely coogphs the analytic computation of the
303 indefinite integral built from the Abel transfor/e can however compute those primitives
304 for negative powers af, which points at the Haser model for inert molesulproportional to
305  1/f*. We thus define new “triangular” elements, using triangleg, from equation (8) as

(28)

ty(r)
w(r) = ’;m m>0 (29)
306 Quite obviously, we will choosen= 2 in the case of a cometary atmosphere so that

307 the 1/f dependency that appears in the Haser model isciéhppresent in the triangular
308 elements. We write their Abel transfortdgto use them instead of tiigin the definitions of
309 matricesH andS in equations (13), (16) and (19). Theso defined do always reduce to a
310 linear combination of negative powers of r (oveuded intervals). Analytical computation
311 of their Abel transform thus only requires us t@Wrthe indefinite integrals of the form

r
Ly = J- dr —=r"
" Jr2—1f (30)

312 Anintegration by parts again shows thatlthesatisfy a recurrence relation:

(Mm—1)Ly, —m71& Ly + o 0

Ly = /rz —1f
r r r?

L, = arcosh <—) =In{—+ |5—1 (31)
o 7o 75

1 r? 1 7o
L, = —arctg| [ —1|=—arcos (—) .
T, 75 Ty T

313 Lo andL; can be directly obtained from equation (30y;is found after the variable change
314 s = /%—1 and using a trigonometric identity to transforne @irctangent into an arccosine.
7o

315 Notice that the recurrence relation cannot be usededucel, from Ly as the term irL,
316 vanishes fom=0. One possibility to further improve the triashy elements would be to
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apply an offset, replace™ by (r —a)™™ in expression (29) and to call upon Laurent series
with an offset. This choice could be suitable ia tase of a planetary atmosphere, for which
the extent of the emitting layer is small companeath the planet radius. Indefinite integrals
of the form

0<a<rm (32)

j dr —L () —
r,/rz—roz e (r—am
can always be reduced to a linear combination aéfinite integrals of the form

1

1
W = J- a Jri—2 r=a)™ (33)

completed with the first elements of the suite megralsl, given by equations (6) and (7)

whenm< 3. These integrals satisfy again a recurrentatioa and are also related by a
simple derivative with respect to the parametewWe will not use that refinement here. We
nevertheless report the analytical results and Idpueents in appendix 1, as some of the
computations could be useful for the studies ohg@lary atmospheres.

In this study, we will only investigate the use elbementst, and ux with m=2
(equations (8) and (29)) to represent emissionilpsofn cometary atmospheres, assuming
spherical symmetry.

When uncertainties affecting the observation arewkn the weightsy; in equation
(11) can be taken asGﬁ l.e., the inverse of the variances affecting theeovational points.
As the fitted parametersy are obtained by applying formulas of linear algeberror
propagation techniques can be used to obtain thanea matrix of they’'s and the standard
deviation (i.e., the uncertainty) of the fitted files. We remind here the standard general
formulas needed to obtain the desired uncertairifi@ge denote by s the variance matrix of
the observation (which in our case will be a diajomatrix diag(;,-z)) we can obtain the
variance matrix/, of the fitted parameters by noting that, formaihgy are computed by just

multiplying the observation vectdr by a matrix M:

i =MG (34)
In this case the variance matkfx can be written in matrix form as

V, =MV, M*. (35)
Matrix M is deduced from equations (13) and (14) as:

M=MH+1Q) TtV L (36)

The parametek can be set to 0 when no regularization is appli¢ds can, however,
lead to numerical problems wheH is ill-conditioned. In contrast, introducing the
regularization warrants that the problem will belwenditioned and the inverse matrix will
be computable. Because the Abel transform of adtkar elementKigure 3) extends from
the nucleo-centric distance where this elemengimdd down tao = 0, theay are expected to
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co-vary andV, will not be diagonal. Its diagonal elements areentheless the most important
ones as they determine the (square of the) unogesiaffecting the fittedy’s. Once the
covariances and uncertainties affecting thgs have been obtained, standard error
propagation formulas can be used to derive the rtminges of the fittedF and f from
equations (9) and (10). If we collect the estimatatlies ofF at eachrg; in a vector, the
variances of th&; are then the diagonal elements of malii¥/,T, and a similar expression
can be obtained for tHg

3. THEORETICAL TESTS

3.1. Inert species profiles

Before analyzing real observations, we apply outhoe to theoretical nucleo-centric
profiles of the Abel transforr, which is what we use to retrieve the emissior @bfile.
We will also check that the inversion method gieggropriate resultsgigure 4 shows the
line-of-sight integrated profilé& obtained from an emission rate varying a<, lile., it is
proportional to the variation ok, given in equation (31) betweefnande, and thus varies as
1/ro. Panel b shows the emission rate profile f obthimg numerical inversion of F given at a
restricted set of nucleo-centric distances, withcegularization, using purely triangular
elements,tas given by equation (8) (triangles) and elemaptuiilt by dividing eachy by r?
(equation (29), withm = 2). The corresponding line-of-sight integratedues are shown in
Figure 4a using the same plotting symbols. At fgkince, both methods seem to give a
satisfying inversion, showing that the inversiontimoel correctly retrieves the expected
emission rateFigures 4c and4d show the absolute value of the relative differebeaveen
the numerically-inverted profiles and the inputdbemission rate. Inversion using elements
ux performs obviously better. This is expected as ¢hesen elements better match the
emission rate profile corresponding & Figure 5 shows the same dasigure 4 with
regularization. In the case of purely triangulagneénts, regularization appears as counter-
productive over this particular profile, while lightly reduces the absolute deviation from the
correct values in the case of elements consistirtgangles divided by®. Truncation of the
profiles at large nucleo-centric distance is aniobs source of error. Moreover, these profiles
are somewhat artificial: they were built using & gknucleo-centric radii that are spaced
following a power law, so that the discrete prcfilgppear as regularly-spaced points in a log-
log diagram. Real data will not resemble thoseilg®fin general, observations are regularly
spaced versus nucleo-centric distance, and thalsggnontaminated by noise.

Figure 6 shows a more realistic (albeit still theoreticadse, using regularly spaced
nucleo-centric bins, and including noise contanmamabf the Abel transforni. Figure 6a
shows the theoretical profile (dashed line) and rtbisy profile used as input to the Abel
inversion algorithm (solid linefigure 6b shows the absolute value of the relative diffeeenc
between the dashed and solid lined-fure 6a. Figure 6¢ shows the ideal theoretical line-
of-sight (l.0.s.) integrated profile (dotted lin@jth the l.o.s. integrated profile fitted using
triangular elements divided by, with and without regularization (long and shoashtes,
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resp.). The uncertainties over the fitted curveat tresult from noise propagation, are
represented as dark (light) shades for the nonlagged (regularized, respectively) profile.
Figure 6d shows the theoretical local emission fdtéted line) and the nonregularized (short
dashes) and regularized (long dashes) fitted pofiRgain, the +d uncertainties over the
fitted profiles are represented as dark (light)dehfor the non-regularized (regularized, resp.)
fitted emission rate. Both the regularized and egularized fits nearly retrieve the exact
value, but the benefit of regularization clearlypears, as the long-dash curve is smoother and
thus broadly closer to the correct values. Thisaliso reflected by the much smaller
uncertainties affecting those values, especialljjaege nucleo-centric distance, where
becomes small. As it can be expected, both thedsyreffects and the large simulated noise
impair the quality of the fitted profile near theumdary at 20000 kniigures 6e and6f show
the same aBigures 6¢ and6d, respectively, except that purely triangular eletaavere used

in the inverse Abel transform fit. The quality dfetresults shown ifigures 6e and6f is
obviously not as high as those frdangures 6¢c and 6d. Regularization even appears as
counterproductive in this case. This naturally hssérom the less adapted shape of the
elements used here. It thus clearly appears thdidht choice is to use elememtsvith m= 2

to study cometary profiles, and to apply the regeddion procedure. The regularization used
here aims at minimizing the integral of the squafrehe second derivative of the fitteg
(equations (23) to (28)). Regularization basednanminimization of the sum of the square of
the second order discrete difference of dh@ives fairly similar results. On the other hand,
regularization based upon the second derivatitbefittedF (not shown) performs worst, as
anticipated above. We note that the argument tleatleveloped to suggest that minimizing
the integral of the second derivative Bf might not be the best choice for cometary
atmospheres could also apply to the regularizamplied to the fitting parameters obtained
using purely triangular elements. Our best chaicallfy appears to be to use triangles divided
by r? and regularization operating directly on taebecause the @ multiplication partly
corrects for the drawbacks of the alternative ragehtion choices.

3.2. Disturbed inert species profiles

The tests presented up to now used emission rafgeprproportional to tf. This
choice does perfectly correspond to theelements used to realize the fits and one may
wonder if these elements would still be appropriatbe emission profile departs from this
best possible case. We thus constructed an emissi@mprofile consisting of arf/profile to
which a bump (idealized by a Gaussian curve) wae@dWe carefully performed the l.0.s.
integration numerically (using a very high spaceohetion and extending the emission rate
profile far beyond 20000 km) and used the inversigthod with that l.o.s.-integrated profile
as input. The results are shown kigure 7a andb. Regularized inversion with triangles
divided byr? is used. The bump added to the profile is indegteved, although the match is
not perfect (such a disturbance of the profileedainly more severe than any disturbance we
may imagine to find in a real cometary observatiofe fitted emission rate becomes
disturbed beyond the bump, because the fittingrpatars co-vary and are disturbed by the
bump and by noise. In this extreme test, the prajgagnoise then becomes a poorer estimator
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of the uncertainty over the local emission ratefifgoand the fitted profile shows erratic
oscillations around the correct value.

We also performed another important test: the swekbel transform of a profile
varying as I (i.e. for which we expect to retrieve the localigsion rate varying as rf) to
which a constant offset is added. This test is i@ because cometary observations have a
contribution from the background sky, which carenfbe considered as constant across the
whole coma, although some observations have aatigbound that varies across the image,
especially if the bright moon approaches the fadlgtiew. Subtraction of this offset is often a
difficult task, and thus a source of uncertaintigetheoretical expression of the inverse Abel
transform does however only involve the first dative of F so that, if it could be applied to
real data, it would give a result independent ef¢bnstant offset due to the sky background.
Unfortunately, real data are noisy, binned oversardte set of nucleo-centric distances, and
spatially limited, so that we have to rely on nuitermethods that may be sensitive to the
offset. Figure 7 shows our simulation of an observation contamuohatean offset in panels c
and d. The noise applied to the input |.o.s.-irdég emissionH) is not included in the plot
for clarity. The constant added to the r~llé.s.-integrated profile has been purposely chose
very large, causing a doubling &f already near = 1000 km. The fitted l.o.s.-integrated
profile does not seem to correctly retrieve themaeigted profile (the dash-dot-dot-dot line). It
rather seems to be offset by a larger amount, witlapid decrease near the boundary at
20000 km. The emission rate profile, however, doese closely correspond to the r1/
profile, except near the boundary at 20000 kms Isurprising that, despite the ~1 order of
magnitude contamination & near 10000 km (already a factor 2 near 1000 kny,despite
the erroneous retrieval df at large nucleo-centric distance, the emissioe ratrather
correctly retrieved over a broad part of the peofiThis stems from the fact that two l.0.s.-
integrated profiles differing from each other bylyoan additive constant have the same
inverse Abel transform. The numerical inversionhteque developed here is not fully
insensitive to the added constant. Consequenttygtiod strategy to follow when analyzing
an observed coma would be to estimate the conbtarkiground of the sky as accurately as
possible, subtract it from the observed cometarysgion and apply the Abel inversion,
knowing that the result will be only weakly sensitito a misestimate of the constant
background, across a large portion of the obsetwveth. This advantage alone can already be
seen as a good reason for inverting the l.o.sgiated observation and study the emission
rate itself. It must be added that all the theoedttests proposed here were performed using
as many fitting elements as pseudo observatiortgg@ie.J = K andrj =rq; in the formalism
developed in the preceding section). Other chaategossible and can sometimes give even
better results. Quite obviously, least squaremdjtis, in principle, a method that is generally
used to determine a relatively small number ofvahé parameters using a larger number of
observations, increasing the number of observgboints leading to smaller uncertainties
over the fitted parameters. An interesting optismalso to use fitting elements centered at
nucleo-centric distance larger than that of the jesnt of theF profile, because the Abel
transform of these elements will anyway extendotedr nucleo-centric distance. This choice
could be particularly interesting when the sigrmahbise ratio remains very good across the
whole observed profile. In principle, regularizaticould even allow us to “fit” more elements
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than the number of observation points: the maidrix AQ (equation (14)) would generally not
be singular in that case. However, it is illusopyetxpect to obtain meaningful results using
that choice: one can hardly expect to retrieve nificemation than what stands in the data.
The result would rather reflect some kind of addidél “information” introduced in the system
by the regularization.

3.3 Daughter species profiles.

Similar tests were conducted for emissions havirrgdaal profile represented by a
Haser model for daughter species characterize@distic scale lengthsyl= 50000 km and
Ly = 120000 km. We found that using fitting elemeotsated at nucleocentric radius larger
than that of the outermost point of the simulatbdenved profile does improve the quality of
the fitted emission rate near the outer boundarghefradial range of the observation. When
the interval covered by the fitting triangular elemts is restricted to that of the radial range of
the observation, the emission rate retrieved by ithersion method is overestimated,
compared with the expected emission rate follovairdaser profile for daughter species. This
can be understood as follows: the l.0.s. integnatiothe emission includes contributions from
the emission originating from altitudes above thegent point. Truncation of the emission
rate profile removes contributions to the l.o.¢egmation that would be necessary to properly
represent the (simulated) observation near the dotendary of the profile. The least squares
fit algorithm compensates for this defect by oveneating the emission rate in the last bins of
the adjusted profile. Consequently, consideringaeiiangular elements beyond the tangent
radius of the outermost observation (but still kegghe total number of elements lower than
the number of points of the observed profile) idtroes contributions that allow for a better
retrieval of the emission rate near the outer bamdf the observed, l.o.s. integrated profile.
However, beyond some radius, the fitted emissida can become negative, which does
obviously not make any physical sense. Conclusiegarding the emission rate profile at
cometocentric radii larger than the tangent radiute outermost observation can thus not be
considered safe and better had to be avoided. Ghadrthe inclusion of those extra bins is
not to extend the range of validity of the invertpfile beyond the radius of the last
observed point but rather to introduce a few degoddreedom in the fit procedure to better
model the observation at large nucleocentric degaronly a few extra bins suffices to
improve the fit. In our test, some 10-15 extra kemxsending the grid by some 1/2 - 2/3 L
revealed efficient.

The tests conducted for the case of daughter spéailewing a Haser model also
show that the numerical Abel inversion does, astl@artly, remove the effect of a constant
background that might contaminate an observed lprdfiumerical inversion uses a discrete
representation over a truncated profile. One shaoldexpect miracles though and hope the
numerical inversion would remove the constant bemkgd contamination the way the
analytical inverse Abel transform would do overimfimite radial range. There is a benefit in
performing the numerical inverse Abel transformi kthis benefit is not as large as the
theoretical result of equation (5) might suggest.
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It is common practice in cometary data analysidei@rmine the parameters of a Haser
model representative of the observation using st lsquares fit to the observation. As the
emission rate profile can be estimated using a nicalenverse Abel transform applied to the
data, one may wonder whether it is preferable jashdhe Haser model parameters directly
on the observed profile rather than on the emissa@ profile deduced from the inversion.
We test this issue over Haser profiles of knowrapeaters.

In a least squares fit procedure applied to a.labservation, the l.0.s. integration of
the Haser model needs to be computed as well adetreative with respect to the Haser
parameters. We found the analytical expressiorhefl.b.s. integral of the Haser model for
mother and daughter species. For least squarasyfiurposes, we can express the Haser
model for daughter species gg= 1Lq4, 0y =1L, and Y =Q/(4n V) Ld/(Lsa — Lp). One can
equivalently useY| g, da) or (Y, Ly, Lg) as the fitting parameters, and the optimal fiasidly
obtained noting the Haser radial protig):

h(r) = Y(exp(—qqr) — eXp(—qpr))/r2

H(ry) = 2 f ar ﬁh(” =2 (P(ezdro) P(aym0))
(" x exp(—ax)
P(a) = X Ny "
_ %(1 ~ a(B(0,0) 5,(~1,a) + B(1,a) 5,(0,0))) (37)

oH H oH oH

a(}fO) = (Yr") ; aflj’) = ~2Y Bx(0,qaTo) ; aff") = 2Y B(0,4,70)

14

oH Y dH (r,) Y

or aZO) =2 = A Bx(0,70/La) i — L:“ =2 B Bx(0,7/L,)

whereBk(n,x) is the modified Bessel function of the secéimtl (Bessel-K) an&_(n,x) is the
modified Struve function (also called the Struvédiction), which can be evaluated from a
fast-converging series (Abramowitz and Stegun, )19D2tails regarding the calculation of
P(a) can be found in appendix 2 (as well as theesdar theS_ function). The Abel transform
of the Haser model for mother molecules can obWolhie computed as well using function
P(a) given in equation (37).

The Haser parameters of a radial profile for dasglgpecies are estimated by
accounting for a simulated noise and the possiltksgmce of a constant background
contribution in the simulated observation. This giaed radial profile is computed using the
result of equation (37), contaminated by a Poissoise and a constant offset background,
and inverted using the numerical inverse Abel i@ms. The Haser parametdrgos andLg,os
are estimated using a Levenberg-Marquardt methqdiegpto the simulated observation,
while Ly em andLqem are fitted over the emission rate determined gy ibimerical inverse
Abel transform. When no background is includedhi& simulated observation, both methods
give similar values fok, andLg, althoughLp os andLg 0s S€em to fall somewhat closer to the
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exact values used as an input. However, when auasibackground is present in the
simulated profile, it isLpem and Lqem that seem to be closer to the expected values. The
presence of a small positive offset reduces theestd the simulated |.0.s. integrated profile at
large cometocentric distances. This leads to arease of the fittedlq s and a reduction of
Ly0os Because the numerical inverse Abel transformypegmoves the effect of the constant
offset, the fittedLpem and Lyem are less disturbed and they fall closer to theciexalue.
Naturally, if the nucleocentric profile does nogarously follow a Haser model, only an
inversion of the observed profile can estimateetimession rate profile.

4. APPLICATION TO OBSERVED COMETARY
ATMOSPHERES

In this section, we will apply the method derivedsection 2 and tested in section 3 to
real cometary data obtained using the TRAPPISE¢elge (Jehin et al., 2011). TRAPPIST is
a 60-cm robotic telescope installed in 2010 at lla Sbservatory. The telescope is equipped
with a 2Kx2K thermoelectrically-cooled FLI ProlifreCD camera with a field of view of
22'x22"' and a plate scale of 1.302"/pix. A set afraw-band filters isolating the main
emission bands in the optical spectrum of comeats, ©H, NH, CN, G, and G, as well as
emission-free continuum regions at four wavelengfenham et al., 2000) is permanently
mounted on the telescope.

The reduction method applied to the TRAPPIST dats lheen extensively described
by Opitom et al. (2015) and will only be brieflyramarized here. TRAPPIST images are
reduced following a standard procedure using fratiyeipdated master bias, flat and dark
frames. The removal of the sky contribution may greblematic for extended objects.
However, for the comets considered hereafter, RAAPIST field of view was always wide
enough to determine the sky contribution from paststhe images free of cometary
contribution. We first determine the location o ttomet’s optocenter in the image (using the
Iraf task imcntr). Second, we determine the clodegtince from the coma optocenter where
each image is free of cometary emission, and measue median sky level at this
nucleocentric distance, which is subtracted fromithage. We then derive the median radial
brightness profile for each image. The use of aiamegrofile eliminates the contribution of
background stars. Even though narrowband filtengee Haeen carefully designed to isolate
specific molecular emissions, they are contaminatedhe underlying sunlight reflected by
the dust. The dust subtraction is thus a very imgmbrstep in the data reduction. We use
images of the comet in the BC filter (i.e. at 44418) to obtain the dust radial profile, scale it
depending on the contamination in the gas filterd @&ubtract it from the gas profile.
Continuum frames used for the dust subtractioruatally taken during the same hour as the
associated frame to avoid changes in the obseponditions or in the rotational state of the
comet. Regular observations of narrowband photoocngtndard stars listed in Farnham et al.
(2000) allow us to determine each filter zero paindl extinction coefficients used to convert
count rates into fluxes.
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4.1. Estimation of the uncertainties

We derive the local rates of various cometary eimissfrom their l.0.s.-integrated
observations, i.e., from their Abel transform. BEwtting the uncertainties affecting the
observations is often difficult. Some of these utaaties will not have a dramatic effect over
the range of local emission rates that we will eate: a small misestimate of the sky
background has nearly no effect over the resulthef inverse Abel transform, as was
explained in section 3. We thus adopt a ratherrpedig method to estimate the uncertainties
over the observed emission profile. If we nd@e the observation of a given emission,
obtained under a nucleo-centric tangent radjyéall sorted by increasing tangent radius), the
uncertainty o; affecting this observation is directly estimatetbni the neighboring
observations using the following method. First, smaooth the observed radial profile to
obtain the set of numbeG;* (=1, ...,J). This smoothing is realized using a Savitsky-@ola
filter (Savitsky and Golay, 1964) applied to thgdathm of theG;’s. This choice is made
because of the fast decrease rate of the |.oeggrimied cometary profile: the logarithm of the
Gj's varies much slowlier than the original data. Qa@ view the Savitsky-Golay filtering
method as a generalization of the boxcar smootling.boxcar smoothing directly applied to
the dateG; , GJ-* would be the average of tk&'s overi varying fromj —d toj + d, the size of
the smoothing “box” being®+ 1 elements. This is equivalent to replacing Gys by a
zeroth order polynomial fitting the neighboring ralents of G;. The Savitsky-Golay filter
generalizes this idea: a polynomial of arbitrargrée chosen by the user is fitted over a set of
elements of the array of data centered>grthe set having a widthd2+ 1 (chosen by the user
as well). It reduces to a convolution with a ker(teht we will denot&, ) that depends on
the chosen degree of the polynomial (which we déhoteq) and the width over which the
smoothing is realized (nametl). Here, instead of applying the filter directlyttte data, we
apply it to the logarithm of the data and comptie éxponential of that smoothed set. Once
the smoothed arra@;* is obtained, we use it to locally de-trend thesetved profileG; and
compute the mean and standard deviation over #sticted interval, as if the de-trended
result gave several estimatesGf

G* = exp(In(G) * Kq,d)

jtg

- Z G-I =1
1=j-9g
(38)
jtg
- |t Z 6 2 =1
1=]j-g

In equation (38), the operaterstands for the convolution product agis a positive integer
which defines the number of adjacent measuremesdd to estimate the uncertainties over
the Gj's. It must be chosen sufficiently large to allowr & reasonably meaningful estimation
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of the uncertainty, but it must also remain smalbwgh so that the set of de-trended
measurements; G,-*/Gi* ( —g<i<j+g) can be viewed as several estimate§;pfvhich is
obviously never strictly true. Moreover, the surppearing in (38) present problems near the
boundaries of the measurements (nparl andj=J). The sums need to be truncated
accordingly, and the denominator amounting to thaler of elements actually involved in
the sum must be corrected. We performed numeestd that tend to indicate that the method
of equation (38), when applied to a profile typioha cometary atmosphere (i.e., the Abel
transform of a Haser model) with known uncertasfiee., a randomly generated noise with a
standard deviation proportional to the square robtthe profile) tends to somewhat
underestimate the uncertainties. In our tests, ltkeeg could be corrected for by applying a
safety factor of 1.2 to the estimatedso that the estimated uncertainties better correspm
the known noise used in the numerical test, althomge should not expect this nearly unit
factor would dramatically influence the results.t,Yihere is another subtlety that has to be
accounted for in these expressions. The SavitskgyGélter reduces to a (numerical)
convolution product of the (logarithms of th@)s with an appropriate kernel. Close to the
boundaries, and in particular close to the innemdary (i.e., foro; near 0), truncation of the
convolution degrades the quality of the smoothetilerG;”, leading to unacceptably wrong
(over)estimates of;. We correct this problem by scalieg(j < jit) along the square root of
Gj, with j¢it being the index of the firgtat which the convolution product and the estimafes
equation (38) can be carried out without truncapooblem:j.; =d+ |[d — g|/2. This scaling
choice makes sense when the uncertainties areynthatl to the Poisson noise affecting the
measurements.

Figure 8 shows how this method of noise estimation perfowhen applied to an
ideal profile with known uncertainties. We generael.o.s.-integrated Haser profile
discretized over 500 equally-spaced nucleo-cedtstances. We then compute its square root
that we use as a standard deviation to generabésad? noise to be applied to the ideal Haser
profile (dotted line in Figure 8a). We apply a Ssky-Golay filter (as outlined in equation
(38)) using a width of 21 points and a fifth degpynomial, i.e., withd =10 andq=5
(long dashed line in Figure 8a). Obviously, the sthed profile is a poor estimate of the
l.o.s.-integrated emission rate at low nucleo-d¢entistance. We then compute the local
average and standard deviation as explained intiequ@8) over 31 neighboring points (i.e.,
with g = 15), and applying the safety factor of 1.2. Tésult is shown using the long dashes
in panel b. Quite obviously, this estimate of thecertainty is very wrong near the inner
boundary, while it fairly follows the dotted ling krger nucleo-centric distance. We then
apply the square root scaling at low nucleocertrstance as explained above to obtain the
uncertainties in the part of the profile where fitter-based method does not suffice (short
dashed line in Figure 8b). The estimate of the uan#y is then fairly good all over the
profile. Incidentally, the uncertainties are somawhnderestimated at low nucleo-centric
distance because the uncorrected method produskghdly underestimated uncertainty near
jerit, but overall, the uncertainties are recoverednimeceptable manner. The method used to
estimate the noise level is actually independenthefinverse Abel transform itself. It has
been introduced to derive values for the unceisnin they? expression (11) and for the
error propagation procedure that is used to estirtiest uncertainties of the fitting parameters.
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Obviously, the reliability of any least squaresiriy method improves when the uncertainties
are accounted for. Indeed, weighting with adequatzertainty estimates helps to prevent an
overfitting of the noise affecting the large cobtiions to the profile (i.e., at low
nucleocentric distance) at the expense of theaditof physically meaningful signatures that
may arise at large nucleocentric distance wherenba@sured intensity is much smaller. From
that standpoint, a rough estimate of the uncerearsuffices.

4.2. Data analysis

We first apply our methods to observations of cod@®P/Hartley 2 obtained with
TRAPPIST on November 7, 2010. Comet 103P/Hartleya® discovered in 1986. It is a
Jupiter Family comet with a period of 6.47 yeaf¥3R/Hartley 2 is one of the few comets that
have ever been visited by a spacecraft: it wasatget of a close flyby by the NASA Deep
Impact space probe on November 4, 2010. In paralléhe flyby, an extensive space-borne
and ground-based campaign was initiated to compiethe in-situ observations. The comet
passed within only 0.12au from the Earth two wdsdd®re the flyby, allowing its coma to be
sampled with high precision from the ground. Welyeathe emission of molecule CN at
387 nm, i.e., the R branch of the (0-0) band ofBH&" - X 2=* transition. In comets, the CN
radical is predominantly produced by photo-dissommaof molecular HCN (Fray et al., 2005)
(another possibility would be by dissociative retmation of HCN ions). Excitation of the
B 2" - X %=* system of bands is due to absorption of the dight and its analysis should
ideally account for the presence of the Fraunhbfards in the solar spectrum (Arpigny,
1964).

Figure 9 shows the inversion results. The flux was measatet23 different nucleo-
centric distances and we used 242 triangular elesr{equation (29)), i.e., ~1/3 of the number
of points in the observed flux profile. A few trigular elements were added at radial values
beyond the last point of the observed profile,tfa reasons explained at the end of section 3.
Regularization was applied on the integral of teeosid derivative of the fitting parameters
(equation (28)). Figure 9a shows that the methadiywes a good fit of the observed flux;
Figure 9b furthermore shows that the emission iateaeconstructed with very small
uncertainties. Please notice that the (differentiak is given per steradian, so that a factor of
4t is applied after Abel inversion to retrieve theluwoetric emission rate. Clearly, the
uncertainties that we retrieve are somewhat untier@®d at very large nucleo-centric
distance: the small increase of the emission rese 80000 km does not seem to be realistic,
and it probably results from a small shoulder sigethe observed flux near that nucleo-
centric distance. We also determined a Haser mmdbidast squares fitting over the emission
rate, using the Levenberg-Marquardt method. Itsadtaristic lengths arg, = 17500 km and
Lg = 70100 km. We deduce the effective productioe €icny (assuming that dissociation of
HCN is the only source of CN, which may be an owepdification) associated with this
profile obtained while comet 103P/Hartley 2 wasadteliocentric distance of; = 1.07 ua,
moving with a radial velocity of; = 3.2 km/s. We use the g-factgey = 3.44<10%% erg &'
moleculé’ based on the study of Schleicher (2010), whicloaats for both the heliocentric
distance and the radial velocity (important for eings effect). Assuming an expansion
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velocity of 1 km/s, we estimate th@cy = 2.68x10%° particles &. This number must be
considered with care, as the Haser model reliesversimplified assumptions. We compared
these numbers with those obtained by fitting theddanodel directly using the observed flux,
again using the Levenberg-Marquardt method. Aifaptementation of the fit is possible as,
for a Haser model, all the needed quantities cacobgputed analytically using the results of
equation (37).

The fit realized directly over the observed fluxegsL,"” = 2.16<10" km, Ls" = 4.%10* km
and Quen™ = 3.2%10%° particles @, which slightly differ from the values obtainedoake
from the emission rates. The HCN production rateferied for the different comets
considered in this study are listedTiable 1. It must be noted that after adding a constant
offset of 1.06&10° erg cn¥ s* sr’ to the observed flux prior to fitting the Haser def we
retrieve very closely the same characteristic lesigind production rates than for the fits
realized over the emission rates. This highlightseomore that a small offset affecting the
observed flux can have significant consequencdbof@@h not dramatic in this case): the
fitted Haser parameters are sensitive to an offsptied to the observed flux (when the fit is
realized directly over the flux), but the Abel-imed flux (i.e., the emission rate) is nearly
insensitive to a small offset. The difference betwéhe values of the fitted parameters may
be due to an overestimate of the sky backgrourtditha subtracted, which corresponds to an
equivalent flux of 6.410° erg cn¥ s* sr. It must, however, also be emphasized that comet
Hartley 2 may well have an extended source regiibim avnot well-determined size (A’Haern
et al., 2011). This is an obvious departure from lilgpothesis of the classical Haser model,
mostly important near the nucleus, and that infbeésnthe fitted characteristic lengths. In
addition, the dynamics of the acceleration of the groduced by the cometary nucleus takes
place in a volume extending several tens of kil@reaway from the nucleus, as shown by
the Monte Carlo simulations of the expanding coffen{shev et al., 2001, 2008, Rubin 2001,
Combi, 1996). As a consequence, Haser model cdrenealid within some distance from the
nucleus, even in the absence of outgassing fromt ghasns, which further worsens the
correspondence with the Haser model when presenth®other hand, the numerical inverse
Abel transform does not rely on any particular agstion concerning the shape of the profile
of the coma (except for the assumption of sphesgaimetry), so that the presence of an
extended source or any other signature in the Iradidile (providing that it is large enough
to be resolved by the observing instrument) dogésmpinge on the quality of the results of
the method itself. Anyway, determining the propstof the coma near a comet’s nucleus
remains challenging, because a feature needd #t feéast 2-4 pixels of the observed profile
to be properly analyzable, due to the limits imgbbg the Nyquist theorem. It can also be
considered that the presence of a residual, nostaoncontribution from the background can
never be totally ruled out. This uncertain distuxd® can however be expected to be small
after subtraction of the estimated background anchastly affect the radial profiles at large
nucleocentric distance. In contrast, uncertaint@scerning the centering of the image of the
coma are more likely to disturb the radial profiesmall nucleocentric distance. Along the
same lines, the cumulated effects of flat-fieldjima and azimuthal averaging and velocity
terms in the outflow can become important at largeleocentric distance. Both the fitting of
the Haser model and the numerical inverse Abebktoam will incorporate these effects as if
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they were physically meaningful contributions, whitan somewhat bias the radial profile at
large nucleocentric distance.

Interestingly enough, the emission rate plottedbgrlog scales presents a change of
slope near = L. This change of slope is less visible in the oles@iflux, although one can
make it out a posteriori, after having first notlaein the emission rate profile. Comet 103P/
Hartley 2 was located at a heliocentric distanc&.0¥ au at the time of the observation. The
reference characteristic lengths from A'Hearn e{%995) for CN ardy = 2.1x10° km and
L, = 1.3x10°km at 1 ua, to be scaled by the square of thedwsiiric distance giving,, =
14900 km andL4 = 240000 km. The fittetl, is comparable with the standard reference value,
but Ly is quite different. Determining a scale length milenger than the radius range over
which the data are available is however a diffitastk, and it is not sure it is always possible,
especially when noise affects the data (and hde ttaken into account for the fit, as it was
done here) and when the model does not perfecttghnthe observation (as it can often be
expected from a Haser model).

It must be noted here that, when a model is adjusteng a least squares fit with
weighting by the inverse of the variances, it ipented that the differences between the data
and the fitted curve would be distributed along aussian centered on the fitted curve. It is
not exactly the case here: the data are not diseribexactly symmetrically with respect to the
fitted flux because the regularization modifies tloacept of optimum (the algorithm does not
strictly minimize the classicaf) and produces a smoother resuilt.

Emission of CN at 387 nm from comet C/2012 F6 Lemmas also observed with
ESO-TRAPPIST on February 17, 2013. Comet Lemmonavesry active naked eye comet
that reached mag 5 at perihelion, on March 24, 2013 a dynamically old, long-period
comet following a highly eccentric and inclined ibrli-igure 10 shows the inversion of its
profile. Again, the observed flux is correctly éitt by the method. The emission rate is
affected with minor uncertainties only. Howevere thmission rate does not seem to make
sense near the comet’s nucleus, although the daabdiwx is perfectly fitted. This is due to
the fact that flux measurements near the nucleeis@mewhat more uncertain than the low
level of noise affecting it may let suppose. Foareple, accurate centering (identification of
the exact location of the nucleus in TRAPPIST ingge a source of uncertainties, as well as
the subtraction of possible contributions from despecially if we take into account that the
dust profile was obtained separately from the CHfile;, so that the centering of both
observations of the comet may not perfectly maidte inverted profile offers here a means
to diagnose a feature that might have remained tigatbin the radial profile of the flux:
either the first points of the profile are errongoar this is a real feature of the radial profile
of the emission rate. Indeed, the first pointshef profile near the nucleus must be considered
with care because, in terms of the Nyquist theoriefoymation can hardly be obtained at a
resolution better than 2-4 pixels. Indeed, the tlwnons considered in the analysis of the
Hartley 2 data also hold in this case, so that lesmns reached regarding the extremes of the
radial profile must be considered with care. F@omet such as C/2012 F6 Lemmon, which
was very productive, a low emission rate profilamthe nucleus could be the signature of
significant absorption of the solar UV radiationalMation of this hypothesis would need a
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thorough verification, which is beyond the scopdha present studyhe emission rate can
again be represented using a Haser model using dgasres fitting, giving characteristic
lengthsL,, = 3.11x10" km andLy = 2.35<10° km. This last length is comparable (up to a factor
~2) with the radial range of the data used to datex it and should be considered with
caution. F6 Lemmon was located at a heliocentstadcey = 1.01 au and had a heliocentric
radial velocityr,; = -21.9 km/s at the time of the observation, givipg = 4.4x10" erg &
moleculé', from which we estimate the effective productiateQucy = 8.88107° molecule

s’. The reference characteristic lengths of CNLare= 2.1 x 16 km andL, = 1.3x10" km at

1 ua, to be scaled by the square of the heliocedistance giving., = 1.3%10* km andLg =
2.14x10° km. The fittedLy value is comparable with the standard referendgeyavhile the
shorterL, values differ by a gross factor of 2. By fittingHaser model directly on the
observed flux, we find L= 3.&10°km, L{?=1.7%10Ckm and Quc\" =
1.02x10?" particles 3. These characteristic lengths differ again frowsthobtained using the
emission rate profile. Again, adding a small off&8x10* erg cn¥ s* sr?) to the flux can
bring the fitted lengths closer to those of thessmain rate profile, suggesting again the effect
of the sensitivity to the sky background. The baokgd subtracted from this TRAPPIST
image did however correspond toxi®® erg cn¥ s* sr*, an order of magnitude lower than
the needed offset, so that the explanation fodifierence must be searched for elsewhere. A
possible explanation could be that the flat fluxrfd near the comet nucleus implies that the
emission rate must, surprisingly, increase withrtheleo-centric distance in the first layers of
the coma. A Haser model cannot reproduce such assiem rate. However, the flat flux is
rather smooth and non-increasing, which is easiembdel using a Haser profile. The
inadequacy of the Haser model to represent the @froamet F6/Lemmon could then be the
origin of the discrepancy. It must also be keptmimd that the anomalous, increasing
emission rate is found within a radius correspogdmonly ~2 pixels of observation, and the
inferred variation may thus just be an artifact doethe insufficient resolution of the
observation, uncertainties in the centering andbekground subtraction, etc. As already
discussed above, the analysis of the data obtameal the comet nucleus is not
straightforward.

Figure 11 shows the emissions of CN molecules at 387 nman@, at 514.1 nm
from the comet C/2013 Al Siding Spring on Novembg&r 2014 observed again with the
TRAPPIST telescope. Comet Siding Spring was disemlvat 7.2 au from the Sun on January
3, 2013 and it was soon predicted to have a closeunmter with planet Mars on October 19,
2014. The comet has been extensively observed fh@nground and from orbiters around
Mars at the time of the encounter. It underwenbatburst that increased the gas production
fivefold within a few days, less than two weeksegfts perihelion passage on October 25,
2014 (Opitom et al., 2016The G 514.1 nm emission belongs to the (0-0) band ofSivan
transition system &1, — X 'Z,". Molecular G can be produced by photodissociation g
CsHg and possibly €Hg in cometary atmospheres (Weiler, 2012; Helbea.e2005), and the
514.1 nm emission is fed by absorption of the sagét and is due to (at least at large nucleo-
centric distance) the complex fluorescent equilitirithat includes the transitions N, — X
5 b3y —a’m, diMy — a’d, d3y - ¢’%/, a’l, - X'z, and ¢’ — X '35y
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(Rousselot et al., 2000). The comet was locatedraliocentric distance of 1.43 au and had a
heliocentric radial velocityry; = 5.03 km/s. The fluorescence g-factors obtainexnf
Schleicher (2010) for CN and A'Hearn et al. (1982)C, under these conditions agey =

Ocz = 2.2 x 10® erg ' moleculé' (both values are incidentally equal). The radiafifes of
the observed fluxes and of the emission rates @etadter Abel inversion are shown in
Figure 11. Again, we used three times legs elements than the number of bins in the
observed profiles plus a few bins beyond the ldsdeoved point, and we applied the
Tikhonov regularization, so that the fitted flux tfe G emission is smoother than the
observed flux. Its uncertainties remain small, tfteuThe inverted radial profile for the
emission rate appears to be overestimated. Indeedsmall “bump” that appears in the flux
nearr = 5000 km does not seem to be real. This featoes dowever not seem to be dramatic
in the l.o.s.-integrated flux, but it influencesethradial profile of the emission rate.
Accordingly, the inverted profile turns out to beuseful tool to diagnose the quality of the
flux profile or perhaps a real phenomenon: inddleid, feature could possibly be attributed to
an underestimate of the contribution from the dws$tich was subtracted, and that seems to
become less important beyond ~10000 km. Moreover gsacond pixel of the profile
corresponds ta =~3000 km only, and the issue raised above conggrthe Nyquist
frequency holds here again, re-emphasizing that difficult to draw definite conclusions
from observations obtained close to the nucleuse Haser model fitted to the radial profile
of the G 514.1 nm emission rate was obtained neglectingadhé&ibution of the points below
10000 km. We find nearly identical values fgrandLq : Lp = 34273 km andly = 34302 km
while the effective production rate of the @arents is found to B@conn = 4.75<10°° particles
s'. The lengths are given with such a high accuramabse, having, exactly equal td_q
would be physically inconsistent. The limit of tHaser modelgguation 3) for Ly tending to

Lp is proportional to 1/ which cannot be integrated ovRf. In addition, the Abel transform
(equation 4) of such a profile tends to infinity, whatever tedue ofr,. Finding nearly equal
values forL, and Ly may possibly indicate that there is outgassingnfithe dust grains.
Combi and Fink (1997) explain that, Cadial profiles are usually flatter than would be
expected for the photodissociation of a single mpaneolecule, and can then be more easily
reproduced with a Haser model that has two almgstlescale lengths. Interestingly, the
radial profile of the emission rate of CN higs= 37646 km and.4 = 37688 km. CN would
thus also have nearly equal characteristic lengthgh are above all nearly identical to those
of Cy,, thus corroborating the hypothesis of outgassiomfgrains. However, as we will show
in the next paragraph, such a conclusion cannairéen in the case of Siding Spring. The
effective production rate derived from the CN emoiss rate profile is Quen =
4.20<10%° particles &.

There are oscillations that can be seen at largdeotcentric distance (above
~1.5¢<10° km) in the radial profile of the emission rate ®f and, to a lesser extent, in the
emission rate profile of CN where a change of slappears (in the log-log plot &figure
11b). These signatures require particular attentiomm€t Siding Spring is known to have
produced an outburst shortly before these data wet@ned (Opitom et al., 2016). Inverse
Abel transform is particularly adapted to retriekie radial profile of the emission rate in this
dynamic case, as standard models generally asstmaeysstate. Indeed, both the C

26



865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888

889

890
891
892
893
894
895
896
897
898
899

900
901
902
903
904
905

514.1 nm and the CN 387 nm fluxes show a smootimgsh@f slope around 1@m. The
radial profile of the CN 387 nm emission rate digahows a slope breaking at £1%° km.

A similar breaking is also seen at the same placthé radial profile of the £514.1 nm
emission (se€&igure 12), especially comparing the emission rate obtaimgdbel inversion
and the Haser model fitted to the emission ratenwatleocentric distance larger than
1.5x10° km. Note that €is known to have a shorter lifetime than CN, legdio a smaller
characteristic length (A’Haern et al., 1995). Tlaads to a faster radial decrease of the C
emission rate compared with CN, as it is easilyndad-igure 12, and the signature of the
outburst is then harder to detect in thg gEofile. The oscillation that appears in the C
emission and peaks akBJ> km may be due to the poorer quality of the obsifuex near
that nucleo-centric distance, and it is hard tomdcanclusions about it. It remains that both
the CN and gemission rate profiles show a clear signaturénefdutburst, seen as a breaking
of both profiles near 1:8.0° km. The information is of course present in thdiabprofiles of
the observed flux, but the l.0.s. integration srheast the features present in the emission rate,
and it is harder to determine where the junctiotwben the pre- and post-outburst coma is
located. The presence of the outburst also casith@nlight on the characteristic lengths
deduced from the fitting of a Haser profile oves #mission rate: the observed coma does not
comply with the hypothesis of the Haser model, #sstumes a fairly constant production rate,
and it is hazardous to draw any conclusion overaigassing mechanisms at play in the
coma at that time (although outgassing from gramdd make sense right after the outburst,
if it were related with an explosive release of t@dt In contrast, the numerical inverse Abel
transform does not rely on any assumption regarttiagunctional shape of the radial profile
and it can thus account for possible dynamic vianatof the production rate of the nucleus
and for a possible extended source.

5. DISCUSSION

We developed an inverse Abel transform method Withonov regularization that
specifically accounts for the properties of comgtmospheres. We used triangular elements
matching the density profiles of chemically inepesies. However, using more elaborate
elements that closely resemble the Haser modelldaghter species might have been more
appropriate. We had to make a tradeoff betweenusdsggof the elements and computational
efficiency. First of all, the Abel transform of $ealternative elements would have been more
difficult to compute. Secondly, the least squai&md@ on which the method relies would
have become non-linear. The impact of more soghitgd triangular elements is difficult to
assess. Our theoretical tests tend to show thatlémeents used in this study have properties
that are adequate for the processing of cometasgruhtions.

The Abel inversion method calls upon the hypothesispherical symmetry of the
coma. This assumption is probably never strictlfilked, although one may expect that it is
valid far from the nucleus. It is difficult to apmiate how large deviations from spherical
symmetry can possibly be. Alternatively, one codédelop a model under the hypothesis of
axial symmetry about the rotation axis of the coaret directly use 2D imaging of the coma
to perform an inversion. We conducted a preliminamalysis that suggests such a method

27



906
907
908
909
910
911
912
913
914

915
916
917
918
919
920
921
922
923
924
925
926

927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943

944
945
946
947

could probably be developed and applied when tientation of the rotation axis is known
with sufficient accuracy. However, further develagmts are required to fully explore the
potential of such a method. One may also dream ofethod that would produce a 3D
tomographic inversion of cometary observation. Saanethod would rely on the (inverse)
Radon transform which is extensively used in mddioagery, so that an impressive know-
how exists about that topic. Such an inversion wdwwever require observations under all
possible look directions (i.e. from vintage poidistributed in the # steradians around the
comet). That kind of observation will not be avhiaon a regular basis in a foreseeable
future, if it ever becomes available.

Application to real cometary observation showedbeo efficient in the sense that
realistic emission rate profiles could be retriefteun the Abel inversion of the observed flux
of radiation. However, comparison between the ptogse of Haser models fitted over the
emission profile and over the observed flux reve#ferences in the inferred scale lengths. It
is possible to reconcile the numbers by applyisgnall offset to the observed flux data prior
to fitting a Haser model to them, given that theerse Abel transform applied to noisy data is
only weakly sensitive to an offset (which may bkated to inaccuracies in the estimate of the
sky background). This ad hoc cure may however ssamewnhat artificial as it introduces an
additional degree of freedom to the problem to maaternal consistency. The independence
of the theoretical inverse Abel transform over aapplied offset gives nevertheless
confidence in the offset explanation of the appadscrepancies, although an imperfection
of the data reduction technique can never be yotaléd out.

The inverse Abel transform has proven to be a pvéool when applied to real
observations. It allows an easy diagnosis of tiopgnties of the observation. We were able to
identify a possible anomaly in the dust contribatgubtracted from the observation of comet
Al/ Siding Spring. We were also able to identifgignature in the emission rate profile of
comet F6/ Lemmon that may be attributed eithemtanaccuracy in the data (possibly due to
a problem with the exact identification of the Iboa of the comet nucleus in the TRAPPIST
images for example) or that may have a physicalegbion, such as significant absorption of
the solar UV light by the material of the coma,exsally considering that comet F6/ Lemmon
was very productive. Whatever the explanation bl those signatures would have remained
unnoticed in the flux profile, while they are paténthe emission rate profile. The analysis of
an image of an outburst of comet Al/ Siding Sprnmth our new method may provide
original insight: the separation between the pned @ost-outburst coma could be easily
identified in both emission rate profiles from nmoiees CN and & If consecutive
observations can be obtained over timescales efvahburs up to a few days, it would be
possible to track the location of that junctionstes time, to estimate the velocity at which it
propagates in the coma, and to determine at wimat tihe outburst actually takes place at the
nucleus.

A further consistency check of the fitted paranetsan be performed considering the
total content of daughter species in the coma.aRdaser density profile with production rate
Q and expansion velocity, the number of particles inside a sphere of raBweentered on
the nucleus is
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L R R
N(R) = ¢_La (LpeXp (— L_> — Lgexp <_L_) +Lg— Lp) (39)

ULd—Lp p d

and the fraction of the total number of particleside of that sphere is obtained by the ratio
B=N(R) / (QLgVv). When the coma is observed over ramyef radii, N(R) can also be
directly obtained from the observation by integrgtthe flux (given per steradian) over the
observed disc, if the fluorescence g-factor is kmow

R
N(R) =2m j dry 1y F (1) %T (40)

In the case of comet 103P/Hartley2, the Haser petens fitted over the emission rate give a
coma content of 1.9640°° CN molecules, 73% of which are contained insidgphere of
radius given by the maximum radius of the obseovatihe content of that sphere calculated
from equation (40) is 1.3%20°° particles which, when divided by 0.73, gives atinested
total coma content of 1.880°° molecules, in excellent agreement with the valeeved
from the fitted Haser model. The results providgdhe different methods are thus consistent,
and in particular, corroborate the assumption bllager density profile, at least as far as the
global properties of the coma are considered. Weehed similar conclusions with the
F6/Lemmon observations: both estimates of the GNacoontent agree within 0.5%. On the
opposite, in the case of comet Siding Spring, o#thods for estimating the coma content
differ by ~11% using the £observation and ~24% using the CN observation¢hvimdicates
that a Haser model cannot be used to represewletisgty profiles of a coma shortly after an
outburst.

The method does not make any assumption about #tailetl nature of the
observation (except that it is a cometary obsemsaati It could thus be applied to any
emission, to the study of dust, and it could bepsatato the study of absorption phenomena,
such as star occultation for example, in which rimeterial of the coma or of a planetary
atmosphere absorbs the light emitted by stars dipgon the amount of gas present along
the total line of sight. In the case of planetatm@spheres, this technique can be used by
measuring the absorption of sun light aboard artiogospacecraft. The method thus appears
to be a promising tool capable of simplifying thraklysis of various cometary observations.

More sophisticated representations of the densityilp of the coma might also be
included in the analysis of the emission rate eged after Abel inversion. The vectorial
model of the coma offers a more detailed descmptxd the photochemical processes
responsible for the production of the daughter sea@nd thus of the destruction of the
mother species. As explained by Festou (1981)ugnch of the vectorial effects has, as a
major consequence, that molecules produced at endiecation can end up at another
location which is not necessarily located downstre# the production location. Daughter
molecules are produced isotropically in a referein@me moving with the expanding gas of
the coma. All the points of the coma are thus cedifdy diffusive transport. In other words,
the isotropic production of daughter molecules $edd a kind of smoothing of the
composition of the coma. One can thus naturallyeekphat scale lengths fitted over the
observed coma should be somewhat longer than thasewould compute using the
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photochemical reaction constants, given with anr@ppate accuracy from laboratory
measurements, using a prescribed profile for themtanstituents and neglecting molecular
diffusion. One would furthermore expect that thadehoc fitted lengths would be influenced
by the value of the collisional mean free path,clihconstrains the diffusive transport of the
daughter molecules. The numerical Abel inversiothoe transforms line-of-sight integrated
guantities into local quantities. It can, unforttetg, not be used to identify the effect of
molecular diffusion without additional processinthe first and second derivatives of the
emission rate as a function of the radial distacoeld possibly provide quantitative
information on the effect of diffusive smoothing rielation with the collisional mean free
path, something that could probably not easily deeddirectly using the radial profile of the
flux alone. So far neither the feasibility nor thalidity of this idea have been tested. The
practical implementation of such an analysis wowddd a reasonable estimate of the collision
cross sections required to evaluate the gas kinatid validation should rely on detailed
modelling of the molecular diffusion inside of tagpanding coma (e.g., with a Monte Carlo
method or an average random walk technique sucthea®ne developed by Combi and
Delsemme (1980a,b)). This idea could be testedpeidently of the inversion technique
developed here.

6. CONCLUSIONS

1. We have developed a numerical inverse Abel foams specifically adapted to
cometary atmospheres. Its efficiency is considgrabiproved in combination with a
Tikhonov regularization. It allows the usage ofnskard error propagation techniques to
estimate the uncertainties that affect the locaksion rates derived from the observed flux of
radiation.

2. The emission rates calculated with our invergelAransform are only weakly
sensitive to a constant offset that might reswimfran inaccurate subtraction of the sky
background with real-world data.

3. We applied our inversion technique to a resgtdctet of observations of comets and
found that it effectively yields realistic emissioate. The emission rate profiles allow an
easier diagnostic of the characteristics of theeplaion, such as an erroneous estimate of the
dust subtraction or the identification of a sigmatypossibly attributable to significant UV
absorption by the coma.

4. When we applied our method to an outburst casewere able to clearly identify
the separation between the pre- and post-outbarst pf the coma, which further illustrates
its efficiency.

APPENDIX 1

In this section, we present the analytical resokeded to use triangular elements
vk =t/(r-a)™. Such elements could be useful to realize the rgeveAbel transform of
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planetary observation. The value of the paramatean be adjusted to make the elements
more appropriate for the properties of the obseatetbsphere. The computation of the Abel
transform of elementsy is necessary to realize the inversion of an oleskprofile and
requires the computation of indefinite integralghod form

0<a<nm (A1.1)

T 1
|« =T

These can always be reduced to a linear combinafiordefinite integrals of the form

W, d 1
f "o - (AL.2)

completed with the first elements of the suite m@egralsl, given by equations (6) and (7)
whenm is lower than 3. These integrals satisfy a recuneeelation and are also related by a
simple derivative with respect to the paramater

oW,
g = Wi (m>0)
r2 — 18
m (¢ —a®) Wy = o= )m+(2m—1)aW + (m—DW,_4
r r r?
W, = arcosh (—) =In{—+ |5-1
' L) 1 (A13)

W, = 1 ar —ry
17 == arctg 2 _ o 2V(2 _
Ty —a \/(ro a?)(r rO)

ow, Jr2 =18 N a ( ar —r¢ )
= arc

da (7 —a®)(r—a) JGZ-a?)? VO —a®) (2 —1d)

The recurrence relation can be obtained by multiglyand dividing the integrant by in

(Al.2), then replacing the factarat the numerator bg-r+r in order to make appe&Vn
and a second indefinite integral that can be redlbyean integration by parts, leading to

WZ ==

a’ —rO 1
(r — q)m+t (A1.4)

r?—a?+

aWy, =W + J-dr
_ To

where we have already introduced’+a® at the numerator of the integrand. The indefinite
integral in (A1.4) can now easily be expressed esmbination oM, by noting that?-a* =
(r—a)(r+a). The factor (—a) can be cancelled with one and we finally retrive recurrence
relation (A1.3). W can be directly derived from (A1.2)V; is more difficult to obtain, as it
cannot be derived fro\y by simple derivation with respect & To obtain the expression
for Wy, we first letx = r/ro and, accordinglydx = dr/ro (we also denoté = alrp). We then
apply the substitutior = 1/cosq), dx = tg(u)/cos@) du, which leads to
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1
" _% du 1 — b cos(u)

With the classical substitutis= tg/2), i.e., cosf) = (1-5°)/(1+s), sin() = 2/(1+s), du=
2/(1+5%) dswe get

a
(b= E) (A1.5)

1 2
Wl_%fds1—b+(1+b)s2 (AL6)

which reduces to an arctangent. After back-suligiitwof the variable changes, one finds (up
to an additive constant):

W 1 2 . < bx—1+4+x—b >

= — arc .

o S\Ja-ma-D (AL7)
Noting that 2 arctg) = arctg(3/(1-y?))+n and arctgf+arctg(ly) = sgng) =, and
substitutingx = r/ro andb = a/rp, we finally get the expression from (A1.3)

1 . ( ar — 1§ >
W, = ———=arctg
1 P J@Z=a)T? —1d) (A1.8)

which is defined up to an additive constant. Derorawith respect t@ immediately gives
W, and the recurrence can be started. Care must leowewvtaken when using that recurrence.
The numerical tests that we performed suggesittignot always stable. The relations given
in equation (Al1.3) can nevertheless be used torelemalytical expressions of thg, and
thus of any integral of the form of expression (§1Based upon these results, the inversion
method developed above can be adapted for triangldments of the form

1
(r—a)™ (A1.9)

which have an Abel transform(ro) for anyro > a (all of which can now be calculated from
theWp, Wi andW, above because of the linearity of the Abel tramsjoto be used instead of
Tk in the developments of equations (13), (16) a®. (b the case of planetary atmospheres,
choosinga of the order of the radius of the planet couldapgropriate to build triangular
elements adapted to the observed atmosphere.

vk:tk

APPENDIX 2.

In this section, we provide the detailed developimereeded to analytically compute
the line-of-sight integration of a Haser model riaother and daughter species.

All integrals appearing in the l.0.s. integratidradHaser model for parent and daughter
species can always be reduced, after the substitut r/ro, to integrals of the form:

f G b)) (A2.1)

xVxZ—1
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We first deriveP with respect tay:

dP B foodx exp(—q x) _ (A2.2)
1

—_—= - dt exp(—q cosh(t
T ||t exp(—q cosh(e)

x2 -1
where we made the variable changex= coshf), t = arcoshX), dt= dx/ (*-1)" This

integral can be easily computed with the well-knofanmula for the modified Bessel
functions of the second kinBk(n,2 (Abramowitz and Stegun, 1972):

Bx(n,z) = foodt exp(—z cosh(t)) cosh(n t) (A2.3)
0

to be applied witm = 0, so that

dpP
— = —B.(0 A2.4

a result already given by Haser (1957).

Now, we must compute the indefinite integraBpf0,q) to retrieveP up to an additive
constant. We use the following formula, from Ohetral. (2010), and which can also be
found in the digital version of the NIST handbodknsathematical functions (the Digital
Library of Mathematical Functions, DLMF) as equatit0.43.2:

j dz z" e™ B, (n, z)
=m2"r (n + %) z (ei"”BK(n, z)S,(n—1,2) (A2.5)

— el-VmR (n—1,2) S, (n, Z)) +c,

where S (n,2) represents the modified Struve function (alsdedabtruve-L), which can be
easily computed using a fast-converging seriesresipa (Abramowitz and Stegun, 1972):

o) 2k
1\ (% Z)
Su(n2) = (32) Zk:g F(k+3) T(k+n+3) (A2.6)

If we letn = 0 in equation (A2.5), the gamma function carebaluated a$(1/2) ==*? and
expression (A2.5) reduces to

f dz B (0,2) = g 2 (Bx(0,2) S,(~1,2) + Bx(~1,2) 5,(0,2)) +¢c, (A2.7)
so that we can write

P=—7q(Bc(0,9)5.(-1,9) + Bc(-1,9) 5,(0,9)) + C. (A2.8)

We determine the integration const@nby noting that, wheq becomes infinitely large, the
integrant in (A2.1) becomes zero for anyl ]1,00[, so thatP tends to 0 as well. The limit of
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equation (A2.8) forg tending to infinity is computed using the asymigtatevelopments
given by Abramowitz and Stegun (1972). For larglies of z, noting Bi(n,z) the modified
Bessel functions of the first kind, we have

4n*—1
s (S (1420 )

1o DMk +1)
S.(n,z)~B +=
1(n,2)~B;(—n, z) z 4 (n +__ )(2)2k+n+1

1 4n%—-1
~ — +Z — ———————————————— LK
B;(n, z) ’ane (1 37 + >

with |argg)| < 3t/2 whenz is complex. For very large values Dfthe exponential term in the
expression ofBy(n,2) will largely dominate the series that appearsthie asymptotic
development 0§ (n,2, so that we can immediately write that

(A2.9)

lim z Bk (0,2) S,(—1,2z) = lim z Bx(—1,2) S,(0,2) = % (A2.10)
Z—00 Z—00
It follows that, in (A2.8), C /2 and we have

J‘ dx exp( qx) T

xVx2 —1 T2
It is always possible to compuRenumerically, although this integration must beriear out
with extreme care as the integrant tends to infimihen x approaches 1. The analytical
expression (A2.11) uses special functions that banrapidly computed with modern
computers, with an accuracy that will approach thechine precision. The advantage of
(A2.11) is thus twofold: it offers a better accuyramnd it is faster than numerical integration,
which is important whe® must be evaluated a large number of times, astlita case in least
squares fit procedures. The benefit can be expaotbé even larger when handling a more
sophisticated model using similar analytic exp@ssisuch as the three-generation Haser-like
model (Combi et al., 2004).

(1-q(Bx(0,9) S.(-1,9) + Be(-1,) S, (0,)))  (A2.11)

For the sake of completeness, we define a suitgedrals of the form

* exp(—qx)
D =f —— 7 dx . A2.12
Ol Ny e ( )

Proceeding by parts, it is easily shown that thessgrals satisfy a recurrence of third order
(letting U=exp(-q x)/%™* anddV=x/(¢-1)*2 dx):

Py +——D,——p

n+1 " n4+1" n41 M
Evaluation of any three of tHe, (n = 0) suffices to start the recurrence, and succe§s|\s
are also related by a derivative versus parantetére already knoviDy = Bk(0,q) (equation

Dyyy = (A2.13)
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A2.4) andD; = P(q) (equation A2.11). IntegrdD, is evaluated proceeding by parts, letting
U = exp(-gx)anddV=dx/(¥ (:¢-1)*?) to find

TR, (e
D, = — dx — ———dx A2.14
O R e TR = (A214)

The first of these integrals is computed using ttleange of variablex = cosh(t)
t = arcosh(x) dt = dx / (¢-1)2 and equation (A2.3), while the second integragiien in
equation (A2.11) so that

D, = qBx(1,q9) —q P(q) . (A2.15)
Recurrence (A2.13) can then be started and aDglsecan be computed. These results can be
used to compute indefinite integralsf(q) and in particular the analytical primitive B{q),

an unexpected result. Becausk,.; is the derivative oD, versusq, the recurrence (A2.13)
can be transformed in a set of differential equetithat admitD, as solutions. A similar
remark can be made concerning recurrence (A1.3).
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1220 Flqures and captions.

1221

1222

1223  Figure 1. Geometry of the observation of an expamndoma. A remote observer collects the
1224  light emitted by the gas of the coma, summed upglbe line of sight that passes through
1225 the tangent point T, i.e., the point of the linesajht nearest to the comet center. T is at a
1226  distancer, of the comet center, while a point of the linesaght is at distance from the
1227  center. Variables is counted from point T along the line of sightlazan be considered to
1228  vary betweenc and +o when the observer is at great distance. The comanels radially at
1229 a velocity vp. The angle between the expansion direction andlitiee of sight, noted,
1230 changes along the line of sight.
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1235  Figure 2. Representation of a functibmlecomposed into a set of linear segments using a
1236  linear combination of triangular functions. The sahthe colored dash lines triangles gives
1237  represented with the black segments.
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1241  Figure 3. A triangular function and its Abel tramsh, both shown in arbitrary units. The peak
1242  of the Abel transform occurs at a somewhat lowdratadistance than that of the summit of
1243  the triangle.
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Figure 4. Abel transform of a theoretical nucleatde profile varying as 1f. Panel (a)
shows the Abel transforr: the solid line gives the exact analytical valuggngles and
diamonds show the profiles obtained after inveraasform fitting using purely triangular
elements and triangular elements multiplied by féspectively. Panel (b) shows the emission
rate profilef, of whichF is the Abel transform. Triangles show the emissair profile fitted
using triangular elements; diamonds represent toélg fitted using triangular elements
multiplied by 1t Panels (c) and (d) show the absolute value ofréhative difference
between the exact and the fitted emission ratesirddd using the purely triangular elements
and the triangular elements multiplied by?1fespectively. No regularization was applied for
these inverse Abel transform fits.
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Figure 6. Inversion of a realistic simulated pmfiihcluding noise and a regular binning. Panel
(a): line-of-sight integrated profile, i.e., Abehbsform of the ~1f emission rate. The dashed
line shows the exact transform, while the solia Ishows the noisy values to be used in the
inverse Abel transform method. Panel (b) showsatheolute value of the relative difference
between the noisy and the smooth profiles from pée Panel (c) shows the exact Abel
transform (dotted line) and the values fitted e noisy profile of panel a, using triangular
elements divided by? Short (long) dashes show the fitted profile aidi without
(respectively with) regularization. The dark (liglgrey shade show the ainterval obtained
applying error propagation for the unregularizezspectively the regularized) fit. Panels (e)
and (f) are similar to panels (c) and (d), respetyi, using purely triangular elements for the
fits instead of triangles divided bb§.
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Figure 7. Inversion of a ~1/.0.s.-integrated profile modified by a Gaussiastutbance

(panels (a) and (b)). The ideal disturbed l.orstegrated profile is represented by the dotted
line in panel (a). The noisy signal actually usedmgut for the inversion algorithm is omitted
for clarity. The long dashes show the fitted |-an¢egrated profile, the grey shade delimits the
1-c uncertainty band. Panel (b) shows the local eonisgate, the dotted line represents the
exact profile that we seek to retrieve; the longhds show the fitted profile with the-d
uncertainty delimited by the grey shade. Panelsifd)(d) show the results from the inversion
of a power law profile augmented by a constantedffgr panel (c), the dotted line shows the
~1k l.o.s.-integrated profile, the dash-dot-dot-daelshows the same profile increased by a
constant amount while the long dashes show thedfiprofile with the grey shade delimiting
the +ls uncertainty band. Panel (d) shows the target>~diission rate profile, the long

dashes represent the fitted profile and the grageldelimits the 1 uncertainty band.
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Figure 8. Panel (a): shows a simulated noisy tintegrated Haser profile before (dotted line)
and after smoothing with a Savitsky-Golay filtesr(y dashes). Panel (b) shows the standard
deviation used to generated the noise of the prghlown in panel (a) (dotted line), which is
just the square root of the ideal profile (i.e.fdoe artificial noise contamination). The long
dashed line shows the standard deviation estimaad) the smoothed profile of panel (a)
and applying the formulas of equation (37) , while short dashes show the uncertainties
obtained applying a square root scaling near theriboundary of the profile.
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Figure 9. Observation of the CN emission of con@8FR/Hartley2 on 07 November 2010 at
387 nm. Panel (a) shows the observed flux, i.e.].ths.-integrated data (dotted line). The red
long dashed curve shows the fitted flux obtainethwhe inverse Abel transform method;
uncertainties are shown as grey shades (they arer lthan the line thickness in the plot).
Panel (b) shows the emission rate obtained usieagntferse Abel transform of the observed
flux shown in panel (a) (black short dashes), wit@ uncertainties indicated by grey shades
(which are again smaller than the line width in pihet). The blue long dashes show a Haser
model fitted to the black dashes. It has charatteriengthsL,= 17500 km and.4= 70100
km, indicated by the vertical solid lines. The ieat dotted lines correspond to the fourth data

point of the observation.
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Figure 11. Radial profiles of the emissions of ngales CN at 387 nm (panels (a) and (b))
and G at 514.1 nm (panels (c) and (d)) from comet C/2813Siding Spring on November,
11 2014. Line styles and colors are the same &sgire 9. The characteristic lengths of the
fitted Haser models afg, = 37646 km and.y = 37688 km for CN antl, = 34273 km and.q

= 34302 km for G The vertical dotted lines correspond to the fowtata point of the
observation.
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Figure 12. Radial profile of the emission rate<Cdf at 387 nm (black dashed line) and of C
at 514.1 nm (black dotted line) obtained by invefdeel transform fitting of the ESO-
TRAPPIST observation of comet C/2013 Al Siding 8&gpon November, 11 2014. The light
blue lines represent a Haser model fitted to théssion rate of CN (dashed line) and C
(dotted line) at nucleo-centric distance largenttiéb<10° km. The vertical line indicates the
breaking of both radial profiles as an outburshatgre, separating the pre- and post-outburst
gas.

Qren Quen”
103P/ Hartley 2 2.684 3.22
F6/ Lemmon 88.8 102
Al/ Siding Spring 42

Table 1. Production rates of HCN inferred by lestgiares fitting of the emission rat@qcn;
and observed flux@ucn®) profiles for comets Hartley 2, Lemmon and SidBuying (in 16°
particles 8). This latter comet experienced an outburst sbtiteproduction rate obtained by
the least squares fitting is of little significaraed onlyQucn is listed.
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