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Abstract 30 

Remote observation of cometary atmospheres produces a measurement of the cometary 31 

emissions integrated along the line of sight. This integration is the so-called Abel transform of 32 

the local emission rate. The observation is generally interpreted under the hypothesis of 33 

spherical symmetry of the coma. Under that hypothesis, the Abel transform can be inverted. 34 

We derive a numerical inversion method adapted to cometary atmospheres using both 35 

analytical results and least squares fitting techniques. This method, derived under the usual 36 

hypothesis of spherical symmetry, allows us to retrieve the radial distribution of the emission 37 

rate of any unabsorbed emission, which is the fundamental, physically meaningful quantity 38 

governing the observation. A Tikhonov regularization technique is also applied to reduce the 39 

possibly deleterious effects of the noise present in the observation and to warrant that the 40 

problem remains well posed. Standard error propagation techniques are included in order to 41 

estimate the uncertainties affecting the retrieved emission rate. Several theoretical tests of the 42 

inversion techniques are carried out to show its validity and robustness. In particular, we show 43 

that the Abel inversion of real data is only weakly sensitive to an offset applied to the input 44 

flux, which implies that the method, applied to the study of a cometary atmosphere, is only 45 

weakly dependent on uncertainties on the sky background which has to be subtracted from the 46 

raw observations of the coma. We apply the method to observations of three different comets 47 

observed using the TRAPPIST telescope: 103P/ Hartley 2, F6/ Lemmon and A1/ Siding 48 

Spring. We show that the method retrieves realistic emission rates, and that characteristic 49 

lengths and production rates can be derived from the emission rate for both CN and C2 50 

molecules. We show that the retrieved characteristic lengths can differ from those obtained 51 

from a direct least squares fitting over the observed flux of radiation, and that discrepancies 52 

can be reconciled for by correcting this flux by an offset (to which the inverse Abel transform 53 

is nearly not sensitive). The A1/Siding Spring observations were obtained very shortly after 54 

the comet produced an outburst, and we show that the emission rate derived from the 55 

observed flux of CN emission at 387 nm and from the C2 emission at 514.1 nm both present 56 

an easily-identifiable shoulder that corresponds to the separation between pre- and post-57 

outburst gas. As a general result, we show that diagnosing properties and features of the coma 58 

using the emission rate is easier than directly using the observed flux, because the Abel 59 

transform produces a smoothing that blurs the signatures left by features present in the coma. 60 

We also determine the parameters of a Haser model fitting the inverted data and fitting the 61 

line-of-sight integrated observation, for which we provide the exact analytical expression of 62 

the line-of-sight integration of the Haser model. 63 

 64 

 65 

  66 



4 

 

1. INTRODUCTION 67 

Comets are relatively small size bodies formed at the early stages of the solar system 68 

evolution some 4.6 billions of years ago. They are often considered as potential tracers of 69 

conditions prevailing at that time (Ehrenfreund & Charnley, 2000). They mainly consist of an 70 

icy water nucleus with other constituents such as carbon monoxide (CO), carbon dioxide 71 

(CO2), and dust. When these bodies escape their reservoirs, mainly the Oort cloud and the 72 

Kuiper belt, and approach the sun, they slowly warm up under the effect of solar radiation and 73 

their ices start to sublimate, releasing water vapor, CO, CO2, dust and other minor species. 74 

This process produces a large, highly rarefied, expanding atmosphere: the coma, surrounding 75 

the icy nucleus. 76 

The coma is exposed to the sun radiation and in particular to the ultraviolet solar flux, 77 

which is capable to trigger photochemical processes such as dissociation and ionization of the 78 

gaseous material. Many previous studies focused on the complex photochemistry of the coma 79 

from a theoretical and observational standpoint. Among others, Bhardwaj & Raghuram (2012) 80 

developed a photochemical model of the coma of comet C/1996 B2 (Hyakutake) to analyze 81 

the metastable oxygen O(1D) and O(1S) populations and emissions accounting for 82 

photodissociation and electron impact dissociation of H2O, OH, CO and CO2, as well as the 83 

dissociative recombination of ions H2O
+, OH+, CO+ and CO2

+ and direct electron impact on 84 

oxygen atoms. Loss mechanisms of metastable oxygen were the radiative decay, quenching 85 

and reaction with H2O, CO and CO2. The densities of the major species of the coma (H2O, 86 

CO, CO2 and OH) were given by a Haser model (Biver et al., 1999). Bhardwaj & Raghuram 87 

(2012) conducted an analysis aimed at matching the observed and computed ratio of the 88 

557.7 nm green emission of O(1S) to the 630.0 and 636.4 nm red emissions of O(1D), from 89 

which they derived the CO2 abundance and several photochemical parameters. Raghuram & 90 

Bhardwaj (2012) also applied the same model with adapted parameters to comet C/1995 Hale 91 

Bopp. Bisikalo et al. (2015) developed a model of the photochemistry of O(1D) and O(1S) 92 

using a Monte Carlo method to solve the Boltzmann equation to retrieve the energy 93 

distribution of these species across the expanding coma. They showed that the exothermic 94 

nature of the photochemical mechanisms producing metastable oxygen yields a strongly non-95 

thermal distribution of their kinetic energy, which in turn produces a strongly non-gaussian 96 

emission line profile. 97 

The radial distribution of cometary constituents if often described using a Haser model 98 

(Haser, 1957). This model is used for its simplicity and its ability to describe a spherically 99 

symmetric expanding coma. It relies on flux conservation and includes the effect of 100 

photochemical production and loss of any species in an ad hoc manner, instead of solving for 101 

the detailed photochemistry. Simple flux conservation produces a radial profile that varies as 102 

1/r2, with r the radial distance: 103 

� = 	 �4���		 (1) 

with n the density of the species considered (H2O, for example), Q the rate at which the 104 

comet’s nucleus releases that species, and v the radial outflow speed of the emitting particles. 105 
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The concentration of a species that gets destroyed by photochemical processes decays 106 

exponentially with time, with a life time τp. This life time depends on solar activity, 107 

heliocentric distance etc. and translates into a characteristic length Lp in the expanding coma, 108 

so that the density profile becomes: 109 

�
 =	 �
4���		
 �� 
�� (2) 

Here, the subscript p stands for “parent”, as we are considering molecules outgassed by the 110 

comet’s nucleus that decompose and produce “daughter” species, and which will be denoted 111 

by subscript d. The production rate of the daughter species is determined by the loss rate of 112 

their parent molecules. Daughter species can in turn be destroyed by photochemical 113 

processes, with a characteristic length Ld. Their density profile in the expanding atmosphere is 114 

then given by 115 

�� =	 �
4���		� ���� − �
 ��� 
�� − �� 
���. (3) 

The model could even be further complexified to derive the density profile of grand-daughter 116 

species. Expression (1) is however not integrable over �3 (accounting for the Jacobian of 117 

spherical coordinates) as r → ∞, which clearly shows equation (1) does not suffice. The Haser 118 

model also assumes the characteristic length does not vary across the coma and that there 119 

exist only one production and one loss mechanism of the daughter species, which is not 120 

warrantied. As the daughter molecules are produced isotropically in a frame of reference 121 

moving with the expanding gas, there is no reason to assume that the expansion velocity of 122 

the different species can largely differ, and a single expansion velocity is generally used. 123 

However, the Haser model neglects molecular diffusion that can influence the density 124 

distribution. Integration of expressions (2) and (3) (multiplied by the appropriate Jacobian) 125 

over �3
 can be easily carried out analytically, giving Qp Ld/vd for the total content of daughter 126 

species particles of the coma. Models of the coma, either idealized using the Haser 127 

approximation or based upon a mechanistic representation such as those of Bhardwaj and 128 

Raghuram (2012), Bisikalo et al. (2015), Combi (1996), Rubin et al. (2011), Weiler (2007, 129 

2012), Combi and Fink (1997) and others have to be compared against observational data. 130 

However, the local densities, which are the natural outputs of the models, cannot be directly 131 

observed remotely, as we discuss in the next section. Moreover, comets are dynamic objects, 132 

and time variations of the activity translate to radial gradients in the density, that are not 133 

accounted for by steady-state models, whatever their degree of sophistication. This is 134 

particularly significant when a comet produces an outburst. 135 

Here, we present a method to retrieve the local emission rate from remote sensing 136 

observations of cometary atmospheres. Remote sensing of cometary emission provides only a 137 

line-of-sight integration of the emission rate, also called its Abel transform. We develop a 138 

method that inverts the Abel transform in the special case of cometary atmospheres. Section 2 139 

presents the mathematical developments on which the inverse Abel transform relies. The 140 

result of this inversion must not be confused with a model of the coma. It is rather a direct 141 

processing of the observational data. Fundamentally, the result of the inverse Abel transform 142 
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of the data contains essentially the same information as the initial line-of-sight integrated 143 

radial profile. In section 3, we present results from numerical tests that were done to validate 144 

the inversion method and highlight its benefits. In section 4, we present the results from 145 

applications of our inverse Abel transform method for three comets. These results are 146 

compared with Haser model fits to the data. Particular attention will be given to an outburst 147 

case. In section 5 we discuss the reach of the results obtained with the inverse Abel transform. 148 

We conclude with a short summary of our results in section 6. Appendix 1 provides additional 149 

analytical results that allow for a further refinement of the inversion method. These results do 150 

not appear to offer a crucial improvement in the case of cometary atmospheres but they could 151 

nevertheless prove useful for planetary atmospheres. Finally, appendix 2 gives the results 152 

needed to perform the exact analytical computation of the Abel transform of a cometocentric 153 

profile described using a Haser model,which is a result that can be used for any study 154 

dedicated to the analysis of observations of comets under the Haser hypothesis. 155 

2. THE ABEL TRANSFORM INVERSION 156 

A distant observer looking at the coma of a comet has no direct access to the density 157 

profile of the constituents. Excited species relax by emitting photons and the observation 158 

sums up the emission rates along a full line of sight according to the geometry described in 159 

Figure 1. If we denote by n(r) the density of an excited atom or molecule (for example) and 160 

by  Aul the Einstein transition parameter for spontaneous emission of this excited particle by a 161 

transition from upper state u to lower state l, the emission rate at that radius is given by 162 

f(r) = Aul n(r). In principle, the local density can thus be immediately obtained, if the local 163 

emission rate profile is known. When molecular bands are observed and their spectral 164 

structure remains unresolved (which is generally the case), the characterization of the excited 165 

molecule density based on the emission rate may require a more sophisticated treatment. The 166 

fundamental principle remains nevertheless unchanged: it is possible to relate emission rates 167 

to molecular densities. In the geometrical framework of Figure 1, the line-of-sight integrated 168 

emission can be written: 169 

����� = � ��	����� 
� = 2� ��	����� 

� = 2	� ��	 �"�� − ��� 	����
� 

#  (4) 

where r0 is the tangent radius, i.e., the distance between the comet’s center and the point of 170 

the line of sight closest to this center, f is the quantity to be integrated along the line of sight, 171 

such as the emission rate of a given excited species, or any other quantity. The coma is 172 

supposed to have a spherical symmetry (which allows us to change the integral over s from -∞ 173 

to +∞ to the double of the integral from 0 to +∞ and to apply the variable change � =174 "�� − ���, which has a jacobian $ = �/"�� − ���. The right-hand side of equation (4) is called 175 

the Abel transform of f(r) (Bracewell, 1999). It has a well-known inverse transform: 176 

���� = −1� � ��� 	 1"��� − �� 	��������� 

  (5) 
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This expression is, however, of little practical usage, as it requires the computation of the 177 

derivative of F(r0), a difficult task especially when values for F are actually only available 178 

from a limited, discrete set of noisy data. Numerical inversion methods have thus been 179 

derived that use least squares fitting techniques and simple analytical expressions of the direct 180 

Abel transform, that can be obtained when f(r) = rn, for n ≥ -1. Indeed, let us denote by In(r, 181 

r0) the indefinite integral 182 

'( = ���	 �"�� − ��� 	�(. (6) 

An integration by parts shows that the In satisfy a simple recurrence relation: 183 

�� + 1�'( + �	���	'(�� = �(*�� − ��� 
'�+ = arcosh 2 ���3 = 4�5��� +6����� − 17 

'� = *�� − ��� 
(7) 

I-1 and I0 can be directly obtained from equation (6). Although the recurrence relation 184 

(7) is formally of order 2, it can actually be solved as two joint first order linear recurrences, 185 

one for n = 2m and one for n = 2m + 1, starting from I0 and I-1, respectively. Each In is defined 186 

up to an additive constant, which we can take as 0 because we will only use the results to 187 

compute definite integrals (so that the constants cancel out). These results have been used to 188 

derive numerical inversion techniques by several authors to study the emissions of planetary 189 

atmospheres (e.g., Qémerais et al., 2006, Stiepen et al., 2012; Cox et al., 2008) using the 190 

following ideas. 191 

Any observation of the line of sight-integrated emission (i.e., brightness) of a given 192 

atmospheric emission will produce a discretized, noisy profile of values obtained for a series 193 

of tangent radii. Such profiles are generally called vertical profiles in the case of a planetary 194 

atmosphere or nucleo-centric profiles in the case of a coma. It then becomes natural to 195 

represent the emission rate profile f(r) as a set of linear segments across well-chosen intervals 196 

that might, for instance but not necessarily, correspond to the set of tangent radii of the 197 

observation. This set of linear segments can be represented as a linear combination of 198 

triangular functions, as shown in Figure 2. These triangles tk(r) can be written as 199 

89��� = � − �9�+�9 − �9�+ :]
<=>,
<[��� + 21 − � − �9�9�+ − �93 :]
<,
<A>[��� 											= � − �9�+�9 − �9�+ :]
<=>,
<[��� + �9�+ − ��9�+ − �9 :]
<,
<A>[���, (8) 

where we use the characteristic function :B���, which takes the value 1 when r ∈ Ω and 0 200 

otherwise and where k = 1, …, n enumerates the different nodes rk. The first (second) term of 201 
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expression (8) can be ignored at k = 0 (k = n, respectively). Any piecewise linear, continuous 202 

function f can then be written as a linear combination of the tk: 203 

���� =CD989���.9  
(9) 

The Abel transform Tk(r0) of each triangle tk can be easily computed using I-1, I0 and I1 from 204 

equations (6) and (7). The Abel transform (4) is linear for f and we thus have 205 

����� =CD9E9����.9  
(10) 

Figure 3 shows the Abel transform of a triangular function. In this figure, the Abel 206 

transform F(r0) is zero for any value of r0 larger than the upper boundary of the interval over 207 

which the triangle is defined. The Abel transform F(r0) varies rather smoothly, despite the 208 

discontinuous first derivative of the triangle function. Now, when f(r) has to be estimated 209 

from line-of-sight integrated measurements Gj obtained for a set of radial distances r0,j , j = 1, 210 

…, J (for simplicity, we assume that the r0,j are sorted by increasing r0) one just has to 211 

minimize the chi-square expression 212 

χ� =CGHI −CD9E9���,I�9 J�K
IL+ MI (11) 

using standard linear minimization techniques. The weights wj will generally be set equal to 213 

the inverse of the variance and they will be the diagonal elements of the inverse of the 214 

variance matrix VG of the measured Gj (which we assume do not co-vary). They may also be 215 

set to 1 for unweighted least squares fit. Indeed, under the assumption of homoscedasticity, 216 

the Gauss-Markov theorem states that an optimal estimation of the parameters is provided by 217 

the weighted least squares fitting. The suitable ak’s are thus obtained by solving the system 218 

N	DO = PQO (12) 

For DO, with 219 

RS9 =CEST��,IU	E9T��,IU	MIK
IL+ = �V	WX�+V��S9							EIS = EST��,IU 

PS =CHI 	EST��,IU	MIK
IL+  

(13) 

Many terms of the sums of equation (13) are zero, as Tk(r0,j) = 0 for any r0,j > rk+1. By solving 220 

system (12), F is adjusted to the set of observations {Gj, j = 1, …, J}. The solutions of the 221 

system, ak, are then used in expression (9) to construct the adjusted f. The quality of the 222 

solution of such an inverse problem can often be improved by applying Tikhonov 223 

regularization, especially when the problem is ill-conditioned. We outline here the principle 224 

of such regularization; details can be found, e.g., in Press et al. (1992). The key idea behind 225 

the Tikhonov regularization is to modify the quantity that is to be minimized by adding a 226 
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contribution that penalizes a property of the fitted result that is considered as inappropriate. 227 

For example, if the result is expected to be fairly constant, we can add a term proportional to 228 

the square of the first derivative (or its integral) in order to penalize any solution with strong 229 

variations or, if the result is expected to be rather smooth (a special case being close to linear), 230 

we can attenuate possible noisy variations of the fitted function by adding a term proportional 231 

to the square of the second derivative (or its integral), to be represented in discrete form. This 232 

is indeed a way to protect the inversion procedure against the deleterious effects of noise. The 233 

usual method to regularize the fitted function is then to replace equation (12) by 234 

�Y + Z	[�	DO = PQO (14) 

where λ can be viewed as a suitable weight applied to the regularization matrix Q, the other 235 

symbols keeping their original definition. The regularization matrix Q must now be 236 

determined. Press et al. (1992) provide Q suitable for equally-spaced observational points. 237 

The derivatives can then be approximated by (forward) finite differences of the fitting 238 

parameters, and the resulting regularization matrices are naturally simple and almost 239 

symmetric. Note that a sophisticated and very accurate method of computation of the 240 

derivatives is indeed not necessary as it would be the case in a solver for differential 241 

equations: we are only searching for an expression that penalizes a property that we consider a 242 

priori should remain small. We adapt the algorithm from Press et al. (1992) to the specific 243 

case of equation (10) in which the derivatives are not estimated by differences of the fitting 244 

parameters. We can write the second derivative of F computed at the observation points r0,i 245 

and pack them in a vector: 246 

\QQO = ]��]���^
L
#,_ =	CD9 	]�E9]��� ^
L
#,_ =C Ì9	D99 = a	DO9  (15) 

where the components of the matrix S are  247 

Ì9 = ]�E9]��� ^
L
#,_ . (16) 

The sum of the squares of the second derivative can then be written in matrix format as  248 

\� = \QQO�	\QQQO = 	DO�	b�	b	DO = CD9	 S̀9	 S̀I	DIS	I	9  
(17) 

We may prefer to compute the integral of the square of the second derivative, which can be 249 

estimated numerically as 250 

� �� �]��]����
� ≃
#,d


#,> C5CD9 	]�E9]��� ^
L
#,_9 7� ℎII
=C5CD9 	]�E9]��� ^
L
#,_ *ℎI9 7�I , (18) 
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where hj can be taken as hj = r0,j+1 − r0,j (with hJ = hJ-1) or as any other suitable discretisation 251 

step length. The derivatives of the Tk can be estimated by any suitable mean: analytically or 252 

numerically (using a central difference scheme, for example). We can then define a matrix S 253 

by  254 

Ì9 = ]�E9]��� ^
L
#,_ *ℎI 	. (19) 

Formally, computing the sum of the square or the integral of the square of the second 255 

derivative can both be done similarly using expression (17). We now want to obtain the 256 

matrix Q of equation (14) in order to perform a minimization. We then need to compute the 257 

first derivatives of D2 with respect to the ak: 258 

]\�]Df = ]]Df 5CD9	 S̀9	 S̀I	DIS	I	9 7 = 2CD9 S̀9 S̀f = 2	a�a	DO|fS	9  (20) 

so that we can define Q by 259 [ = 2	a�a (21) 

We still have to determine the factor λ in equation (14). We follow Press et al. (1992) and 260 

chose 261 Z = E��Y�/E��[�, (22) 

where Tr(A) denotes the trace of matrix A. Note that the factor 2 in equation (21) is simplified 262 

out of equation (14) when adopting this value for λ. 263 

 The method outlined above is very general and it is not specifically designed for the 264 

case of cometary atmospheres. It was already introduced by Quémerais et al. (2006) for the 265 

study of the atmosphere of planet Mars. We will adapt the inversion method for cometary 266 

atmospheres in two steps: First, we will modify the regularization method, and second, we 267 

will modify the tk introduced in equation (8). 268 

The regularization method proposed occasionally suffers from a severe drawback: if 269 

the observed quantity and its derivatives vary over several orders of magnitude across the 270 

observed atmosphere (and this can be the case in cometary and planetary atmospheres), then 271 

D2 will be dominated by the largest values, and regularization will become less efficient in 272 

those regions of the atmosphere where the emission rate (for example) is smaller, i.e. where 273 

regularization may be the most needed. We then change the regularization method by 274 

considering the ak as a list of discrete values of a function a(r), and we regularize the fit by 275 

minimizing its second derivative. Equivalently, we may consider the ak as a suite and 276 

minimize its second-order discrete difference, with similar results. We can write hk = rk+1 − rk  277 

(hn =  hn-1) and use a simple finite difference scheme as an approximation for the second 278 

derivative 279 
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�D��h9 ≃ D9�+ − D9ℎ9  

��D���^9 ≃
�D��i9 − �D��i9�++��ℎ9�+ + ℎ9� ≃ 2	D9�+ℎ9�+� + ℎ9�+ℎ9 − 2	D9ℎ9ℎ9�+ + 2	D9�+ℎ9�+ℎ9 + ℎ9� 	�1 < k < �� ��D���^9L+ ≃ D� − D+ℎ+� 																		��D���^9L( ≃ D(�+ − D(ℎ(�  

(23) 

Expressions for k = 1 and k = n are obtained by considering virtual values a0 = a1 , h0 = h1 and 280 

an+1 = an , hn+1 = hn = hn-1 and applying the expression given for 1 < k < n. The vector 281 

collecting the second derivative values can then be written in matrix format using a tri-282 

diagonal matrix, noting qk = 1/(hk−1
2
 + hk−1 hk) and vk = 1/(hk−1 hk + hk

2): 283 

\QQOl = m�	DO 

n� = 2
op
ppp
ppq
−12ℎ+� 12ℎ+�r+ −r+ − 	+ 	+r� −r� − 	� 	�⋱ ⋱ ⋱r(�+ −r(�+ − 	(�+ 	(�+r( −r( − 	( 	(12ℎ(� −12ℎ(�t

uuu
uuu
v

 
(24) 

The numerical scheme adopted in equation (23) makes B0 tri-diagonal and diagonally 284 

dominant. We can now write the sum of the squares of the second derivatives as in equation 285 

(17): 286 

\l� = DO�	m��m�	DO. (25) 

Its derivative with respect to al is again obtained as in equation (20): 287 

]\l�]Df = ]]Df 5CD9	n�S9	n�SI	DIS	I	9 7 = 2CD9n�S9n�Sf = 2	m��m�	DOwfS	9  (26) 

And the regularization matrix can now be written 288 

[ = [�l = 2	m��m�. (27) 

The multiplicative factor λ of equation (14) is again given by equation (22), and we can 289 

transform B0 the same way as S in equation (19) in order to numerically compute the integral 290 

of the square of the second derivative, which can also be viewed as a weighted sum of the 291 

square of the elements of \QQOl with the lengths of the interval over which the triangular 292 

elements tk are defined (equation 8) chosen as weights. The new matrices B and Qa become 293 

then 294 
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n9S = n�9S"ℎ9 [l = 2	m�m. 
(28) 

We now turn to the task of defining new “triangular” elements instead of the 295 

expression given in equation (8). Our purpose is to find an expression that would be more 296 

suitable to the description of the constituents of a cometary atmosphere. In a first 297 

approximation, the Haser model given by equations (1), (2) and (3) for inert, mother and 298 

daughter species, respectively, provides an adequate description of the distributions of these 299 

constituents. We want to derive triangular elements whose Abel transform can be calculated 300 

analytically, in order to reduce the computational cost. The presence of the exponential 301 

function in expressions (2) and (3) severely complicates the analytic computation of the 302 

indefinite integral built from the Abel transform. We can however compute those primitives 303 

for negative powers of r, which points at the Haser model for inert molecules, proportional to 304 

1/r2. We thus define new “triangular” elements, using the triangles tk from equation (8) as 305 

x9��� = 89����y 			z > 0 (29) 

Quite obviously, we will choose m = 2 in the case of a cometary atmosphere so that 306 

the 1/r2 dependency that appears in the Haser model is explicitly present in the triangular 307 

elements.  We write their Abel transforms Uk to use them instead of the Tk in the definitions of 308 

matrices H and S in equations (13), (16) and (19). The uk so defined do always reduce to a 309 

linear combination of negative powers of r (over bounded intervals). Analytical computation 310 

of their Abel transform thus only requires us to know the indefinite integrals of the form 311 

�y = ���	 �"�� − ��� 	��y 
(30) 

An integration by parts again shows that the Lm satisfy a recurrence relation: 312 

�z − 1��y −z	���	�y�� + "�� − ����y = 0 
�� = *�� − ��� 
�+ = arcosh 2 ���3 = ln5��� +6����� − 17 

�� = 1�� arctg56����� − 17 = 1�� arcos ���� �		. 

 
(31) 

L0 and L1 can be directly obtained from equation (30); L2 is found after the variable change 313 � = *���#��+ and using a trigonometric identity to transform the arctangent into an arccosine. 314 

Notice that the recurrence relation cannot be used to deduce L2 from L0 as the term in L2 315 

vanishes for m = 0. One possibility to further improve the triangular elements would be to 316 
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apply an offset, replace r−m by (r − a)−m in expression (29) and to call upon Laurent series 317 

with an offset. This choice could be suitable in the case of a planetary atmosphere, for which 318 

the extent of the emitting layer is small compared with the planet radius. Indefinite integrals 319 

of the form 320 

���	 �"�� − ��� 	89��� 1�� − D�y 									0 < D < �� (32) 

can always be reduced to a linear combination of indefinite integrals of the form 321 

�y = ���	 1"�� − ��� 	 1�� − D�y		 (33) 

completed with the first elements of the suite of integrals In given by equations (6) and (7) 322 

when m < 3. These integrals satisfy again a recurrence relation and are also related by a 323 

simple derivative with respect to the parameter a. We will not use that refinement here. We 324 

nevertheless report the analytical results and developments in appendix 1, as some of the 325 

computations could be useful for the studies of planetary atmospheres. 326 

In this study, we will only investigate the use of elements tk and uk with m = 2 327 

(equations (8) and (29)) to represent emission profiles in cometary atmospheres, assuming 328 

spherical symmetry. 329 

When uncertainties affecting the observation are known, the weights wj in equation 330 

(11) can be taken as 1/σj
2 i.e., the inverse of the variances affecting the observational points. 331 

As the fitted parameters ak are obtained by applying formulas of linear algebra, error 332 

propagation techniques can be used to obtain the variance matrix of the ak’s and the standard 333 

deviation (i.e., the uncertainty) of the fitted profiles. We remind here the standard general 334 

formulas needed to obtain the desired uncertainties. If we denote by VG the variance matrix of 335 

the observation (which in our case will be a diagonal matrix diag(σj
2)) we can obtain the 336 

variance matrix Va of the fitted parameters by noting that, formally, they are computed by just 337 

multiplying the observation vector HO by a matrix M: 338 

DO = �HO	 (34) 

In this case the variance matrix Va can be written in matrix form as 339 Wl = �	WX	��.	 (35) 

Matrix M is deduced from equations (13) and (14) as: 340 � = �Y + Z	[��+V�WX�+.	 (36) 

The parameter λ can be set to 0 when no regularization is applied. This can, however, 341 

lead to numerical problems when H is ill-conditioned. In contrast, introducing the 342 

regularization warrants that the problem will be well-conditioned and the inverse matrix will 343 

be computable. Because the Abel transform of a triangular element (Figure 3) extends from 344 

the nucleo-centric distance where this element is defined down to r0 = 0, the ak are expected to 345 
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co-vary and Va will not be diagonal. Its diagonal elements are nevertheless the most important 346 

ones as they determine the (square of the) uncertainties affecting the fitted ak’s. Once the 347 

covariances and uncertainties affecting the ak’s have been obtained, standard error 348 

propagation formulas can be used to derive the uncertainties of the fitted F and f from 349 

equations (9) and (10). If we collect the estimated values of F at each r0,j in a vector, the 350 

variances of the Fj are then the diagonal elements of matrix T+VaT, and a similar expression 351 

can be obtained for the fk.  352 

 353 

3. THEORETICAL TESTS 354 

3.1. Inert species profiles 355 

Before analyzing real observations, we apply our method to theoretical nucleo-centric 356 

profiles of the Abel transform F, which is what we use to retrieve the emission rate profile. 357 

We will also check that the inversion method gives appropriate results. Figure 4 shows the 358 

line-of-sight integrated profile F obtained from an emission rate varying as 1/r2, i.e., it is 359 

proportional to the variation of  L2 given in equation (31) between r0 and ∞, and thus varies as 360 

1/r0. Panel b shows the emission rate profile f obtained by numerical inversion of F given at a 361 

restricted set of nucleo-centric distances, without regularization, using purely triangular 362 

elements tk as given by equation (8) (triangles) and elements uk built by dividing each tk by r2 363 

(equation (29), with m = 2). The corresponding line-of-sight integrated values are shown in 364 

Figure 4a using the same plotting symbols. At first glance, both methods seem to give a 365 

satisfying inversion, showing that the inversion method correctly retrieves the expected 366 

emission rate. Figures 4c and 4d show the absolute value of the relative difference between 367 

the numerically-inverted profiles and the input local emission rate. Inversion using elements 368 

uk performs obviously better. This is expected as the chosen elements better match the 369 

emission rate profile corresponding to F. Figure 5 shows the same as Figure 4 with 370 

regularization. In the case of purely triangular elements, regularization appears as counter-371 

productive over this particular profile, while it slightly reduces the absolute deviation from the 372 

correct values in the case of elements consisting in triangles divided by r2. Truncation of the 373 

profiles at large nucleo-centric distance is an obvious source of error. Moreover, these profiles 374 

are somewhat artificial: they were built using a set of nucleo-centric radii that are spaced 375 

following a power law, so that the discrete profiles appear as regularly-spaced points in a log-376 

log diagram. Real data will not resemble those profiles: in general, observations are regularly 377 

spaced versus nucleo-centric distance, and the signal is contaminated by noise. 378 

Figure 6 shows a more realistic (albeit still theoretical) case, using regularly spaced 379 

nucleo-centric bins, and including noise contamination of the Abel transform F. Figure 6a 380 

shows the theoretical profile (dashed line) and the noisy profile used as input to the Abel 381 

inversion algorithm (solid line). Figure 6b shows the absolute value of the relative difference 382 

between the dashed and solid lines of Figure 6a. Figure 6c shows the ideal theoretical line-383 

of-sight (l.o.s.) integrated profile (dotted line) with the l.o.s. integrated profile fitted using 384 

triangular elements divided by r2, with and without regularization (long and short dashes, 385 
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resp.). The uncertainties over the fitted curves that result from noise propagation, are 386 

represented as dark (light) shades for the non-regularized (regularized, respectively) profile. 387 

Figure 6d shows the theoretical local emission rate (dotted line) and the nonregularized (short 388 

dashes) and regularized (long dashes) fitted profiles. Again, the ±1σ uncertainties over the 389 

fitted profiles are represented as dark (light) shade for the non-regularized (regularized, resp.) 390 

fitted emission rate. Both the regularized and nonregularized fits nearly retrieve the exact 391 

value, but the benefit of regularization clearly appears, as the long-dash curve is smoother and 392 

thus broadly closer to the correct values. This is also reflected by the much smaller 393 

uncertainties affecting those values, especially at large nucleo-centric distance, where F 394 

becomes small. As it can be expected, both the boundary effects and the large simulated noise 395 

impair the quality of the fitted profile near the boundary at 20000 km. Figures 6e and 6f show 396 

the same as Figures 6c and 6d, respectively, except that purely triangular elements were used 397 

in the inverse Abel transform fit. The quality of the results shown in Figures 6e and 6f is 398 

obviously not as high as those from Figures 6c and 6d. Regularization even appears as 399 

counterproductive in this case. This naturally results from the less adapted shape of the 400 

elements used here. It thus clearly appears that the best choice is to use elements uk with m = 2 401 

to study cometary profiles, and to apply the regularization procedure. The regularization used 402 

here aims at minimizing the integral of the square of the second derivative of the fitted ak 403 

(equations (23) to (28)). Regularization based on the minimization of the sum of the square of 404 

the second order discrete difference of the ak gives fairly similar results. On the other hand, 405 

regularization based upon the second derivative of the fitted F (not shown) performs worst, as 406 

anticipated above. We note that the argument that we developed to suggest that minimizing 407 

the integral of the second derivative of F might not be the best choice for cometary 408 

atmospheres could also apply to the regularization applied to the fitting parameters obtained 409 

using purely triangular elements. Our best choice finally appears to be to use triangles divided 410 

by r2 and regularization operating directly on the ak because the 1/r2 multiplication partly 411 

corrects for the drawbacks of the alternative regularization choices. 412 

3.2. Disturbed inert species profiles 413 

The tests presented up to now used emission rate profiles proportional to 1/r2. This 414 

choice does perfectly correspond to the uk elements used to realize the fits and one may 415 

wonder if these elements would still be appropriate if the emission profile departs from this 416 

best possible case. We thus constructed an emission rate profile consisting of a 1/r2 profile to 417 

which a bump (idealized by a Gaussian curve) was added. We carefully performed the l.o.s. 418 

integration numerically (using a very high space resolution and extending the emission rate 419 

profile far beyond 20000 km) and used the inversion method with that l.o.s.-integrated profile 420 

as input. The results are shown in Figure 7a and b. Regularized inversion with triangles 421 

divided by r2 is used. The bump added to the profile is indeed retrieved, although the match is 422 

not perfect (such a disturbance of the profile is certainly more severe than any disturbance we 423 

may imagine to find in a real cometary observation). The fitted emission rate becomes 424 

disturbed beyond the bump, because the fitting parameters co-vary and are disturbed by the 425 

bump and by noise. In this extreme test, the propagated noise then becomes a poorer estimator 426 
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of the uncertainty over the local emission rate profile, and the fitted profile shows erratic 427 

oscillations around the correct value. 428 

We also performed another important test: the inverse Abel transform of a profile 429 

varying as 1/r (i.e. for which we expect to retrieve the local emission rate varying as 1/r2) to 430 

which a constant offset is added. This test is important because cometary observations have a 431 

contribution from the background sky, which can often be considered as constant across the 432 

whole coma, although some observations have a sky background that varies across the image, 433 

especially if the bright moon approaches the field of view. Subtraction of this offset is often a 434 

difficult task, and thus a source of uncertainty. The theoretical expression of the inverse Abel 435 

transform does however only involve the first derivative of F so that, if it could be applied to 436 

real data, it would give a result independent of the constant offset due to the sky background. 437 

Unfortunately, real data are noisy, binned over a discrete set of nucleo-centric distances, and 438 

spatially limited, so that we have to rely on numerical methods that may be sensitive to the 439 

offset. Figure 7 shows our simulation of an observation contaminated by an offset in panels c 440 

and d. The noise applied to the input l.o.s.-integrated emission (F) is not included in the plot 441 

for clarity. The constant added to the ~1/r l.o.s.-integrated profile has been purposely chosen 442 

very large, causing a doubling of F already near r = 1000 km. The fitted l.o.s.-integrated 443 

profile does not seem to correctly retrieve the augmented profile (the dash-dot-dot-dot line). It 444 

rather seems to be offset by a larger amount, with a rapid decrease near the boundary at 445 

20000 km. The emission rate profile, however, does more closely correspond to the ~1/r2 446 

profile, except near the boundary at 20000 km. It is surprising that, despite the ~1 order of 447 

magnitude contamination of F near 10000 km (already a factor 2 near 1000 km), and despite 448 

the erroneous retrieval of F at large nucleo-centric distance, the emission rate is rather 449 

correctly retrieved over a broad part of the profile. This stems from the fact that two l.o.s.-450 

integrated profiles differing from each other by only an additive constant have the same 451 

inverse Abel transform. The numerical inversion technique developed here is not fully 452 

insensitive to the added constant. Consequently, the good strategy to follow when analyzing 453 

an observed coma would be to estimate the constant background of the sky as accurately as 454 

possible, subtract it from the observed cometary emission and apply the Abel inversion, 455 

knowing that the result will be only weakly sensitive to a misestimate of the constant 456 

background, across a large portion of the observed coma. This advantage alone can already be 457 

seen as a good reason for inverting the l.o.s.-integrated observation and study the emission 458 

rate itself. It must be added that all the theoretical tests proposed here were performed using 459 

as many fitting elements as pseudo observation points (i.e. J = K and r j = r0,j in the formalism 460 

developed in the preceding section). Other choices are possible and can sometimes give even 461 

better results. Quite obviously, least squares fitting is, in principle, a method that is generally 462 

used to determine a relatively small number of relevant parameters using a larger number of 463 

observations, increasing the number of observation points leading to smaller uncertainties 464 

over the fitted parameters. An interesting option is also to use fitting elements centered at 465 

nucleo-centric distance larger than that of the last point of the F profile, because the Abel 466 

transform of these elements will anyway extend to lower nucleo-centric distance. This choice 467 

could be particularly interesting when the signal-to-noise ratio remains very good across the 468 

whole observed profile. In principle, regularization could even allow us to “fit” more elements 469 
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than the number of observation points: the matrix H + λQ (equation (14)) would generally not 470 

be singular in that case. However, it is illusory to expect to obtain meaningful results using 471 

that choice: one can hardly expect to retrieve more information than what stands in the data. 472 

The result would rather reflect some kind of additional “information” introduced in the system 473 

by the regularization. 474 

3.3 Daughter species profiles. 475 

Similar tests were conducted for emissions having a radial profile represented by a 476 

Haser model for daughter species characterized by realistic scale lengths Lp = 50000 km and 477 

Ld = 120000 km. We found that using fitting elements located at nucleocentric radius larger 478 

than that of the outermost point of the simulated observed profile does improve the quality of 479 

the fitted emission rate near the outer boundary of the radial range of the observation. When 480 

the interval covered by the fitting triangular elements is restricted to that of the radial range of 481 

the observation, the emission rate retrieved by the inversion method is overestimated, 482 

compared with the expected emission rate following a Haser profile for daughter species. This 483 

can be understood as follows: the l.o.s. integration of the emission includes contributions from 484 

the emission originating from altitudes above the tangent point. Truncation of the emission 485 

rate profile removes contributions to the l.o.s. integration that would be necessary to properly 486 

represent the (simulated) observation near the outer boundary of the profile. The least squares 487 

fit algorithm compensates for this defect by overestimating the emission rate in the last bins of 488 

the adjusted profile. Consequently, considering extra triangular elements beyond the tangent 489 

radius of the outermost observation (but still keeping the total number of elements lower than 490 

the number of points of the observed profile) introduces contributions that allow for a better 491 

retrieval of the emission rate near the outer boundary of the observed, l.o.s. integrated profile. 492 

However, beyond some radius, the fitted emission rate can become negative, which does 493 

obviously not make any physical sense. Conclusions regarding the emission rate profile at 494 

cometocentric radii larger than the tangent radius of the outermost observation can thus not be 495 

considered safe and better had to be avoided. Given that the inclusion of those extra bins is 496 

not to extend the range of validity of the inverted profile beyond the radius of the last 497 

observed point but rather to introduce a few degrees of freedom in the fit procedure to better 498 

model the observation at large nucleocentric distance, only a few extra bins suffices to 499 

improve the fit. In our test, some 10-15 extra bins extending the grid by some 1/2 - 2/3 Ld 500 

revealed efficient. 501 

The tests conducted for the case of daughter species following a Haser model also 502 

show that the numerical Abel inversion does, at least partly, remove the effect of a constant 503 

background that might contaminate an observed profile. Numerical inversion uses a discrete 504 

representation over a truncated profile. One should not expect miracles though and hope the 505 

numerical inversion would remove the constant background contamination the way the 506 

analytical inverse Abel transform would do over an infinite radial range. There is a benefit in 507 

performing the numerical inverse Abel transform, but this benefit is not as large as the 508 

theoretical result of equation (5) might suggest. 509 
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It is common practice in cometary data analysis to determine the parameters of a Haser 510 

model representative of the observation using a least squares fit to the observation. As the 511 

emission rate profile can be estimated using a numerical inverse Abel transform applied to the 512 

data, one may wonder whether it is preferable to adjust the Haser model parameters directly 513 

on the observed profile rather than on the emission rate profile deduced from the inversion. 514 

We test this issue over Haser profiles of known parameters. 515 

In a least squares fit procedure applied to a l.o.s. observation, the l.o.s. integration of 516 

the Haser model needs to be computed as well as the derivative with respect to the Haser 517 

parameters. We found the analytical expression of the l.o.s. integral of the Haser model for 518 

mother and daughter species. For least squares fitting purposes, we can express the Haser 519 

model for daughter species as qd = 1/Ld, qp = 1/Lp and Y = Q/(4π v) Ld/(Ld − Lp). One can 520 

equivalently use (Y, qp, qd) or (Y, Lp, Ld) as the fitting parameters, and the optimal fit is rapidly 521 

obtained noting the Haser radial profile h(r): 522 

ℎ��� = �Texp	�−r��� − exp	�−r
��U/�� 
R���� = 2� ��	 �"�� − ��� ℎ��� = 2 ��� T��r���� − ��r
���U

 

#  

��D� = � ��	 �√�� − 1exp	�−D	���� 
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��U 
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(37) 

 523 

where BK(n,x) is the modified Bessel function of the second kind (Bessel-K) and SL(n,x) is the 524 

modified Struve function (also called the Struve-L function), which can be evaluated from a 525 

fast-converging series (Abramowitz and Stegun, 1972). Details regarding the calculation of 526 

P(a) can be found in appendix 2 (as well as the series for the SL function). The Abel transform 527 

of the Haser model for mother molecules can obviously be computed as well using function 528 

P(a) given in equation (37). 529 

The Haser parameters of a radial profile for daughter species are estimated by 530 

accounting for a simulated noise and the possible presence of a constant background 531 

contribution in the simulated observation. This simulated radial profile is computed using the 532 

result of equation (37), contaminated by a Poisson noise and a constant offset background, 533 

and inverted using the numerical inverse Abel transform. The Haser parameters Lp,los and Ld,los 534 

are estimated using a Levenberg-Marquardt method applied to the simulated observation, 535 

while Lp,em and Ld,em are fitted over the emission rate determined by the numerical inverse 536 

Abel transform. When no background is included in the simulated observation, both methods 537 

give similar values for Lp and Ld, although Lp,los and Ld,los seem to fall somewhat closer to the 538 
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exact values used as an input. However, when a residual background is present in the 539 

simulated profile, it is Lp,em and Ld,em that seem to be closer to the expected values. The 540 

presence of a small positive offset reduces the slope of the simulated l.o.s. integrated profile at 541 

large cometocentric distances. This leads to an increase of the fitted Ld,los and a reduction of 542 

Lp,los. Because the numerical inverse Abel transform partly removes the effect of the constant 543 

offset, the fitted Lp,em and Ld,em are less disturbed and they fall closer to the exact value. 544 

Naturally, if the nucleocentric profile does not rigorously follow a Haser model, only an 545 

inversion of the observed profile can estimate the emission rate profile. 546 

 547 

4. APPLICATION TO OBSERVED COMETARY 548 

ATMOSPHERES 549 

In this section, we will apply the method derived in section 2 and tested in section 3 to 550 

real cometary data obtained using the TRAPPIST telescope (Jehin et al., 2011).  TRAPPIST is 551 

a 60-cm robotic telescope installed in 2010 at La Silla observatory. The telescope is equipped 552 

with a 2Kx2K thermoelectrically-cooled FLI Proline CCD camera with a field of view of 553 

22'x22' and a plate scale of 1.302”/pix. A set of narrow-band filters isolating the main 554 

emission bands in the optical spectrum of comets, i.e., OH, NH, CN, C3, and C2, as well as 555 

emission-free continuum regions at four wavelengths (Farnham et al., 2000) is permanently 556 

mounted on the telescope. 557 

The reduction method applied to the TRAPPIST data has been extensively described 558 

by Opitom et al. (2015) and will only be briefly summarized here. TRAPPIST images are 559 

reduced following a standard procedure using frequently updated master bias, flat and dark 560 

frames. The removal of the sky contribution may be problematic for extended objects. 561 

However, for the comets considered hereafter, the TRAPPIST field of view was always wide 562 

enough to determine the sky contribution from parts of the images free of cometary 563 

contribution. We first determine the location of the comet’s optocenter in the image (using the 564 

Iraf task imcntr). Second, we determine the closest distance from the coma optocenter where 565 

each image is free of cometary emission, and measure the median sky level at this 566 

nucleocentric distance, which is subtracted from the image. We then derive the median radial 567 

brightness profile for each image. The use of a median profile eliminates the contribution of 568 

background stars. Even though narrowband filters have been carefully designed to isolate 569 

specific molecular emissions, they are contaminated by the underlying sunlight reflected by 570 

the dust. The dust subtraction is thus a very important step in the data reduction. We use 571 

images of the comet in the BC filter (i.e. at 444.9 nm) to obtain the dust radial profile, scale it 572 

depending on the contamination in the gas filter, and subtract it from the gas profile. 573 

Continuum frames used for the dust subtraction are usually taken during the same hour as the 574 

associated frame to avoid changes in the observing conditions or in the rotational state of the 575 

comet. Regular observations of narrowband photometric standard stars listed in Farnham et al. 576 

(2000) allow us to determine each filter zero point and extinction coefficients used to convert 577 

count rates into fluxes. 578 
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4.1. Estimation of the uncertainties 579 

We derive the local rates of various cometary emissions from their l.o.s.-integrated 580 

observations, i.e., from their Abel transform. Estimating the uncertainties affecting the 581 

observations is often difficult. Some of these uncertainties will not have a dramatic effect over 582 

the range of local emission rates that we will estimate: a small misestimate of the sky 583 

background has nearly no effect over the result of the inverse Abel transform, as was 584 

explained in section 3. We thus adopt a rather pragmatic method to estimate the uncertainties 585 

over the observed emission profile. If we note Gj the observation of a given emission, 586 

obtained under a nucleo-centric tangent radius r0,j (all sorted by increasing tangent radius), the 587 

uncertainty σj affecting this observation is directly estimated from the neighboring 588 

observations using the following method. First, we smooth the observed radial profile to 589 

obtain the set of numbers Gj
* (j = 1, …, J). This smoothing is realized using a Savitsky-Golay 590 

filter (Savitsky and Golay, 1964) applied to the logarithm of the Gj’s. This choice is made 591 

because of the fast decrease rate of the l.o.s.-integrated cometary profile: the logarithm of the 592 

Gj’s varies much slowlier than the original data. One can view the Savitsky-Golay filtering 593 

method as a generalization of the boxcar smoothing. In a boxcar smoothing directly applied to 594 

the data Gj , Gj
* would be the average of the Gi’s over i varying from j − d to j + d, the size of 595 

the smoothing “box” being 2d + 1 elements. This is equivalent to replacing the Gj’s by a 596 

zeroth order polynomial fitting the neighboring elements of Gj. The Savitsky-Golay filter 597 

generalizes this idea: a polynomial of arbitrary degree chosen by the user is fitted over a set of 598 

elements of the array of data centered on Gj, the set having a width 2d + 1 (chosen by the user 599 

as well). It reduces to a convolution with a kernel (that we will denote Ҟq,d) that depends on 600 

the chosen degree of the polynomial (which we will denote q) and the width over which the 601 

smoothing is realized (namely d). Here, instead of applying the filter directly to the data, we 602 

apply it to the logarithm of the data and compute the exponential of that smoothed set. Once 603 

the smoothed array Gj* is obtained, we use it to locally de-trend the observed profile Gj and 604 

compute the mean and standard deviation over that restricted interval, as if the de-trended 605 

result gave several estimates of Gj: 606 

H∗ = expTln�H� ⋆ Ҟ�,�U 
zI = 12� + 1 C HS 	HI∗HS∗

I��
SLI�� 						�� = 1,… , $� 

�I = � 12� + 1 C �zI − HS 	HI∗HS∗�
�I��

SLI�� 						�� = 1,… , $� 
 

(38) 

 607 

In equation (38), the operator ⋆ stands for the convolution product and g is a positive integer 608 

which defines the number of adjacent measurements used to estimate the uncertainties over 609 

the Gj’s. It must be chosen sufficiently large to allow for a reasonably meaningful estimation 610 
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of the uncertainty, but it must also remain small enough so that the set of de-trended 611 

measurements Gi Gj
*/Gi

* (j − g < i < j + g) can be viewed as several estimates of Gj, which is 612 

obviously never strictly true. Moreover, the sums appearing in (38) present problems near the 613 

boundaries of the measurements (near j = 1 and j = J). The sums need to be truncated 614 

accordingly, and the denominator amounting to the number of elements actually involved in 615 

the sum must be corrected. We performed numerical tests that tend to indicate that the method 616 

of equation  (38), when applied to a profile typical of a cometary atmosphere (i.e., the Abel 617 

transform of a Haser model) with known uncertainties (i.e., a randomly generated noise with a 618 

standard deviation proportional to the square root of the profile) tends to somewhat 619 

underestimate the uncertainties. In our tests, that bias could be corrected for by applying a 620 

safety factor of 1.2 to the estimated σj so that the estimated uncertainties better correspond to 621 

the known noise used in the numerical test, although one should not expect this nearly unit 622 

factor would dramatically influence the results. Yet, there is another subtlety that has to be 623 

accounted for in these expressions. The Savitsky-Golay filter reduces to a (numerical) 624 

convolution product of the (logarithms of the) Gj’s with an appropriate kernel. Close to the 625 

boundaries, and in particular close to the inner boundary (i.e., for r0,j near 0), truncation of the 626 

convolution degrades the quality of the smoothed profile Gi
*, leading to unacceptably wrong 627 

(over)estimates of σj. We correct this problem by scaling σj (j < jcrit) along the square root of 628 

Gj, with jcrit being the index of the first j at which the convolution product and the estimates of 629 

equation (38) can be carried out without truncation problem: jcrit  = d + |d − g|/2. This scaling 630 

choice makes sense when the uncertainties are mostly due to the Poisson noise affecting the 631 

measurements. 632 

Figure 8 shows how this method of noise estimation performs when applied to an 633 

ideal profile with known uncertainties. We generate a l.o.s.-integrated Haser profile 634 

discretized over 500 equally-spaced nucleo-centric distances. We then compute its square root 635 

that we use as a standard deviation to generate a Poisson noise to be applied to the ideal Haser 636 

profile (dotted line in Figure 8a). We apply a Savitsky-Golay filter (as outlined in equation 637 

(38)) using a width of 21 points and a fifth degree polynomial, i.e., with d = 10 and q = 5 638 

(long dashed line in Figure 8a). Obviously, the smoothed profile is a poor estimate of the 639 

l.o.s.-integrated emission rate at low nucleo-centric distance. We then compute the local 640 

average and standard deviation as explained in equation (38) over 31 neighboring points (i.e., 641 

with g = 15), and applying the safety factor of 1.2. The result is shown using the long dashes 642 

in panel b. Quite obviously, this estimate of the uncertainty is very wrong near the inner 643 

boundary, while it fairly follows the dotted line at larger nucleo-centric distance. We then 644 

apply the square root scaling at low nucleocentric distance as explained above to obtain the 645 

uncertainties in the part of the profile where the filter-based method does not suffice (short 646 

dashed line in Figure 8b). The estimate of the uncertainty is then fairly good all over the 647 

profile. Incidentally, the uncertainties are somewhat underestimated at low nucleo-centric 648 

distance because the uncorrected method produced a slightly underestimated uncertainty near 649 

jcrit, but overall, the uncertainties are recovered in an acceptable manner. The method used to 650 

estimate the noise level is actually independent of the inverse Abel transform itself. It has 651 

been introduced to derive values for the uncertainties in the χ2 expression (11) and for the 652 

error propagation procedure that is used to estimate the uncertainties of the fitting parameters. 653 
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Obviously, the reliability of any least squares fitting method improves when the uncertainties 654 

are accounted for. Indeed, weighting with adequate uncertainty estimates helps to prevent an 655 

overfitting of the noise affecting the large contributions to the profile (i.e., at low 656 

nucleocentric distance) at the expense of the fitting of physically meaningful signatures that 657 

may arise at large nucleocentric distance where the measured intensity is much smaller. From 658 

that standpoint, a rough estimate of the uncertainties suffices. 659 

4.2. Data analysis 660 

We first apply our methods to observations of comet 103P/Hartley 2 obtained with 661 

TRAPPIST on November 7, 2010. Comet 103P/Hartley 2 was discovered in 1986. It is a 662 

Jupiter Family comet with a period of 6.47 years. 103P/Hartley 2 is one of the few comets that 663 

have ever been visited by a spacecraft: it was the target of a close flyby by the NASA Deep 664 

Impact space probe on November 4, 2010. In parallel to the flyby, an extensive space-borne 665 

and ground-based campaign was initiated to complement the in-situ observations. The comet 666 

passed within only 0.12au from the Earth two weeks before the flyby, allowing its coma to be 667 

sampled with high precision from the ground. We analyze the emission of molecule CN at 668 

387 nm, i.e., the R branch of the (0-0) band of the B 2Σ+ - X 2Σ+ transition. In comets, the CN 669 

radical is predominantly produced by photo-dissociation of molecular HCN (Fray et al., 2005) 670 

(another possibility would be by dissociative recombination of HCN+ ions). Excitation of the 671 

B 2
Σ

+ - X 2
Σ

+ system of bands is due to absorption of the solar light and its analysis should 672 

ideally account for the presence of the Fraunhofer bands in the solar spectrum (Arpigny, 673 

1964).  674 

Figure 9 shows the inversion results. The flux was measured at 723 different nucleo-675 

centric distances and we used 242 triangular elements (equation (29)), i.e., ~1/3 of the number 676 

of points in the observed flux profile. A few triangular elements were added at radial values 677 

beyond the last point of the observed profile, for the reasons explained at the end of section 3. 678 

Regularization was applied on the integral of the second derivative of the fitting parameters 679 

(equation (28)). Figure 9a shows that the method produces a good fit of the observed flux; 680 

Figure 9b furthermore shows that the emission rate is reconstructed with very small 681 

uncertainties. Please notice that the (differential) flux is given per steradian, so that a factor of 682 

4π is applied after Abel inversion to retrieve the volumetric emission rate. Clearly, the 683 

uncertainties that we retrieve are somewhat underestimated at very large nucleo-centric 684 

distance: the small increase of the emission rate near 90000 km does not seem to be realistic, 685 

and it probably results from a small shoulder seen in the observed flux near that nucleo-686 

centric distance. We also determined a Haser model by least squares fitting over the emission 687 

rate, using the Levenberg-Marquardt method. Its characteristic lengths are Lp = 17500 km and 688 

Ld = 70100 km. We deduce the effective production rate QHCN (assuming that dissociation of 689 

HCN is the only source of CN, which may be an oversimplification) associated with this 690 

profile obtained while comet 103P/Hartley 2 was at a heliocentric distance of rH = 1.07 ua, 691 

moving with a radial velocity of ��� = 3.2 km/s. We use the g-factor gCN = 3.44×10-13 erg s-1 692 

molecule-1 based on the study of Schleicher (2010), which accounts for both the heliocentric 693 

distance and the radial velocity (important for the Swings effect). Assuming an expansion 694 



23 

 

velocity of 1 km/s, we estimate that QHCN =  2.68 ×1025 particles s-1. This number must be 695 

considered with care, as the Haser model relies on oversimplified assumptions. We compared 696 

these numbers with those obtained by fitting the Haser model directly using the observed flux, 697 

again using the Levenberg-Marquardt method. A fast implementation of the fit is possible as, 698 

for a Haser model, all the needed quantities can be computed analytically using the results of 699 

equation (37).  700 

The fit realized directly over the observed flux gives Lp
(F) = 2.16×104 km, Ld

(F) = 4.9×104 km 701 

and QHCN
(F) = 3.22×1025 particles s-1, which slightly differ from the values obtained above 702 

from the emission rates. The HCN production rates inferred for the different comets 703 

considered in this study are listed in Table 1. It must be noted that after adding a constant 704 

offset of 1.06×10-5 erg cm-2 s-1 sr-1 to the observed flux prior to fitting the Haser model, we 705 

retrieve very closely the same characteristic lengths and production rates than for the fits 706 

realized over the emission rates. This highlights once more that a small offset affecting the 707 

observed flux can have significant consequences (although not dramatic in this case): the 708 

fitted Haser parameters are sensitive to an offset applied to the observed flux (when the fit is 709 

realized directly over the flux), but the Abel-inverted flux (i.e., the emission rate) is nearly 710 

insensitive to a small offset. The difference between the values of the fitted parameters may 711 

be due to an overestimate of the sky background that was subtracted, which corresponds to an 712 

equivalent flux of 6.4×10-5 erg cm-2 s-1 sr-1. It must, however, also be emphasized that comet 713 

Hartley 2 may well have an extended source region with a not well-determined size (A’Haern 714 

et al., 2011). This is an obvious departure from the hypothesis of the classical Haser model, 715 

mostly important near the nucleus, and that influences the fitted characteristic lengths. In 716 

addition, the dynamics of the acceleration of the gas produced by the cometary nucleus takes 717 

place in a volume extending several tens of kilometers away from the nucleus, as shown by 718 

the Monte Carlo simulations of the expanding coma (Tenishev et al., 2001, 2008, Rubin 2001, 719 

Combi, 1996). As a consequence, Haser model cannot be valid within some distance from the 720 

nucleus, even in the absence of outgassing from dust grains, which further worsens the 721 

correspondence with the Haser model when present. On the other hand, the numerical inverse 722 

Abel transform does not rely on any particular assumption concerning the shape of the profile 723 

of the coma (except for the assumption of spherical symmetry), so that the presence of an 724 

extended source or any other signature in the radial profile (providing that it is large enough 725 

to be resolved by the observing instrument) does not impinge on the quality of the results of 726 

the method itself. Anyway, determining the properties of the coma near a comet’s nucleus 727 

remains challenging, because a feature needs to fill at least 2-4 pixels of the observed profile 728 

to be properly analyzable, due to the limits imposed by the Nyquist theorem. It can also be 729 

considered that the presence of a residual, non-constant contribution from the background can 730 

never be totally ruled out. This uncertain disturbance can however be expected to be small 731 

after subtraction of the estimated background and to mostly affect the radial profiles at large 732 

nucleocentric distance. In contrast, uncertainties concerning the centering of the image of the 733 

coma are more likely to disturb the radial profile at small nucleocentric distance. Along the 734 

same lines, the cumulated effects of flat-field, radial and azimuthal averaging and velocity 735 

terms in the outflow can become important at large nucleocentric distance. Both the fitting of 736 

the Haser model and the numerical inverse Abel transform will incorporate these effects as if 737 
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they were physically meaningful contributions, which can somewhat bias the radial profile at 738 

large nucleocentric distance. 739 

Interestingly enough, the emission rate plotted in log-log scales presents a change of 740 

slope near r = Lp. This change of slope is less visible in the observed flux, although one can 741 

make it out a posteriori, after having first noticed it in the emission rate profile. Comet 103P/ 742 

Hartley 2 was located at a heliocentric distance of 1.07 au at the time of the observation. The 743 

reference characteristic lengths from A'Hearn et al. (1995) for CN are Ld
* = 2.1×105 km and 744 

Lp
* = 1.3×104 km at 1 ua, to be scaled by the square of the heliocentric distance giving Lp = 745 

14900 km and Ld = 240000 km. The fitted Lp is comparable with the standard reference value, 746 

but Ld is quite different. Determining a scale length much longer than the radius range over 747 

which the data are available is however a difficult task, and it is not sure it is always possible, 748 

especially when noise affects the data (and has to be taken into account for the fit, as it was 749 

done here) and when the model does not perfectly match the observation (as it can often be 750 

expected from a Haser model). 751 

It must be noted here that, when a model is adjusted using a least squares fit with 752 

weighting by the inverse of the variances, it is expected that the differences between the data 753 

and the fitted curve would be distributed along a Gaussian centered on the fitted curve. It is 754 

not exactly the case here: the data are not distributed exactly symmetrically with respect to the 755 

fitted flux because the regularization modifies the concept of optimum (the algorithm does not 756 

strictly minimize the classical χ2) and produces a smoother result. 757 

Emission of CN at 387 nm from comet C/2012 F6 Lemmon was also observed with 758 

ESO-TRAPPIST on February 17, 2013. Comet Lemmon was a very active naked eye comet 759 

that reached mag 5 at perihelion, on March 24, 2013. It is a dynamically old, long-period 760 

comet following a highly eccentric and inclined orbit. Figure 10 shows the inversion of its 761 

profile. Again, the observed flux is correctly fitted by the method. The emission rate is 762 

affected with minor uncertainties only. However, the emission rate does not seem to make 763 

sense near the comet’s nucleus, although the observed flux is perfectly fitted. This is due to 764 

the fact that flux measurements near the nucleus are somewhat more uncertain than the low 765 

level of noise affecting it may let suppose. For example, accurate centering (identification of 766 

the exact location of the nucleus in TRAPPIST images) is a source of uncertainties, as well as 767 

the subtraction of possible contributions from dust, especially if we take into account that the 768 

dust profile was obtained separately from the CN profile, so that the centering of both 769 

observations of the comet may not perfectly match. The inverted profile offers here a means 770 

to diagnose a feature that might have remained unnoticed in the radial profile of the flux: 771 

either the first points of the profile are erroneous, or this is a real feature of the radial profile 772 

of the emission rate. Indeed, the first points of the profile near the nucleus must be considered 773 

with care because, in terms of the Nyquist theorem, information can hardly be obtained at a 774 

resolution better than 2-4 pixels. Indeed, the limitations considered in the analysis of the 775 

Hartley 2 data also hold in this case, so that conclusions reached regarding the extremes of the 776 

radial profile must be considered with care. For a comet such as C/2012 F6 Lemmon, which 777 

was very productive, a low emission rate profile near the nucleus could be the signature of 778 

significant absorption of the solar UV radiation. Validation of this hypothesis would need a 779 
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thorough verification, which is beyond the scope of the present study. The emission rate can 780 

again be represented using a Haser model using least squares fitting, giving characteristic 781 

lengths Lp = 3.11×104 km and Ld = 2.35×105 km. This last length is comparable (up to a factor 782 

~2) with the radial range of the data used to determine it and should be considered with 783 

caution. F6 Lemmon was located at a heliocentric distance rH = 1.01 au and had a heliocentric 784 

radial velocity ��� = −21.9 km/s at the time of the observation, giving gCN = 4.41×10-13 erg s-1 785 

molecule-1, from which we estimate the effective production rate QHCN = 8.88×1026 molecule 786 

s-1. The reference characteristic lengths of CN are Ld
* = 2.1 x 105 km and Lp

* = 1.3×104 km at 787 

1 ua, to be scaled by the square of the heliocentric distance giving Lp = 1.33×104 km and Ld = 788 

2.14×105 km. The fitted Ld value is comparable with the standard reference value, while the 789 

shorter Lp values differ by a gross factor of 2. By fitting a Haser model directly on the 790 

observed flux, we find Lp
(F) = 3.8×104 km, Ld

(F) =1.77×105 km and QHCN
(F) = 791 

1.02×1027 particles s-1. These characteristic lengths differ again from those obtained using the 792 

emission rate profile. Again, adding a small offset (2.8×10-4 erg cm-2 s-1 sr-1) to the flux can 793 

bring the fitted lengths closer to those of the emission rate profile, suggesting again the effect 794 

of the sensitivity to the sky background. The background subtracted from this TRAPPIST 795 

image did however correspond to ~2×10-5 erg cm-2 s-1 sr-1, an order of magnitude lower than 796 

the needed offset, so that the explanation for the difference must be searched for elsewhere. A 797 

possible explanation could be that the flat flux found near the comet nucleus implies that the 798 

emission rate must, surprisingly, increase with the nucleo-centric distance in the first layers of 799 

the coma. A Haser model cannot reproduce such an emission rate. However, the flat flux is 800 

rather smooth and non-increasing, which is easier to model using a Haser profile. The 801 

inadequacy of the Haser model to represent the coma of comet F6/Lemmon could then be the 802 

origin of the discrepancy. It must also be kept in mind that the anomalous, increasing 803 

emission rate is found within a radius corresponding to only ~2 pixels of observation, and the 804 

inferred variation may thus just be an artifact due to the insufficient resolution of the 805 

observation, uncertainties in the centering and the background subtraction, etc. As already 806 

discussed above, the analysis of the data obtained near the comet nucleus is not 807 

straightforward. 808 

Figure 11 shows the emissions of CN molecules at 387 nm and of C2 at 514.1 nm 809 

from the comet C/2013 A1 Siding Spring on November 11, 2014 observed again with the 810 

TRAPPIST telescope. Comet Siding Spring was discovered at 7.2 au from the Sun on January 811 

3, 2013 and it was soon predicted to have a close encounter with planet Mars on October 19, 812 

2014. The comet has been extensively observed from the ground and from orbiters around 813 

Mars at the time of the encounter. It underwent an outburst that increased the gas production 814 

fivefold within a few days, less than two weeks after its perihelion passage on October 25, 815 

2014 (Opitom et al., 2016). The C2 514.1 nm emission belongs to the (0-0) band of the Swan 816 

transition system d 3
Πg – X 1Σg

+. Molecular C2 can be produced by photodissociation of C2H4, 817 

C3H6 and possibly C2H6 in cometary atmospheres (Weiler, 2012; Helbert et al., 2005), and the 818 

514.1 nm emission is fed by absorption of the solar light and is due to (at least at large nucleo-819 

centric distance) the complex fluorescent equilibrium that includes the transitions A 1
Πu

 – X 820 

1
Σg

+, b 3
Σg
¯ – a 3Πu, d 3

Πg – a 3Πu, d 3
Πg – c 3Σu

+, a 3Πu – X 1
Σg

+, and c 3Σu
+ – X 1

Σg
+ 821 
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(Rousselot et al., 2000). The comet was located at a heliocentric distance of 1.43 au and had a 822 

heliocentric radial velocity ��� = 5.03 km/s. The fluorescence g-factors obtained from 823 

Schleicher (2010) for CN and A'Hearn et al. (1982) for C2 under these conditions are gCN = 824 

gC2 = 2.2 x 10-13 erg s-1 molecule-1 (both values are incidentally equal). The radial profiles of 825 

the observed fluxes and of the emission rates deduced after Abel inversion are shown in 826 

Figure 11. Again, we used three times less uk elements than the number of bins in the 827 

observed profiles plus a few bins beyond the last observed point, and we applied the 828 

Tikhonov regularization, so that the fitted flux of the C2 emission is smoother than the 829 

observed flux. Its uncertainties remain small, though. The inverted radial profile for the 830 

emission rate appears to be overestimated. Indeed, the small “bump” that appears in the flux 831 

near r = 5000 km does not seem to be real. This feature does however not seem to be dramatic 832 

in the l.o.s.-integrated flux, but it influences the radial profile of the emission rate. 833 

Accordingly, the inverted profile turns out to be a useful tool to diagnose the quality of the 834 

flux profile or perhaps a real phenomenon: indeed, this feature could possibly be attributed to 835 

an underestimate of the contribution from the dust, which was subtracted, and that seems to 836 

become less important beyond ~10000 km. Moreover the second pixel of the profile 837 

corresponds to r = ~3000 km only, and the issue raised above concerning the Nyquist 838 

frequency holds here again, re-emphasizing that it is difficult to draw definite conclusions 839 

from observations obtained close to the nucleus.  The Haser model fitted to the radial profile 840 

of the C2 514.1 nm emission rate was obtained neglecting the contribution of the points below 841 

10000 km. We find nearly identical values for Lp and Ld : Lp = 34273 km and Ld = 34302 km 842 

while the effective production rate of the C2 parents is found to be QC2Hn = 4.75×1026 particles 843 

s-1. The lengths are given with such a high accuracy because, having Lp exactly equal to Ld 844 

would be physically inconsistent. The limit of the Haser model (equation 3) for Ld tending to 845 

Lp is proportional to 1/r, which cannot be integrated over ℝ�. In addition, the Abel transform 846 

(equation 4) of such a profile tends to infinity, whatever the value of r0. Finding nearly equal 847 

values for Lp and Ld may possibly indicate that there is outgassing from the dust grains. 848 

Combi and Fink (1997) explain that C2 radial profiles are usually flatter than would be 849 

expected for the photodissociation of a single parent molecule, and can then be more easily 850 

reproduced with a Haser model that has two almost equal scale lengths. Interestingly, the 851 

radial profile of the emission rate of CN has Lp = 37646 km and Ld = 37688 km. CN would 852 

thus also have nearly equal characteristic lengths, which are above all nearly identical to those 853 

of C2, thus corroborating the hypothesis of outgassing from grains. However, as we will show 854 

in the next paragraph, such a conclusion cannot be drawn in the case of Siding Spring. The 855 

effective production rate derived from the CN emission rate profile is QHCN = 856 

4.20×1026 particles s-1. 857 

There are oscillations that can be seen at large nucleo-centric distance (above 858 

~1.5×105 km) in the radial profile of the emission rate of C2 and, to a lesser extent, in the 859 

emission rate profile of CN where a change of slope appears (in the log-log plot of Figure 860 

11b). These signatures require particular attention. Comet Siding Spring is known to have 861 

produced an outburst shortly before these data were obtained (Opitom et al., 2016). Inverse 862 

Abel transform is particularly adapted to retrieve the radial profile of the emission rate in this 863 

dynamic case, as standard models generally assume steady state. Indeed, both the C2 864 
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514.1 nm and the CN 387 nm fluxes show a smooth change of slope around 105 km. The 865 

radial profile of the CN 387 nm emission rate clearly shows a slope breaking at 1.5×105 km. 866 

A similar breaking is also seen at the same place in the radial profile of the C2 514.1 nm 867 

emission (see Figure 12), especially comparing the emission rate obtained by Abel inversion 868 

and the Haser model fitted to the emission rate at nucleocentric distance larger than 869 

1.5×105 km. Note that C2 is known to have a shorter lifetime than CN, leading to a smaller 870 

characteristic length (A’Haern et al., 1995). This leads to a faster radial decrease of the C2 871 

emission rate compared with CN, as it is easily seen in Figure 12, and the signature of the 872 

outburst is then harder to detect in the C2 profile. The oscillation that appears in the C2 873 

emission and peaks at 3×105 km may be due to the poorer quality of the observed flux near 874 

that nucleo-centric distance, and it is hard to draw conclusions about it. It remains that both 875 

the CN and C2 emission rate profiles show a clear signature of the outburst, seen as a breaking 876 

of both profiles near 1.5×105 km. The information is of course present in the radial profiles of 877 

the observed flux, but the l.o.s. integration smoothens the features present in the emission rate, 878 

and it is harder to determine where the junction between the pre- and post-outburst coma is 879 

located. The presence of the outburst also casts another light on the characteristic lengths 880 

deduced from the fitting of a Haser profile over the emission rate: the observed coma does not 881 

comply with the hypothesis of the Haser model, that assumes a fairly constant production rate, 882 

and it is hazardous to draw any conclusion over the outgassing mechanisms at play in the 883 

coma at that time (although outgassing from grains could make sense right after the outburst, 884 

if it were related with an explosive release of matter). In contrast, the numerical inverse Abel 885 

transform does not rely on any assumption regarding the functional shape of the radial profile 886 

and it can thus account for possible dynamic variations of the production rate of the nucleus 887 

and for a possible extended source. 888 

5. DISCUSSION 889 

We developed an inverse Abel transform method with Tikhonov regularization that 890 

specifically accounts for the properties of cometary atmospheres. We used triangular elements 891 

matching the density profiles of chemically inert species. However, using more elaborate 892 

elements that closely resemble the Haser model for daughter species might have been more 893 

appropriate. We had to make a tradeoff between adequacy of the elements and computational 894 

efficiency. First of all, the Abel transform of these alternative elements would have been more 895 

difficult to compute. Secondly, the least squares fitting on which the method relies would 896 

have become non-linear. The impact of more sophisticated triangular elements is difficult to 897 

assess. Our theoretical tests tend to show that the elements used in this study have properties 898 

that are adequate for the processing of cometary observations. 899 

The Abel inversion method calls upon the hypothesis of spherical symmetry of the 900 

coma. This assumption is probably never strictly fulfilled, although one may expect that it is 901 

valid far from the nucleus. It is difficult to appreciate how large deviations from spherical 902 

symmetry can possibly be. Alternatively, one could develop a model under the hypothesis of 903 

axial symmetry about the rotation axis of the comet and directly use 2D imaging of the coma 904 

to perform an inversion. We conducted a preliminary analysis that suggests such a method 905 
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could probably be developed and applied when the orientation of the rotation axis is known 906 

with sufficient accuracy. However, further developments are required to fully explore the 907 

potential of such a method. One may also dream of a method that would produce a 3D 908 

tomographic inversion of cometary observation. Such a method would rely on the (inverse) 909 

Radon transform which is extensively used in medical imagery, so that an impressive know-910 

how exists about that topic. Such an inversion would however require observations under all 911 

possible look directions (i.e. from vintage points distributed in the 4π steradians around the 912 

comet). That kind of observation will not be available on a regular basis in a foreseeable 913 

future, if it ever becomes available.  914 

Application to real cometary observation showed to be efficient in the sense that 915 

realistic emission rate profiles could be retrieved from the Abel inversion of the observed flux 916 

of radiation. However, comparison between the properties of Haser models fitted over the 917 

emission profile and over the observed flux reveals differences in the inferred scale lengths. It 918 

is possible to reconcile the numbers by applying a small offset to the observed flux data prior 919 

to fitting a Haser model to them, given that the inverse Abel transform applied to noisy data is 920 

only weakly sensitive to an offset (which may be related to inaccuracies in the estimate of the 921 

sky background). This ad hoc cure may however seem somewhat artificial as it introduces an 922 

additional degree of freedom to the problem to reach internal consistency. The independence 923 

of the theoretical inverse Abel transform over any applied offset gives nevertheless 924 

confidence in the offset explanation of the apparent discrepancies, although an imperfection 925 

of the data reduction technique can never be totally ruled out. 926 

The inverse Abel transform has proven to be a powerful tool when applied to real 927 

observations. It allows an easy diagnosis of the properties of the observation. We were able to 928 

identify a possible anomaly in the dust contribution subtracted from the observation of comet 929 

A1/ Siding Spring. We were also able to identify a signature in the emission rate profile of 930 

comet F6/ Lemmon that may be attributed either to an inaccuracy in the data (possibly due to 931 

a problem with the exact identification of the location of the comet nucleus in the TRAPPIST 932 

images for example) or that may have a physical explanation, such as significant absorption of 933 

the solar UV light by the material of the coma, especially considering that comet F6/ Lemmon 934 

was very productive. Whatever the explanation will be, those signatures would have remained 935 

unnoticed in the flux profile, while they are patent in the emission rate profile. The analysis of 936 

an image of an outburst of comet A1/ Siding Spring with our new method may provide 937 

original insight: the separation between the pre- and post-outburst coma could be easily 938 

identified in both emission rate profiles from molecules CN and C2. If consecutive 939 

observations can be obtained over timescales of a few hours up to a few days, it would be 940 

possible to track the location of that junction versus time, to estimate the velocity at which it 941 

propagates in the coma, and to determine at what time the outburst actually takes place at the 942 

nucleus. 943 

A further consistency check of the fitted parameters can be performed considering the 944 

total content of daughter species in the coma. For a Haser density profile with production rate 945 

Q and expansion velocity v, the number of particles inside a sphere of radius R centered on 946 

the nucleus is  947 
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and the fraction of the total number of particles inside of that sphere is obtained by the ratio 948 

β = N(R) / (Q Ld/v). When the coma is observed over range R of radii, N(R) can also be 949 

directly obtained from the observation by integrating the flux (given per steradian) over the 950 

observed disc, if the fluorescence g-factor is known: 951 

�� � = 2π	� ���	��	�����		4π�¢
� . (40) 

In the case of comet 103P/Hartley2, the Haser parameters fitted over the emission rate give a 952 

coma content of 1.908×1030 CN molecules, 73% of which are contained inside a sphere of 953 

radius given by the maximum radius of the observation. The content of that sphere calculated 954 

from equation  (40) is 1.372×1030 particles which, when divided by 0.73, gives an estimated 955 

total coma content of 1.88×1030 molecules, in excellent agreement with the value derived 956 

from the fitted Haser model. The results provided by the different methods are thus consistent, 957 

and in particular, corroborate the assumption of a Haser density profile, at least as far as the 958 

global properties of the coma are considered. We reached similar conclusions with the 959 

F6/Lemmon observations: both estimates of the CN coma content agree within 0.5%. On the 960 

opposite, in the case of comet Siding Spring, both methods for estimating the coma content 961 

differ by ~11% using the C2 observation and ~24% using the CN observation, which indicates 962 

that a Haser model cannot be used to represent the density profiles of a coma shortly after an 963 

outburst. 964 

The method does not make any assumption about the detailed nature of the 965 

observation (except that it is a cometary observation). It could thus be applied to any 966 

emission, to the study of dust, and it could be adapted to the study of absorption phenomena, 967 

such as star occultation for example, in which the material of the coma or of a planetary 968 

atmosphere absorbs the light emitted by stars depending on the amount of gas present along 969 

the total line of sight. In the case of planetary atmospheres, this technique can be used by 970 

measuring the absorption of sun light aboard an orbiting spacecraft. The method thus appears 971 

to be a promising tool capable of simplifying the analysis of various cometary observations. 972 

More sophisticated representations of the density profile of the coma might also be 973 

included in the analysis of the emission rate retrieved after Abel inversion. The vectorial 974 

model of the coma offers a more detailed description of the photochemical processes 975 

responsible for the production of the daughter species, and thus of the destruction of the 976 

mother species. As explained by Festou (1981), inclusion of the vectorial effects has, as a 977 

major consequence, that molecules produced at a given location can end up at another 978 

location which is not necessarily located downstream of the production location. Daughter 979 

molecules are produced isotropically in a reference frame moving with the expanding gas of 980 

the coma. All the points of the coma are thus coupled by diffusive transport. In other words, 981 

the isotropic production of daughter molecules leads to a kind of smoothing of the 982 

composition of the coma. One can thus naturally expect that scale lengths fitted over the 983 

observed coma should be somewhat longer than those we would compute using the 984 
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photochemical reaction constants, given with an appropriate accuracy from laboratory 985 

measurements, using a prescribed profile for the major constituents and neglecting molecular 986 

diffusion. One would furthermore expect that these ad hoc fitted lengths would be influenced 987 

by the value of the collisional mean free path, which constrains the diffusive transport of the 988 

daughter molecules. The numerical Abel inversion method transforms line-of-sight integrated 989 

quantities into local quantities. It can, unfortunately, not be used to identify the effect of 990 

molecular diffusion without additional processing. The first and second derivatives of the 991 

emission rate as a function of the radial distance could possibly provide quantitative 992 

information on the effect of diffusive smoothing in relation with the collisional mean free 993 

path, something that could probably not easily be done directly using the radial profile of the 994 

flux alone. So far neither the feasibility nor the validity of this idea have been tested. The 995 

practical implementation of such an analysis would need a reasonable estimate of the collision 996 

cross sections required to evaluate the gas kinetic, and validation should rely on detailed 997 

modelling of the molecular diffusion inside of the expanding coma (e.g., with a Monte Carlo 998 

method or an average random walk technique such as the one developed by Combi and 999 

Delsemme (1980a,b)). This idea could be tested independently of the inversion technique 1000 

developed here. 1001 

6. CONCLUSIONS 1002 

1. We have developed a numerical inverse Abel transform specifically adapted to 1003 

cometary atmospheres. Its efficiency is considerably improved in combination with a 1004 

Tikhonov regularization. It allows the usage of standard error propagation techniques to 1005 

estimate the uncertainties that affect the local emission rates derived from the observed flux of 1006 

radiation. 1007 

2. The emission rates calculated with our inverse Abel transform are only weakly 1008 

sensitive to a constant offset that might result from an inaccurate subtraction of the sky 1009 

background with real-world data. 1010 

3. We applied our inversion technique to a restricted set of observations of comets and 1011 

found that it effectively yields realistic emission rate. The emission rate profiles allow an 1012 

easier diagnostic of the characteristics of the observation, such as an erroneous estimate of the 1013 

dust subtraction or the identification of a signature possibly attributable to significant UV 1014 

absorption by the coma. 1015 

4. When we applied our method to an outburst case, we were able to clearly identify 1016 

the separation between the pre- and post-outburst parts of the coma, which further illustrates 1017 

its efficiency. 1018 

 1019 

APPENDIX 1 1020 

In this section, we present the analytical results needed to use triangular elements 1021 

vk = tk/(r−a)m. Such elements could be useful to realize the inverse Abel transform of 1022 
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planetary observation. The value of the parameter a can be adjusted to make the elements 1023 

more appropriate for the properties of the observed atmosphere. The computation of the Abel 1024 

transform of elements vk is necessary to realize the inversion of an observed profile and 1025 

requires the computation of indefinite integrals of the form 1026 

���	 �"�� − ��� 	89��� 1�� − D�y ,									0 < D < ��. (A1.1) 

These can always be reduced to a linear combination of indefinite integrals of the form 1027 

�y = ���	 1"�� − ��� 	 1�� − D�y		 (A1.2) 

completed with the first elements of the suite of integrals In given by equations (6) and (7) 1028 

when m is lower than 3. These integrals satisfy a recurrence relation and are also related by a 1029 

simple derivative with respect to the parameter a: 1030 ]�y]D = z	�y�+					�z > 0� 
z	���� − D��	�y�+ =	"�� − ����� − D�y + �2z − 1�D	�y + �z − 1��y�+ 
�� = 	arcosh 2 ���3 = ln5��� +6����� − 17 

�+ = 1"��� − D� arctg � D� − ���"���� − D����� − ����� 
�� = ]�+]D = "�� − ������� − D���� − D� + D		"���� − D��� 	arctg � D� − ���"���� − D����� − �����	. 

(A1.3) 

The recurrence relation can be obtained by multiplying and dividing the integrant by a in 1031 

(A1.2), then replacing the factor a at the numerator by a−r+r in order to make appear Wm-1 1032 

and a second indefinite integral that can be reduced by an integration by parts, leading to 1033 

D	�y = −�y�+ + "�� − ����� − D�y +z���	 �� − D� + D� − ���"�� − ��� 	 1�� − D�y�+, (A1.4) 

where we have already introduced −a2+a2 at the numerator of the integrand. The indefinite 1034 

integral in (A1.4) can now easily be expressed as a combination of Wm by noting that r2−a2 = 1035 

(r−a)(r+a). The factor (r−a) can be cancelled with one and we finally retrieve the recurrence 1036 

relation (A1.3). W0 can be directly derived from (A1.2). W1 is more difficult to obtain, as it 1037 

cannot be derived from W0 by simple derivation with respect to a. To obtain the expression 1038 

for W1, we first let x = r/r0 and, accordingly, dx = dr/r0 (we also denote b = a/r0). We then 1039 

apply the substitution x = 1/cos(u), dx = tg(u)/cos(u) du, which leads to 1040 
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�+ = 1����x	 11 − P	cos	�x�											�P = D��� (A1.5) 

With the classical substitution s = tg(u/2), i.e., cos(u) = (1−s2)/(1+s2),  sin(u) = 2s/(1+s2),  du = 1041 

2/(1+s2) ds we get 1042 

�+ = 1�����	 21 − P + �1 + b�	s� (A1.6) 

which reduces to an arctangent. After back-substitution of the variable changes, one finds (up 1043 

to an additive constant): 1044 

�+ = 1�� 	 2√1 − P� arctg � P� − 1 + � − P"�1 − P����� − 1��. (A1.7) 

Noting that 2 arctg(y) = arctg(2y/(1−y2))+π  and  arctg(y)+arctg(1/y) = sgn(y) π,  and 1045 

substituting x = r/r0 and b = a/r0, we finally get the expression from (A1.3) 1046 

�+ = 1"��� − D� arctg � D� − ���"���� − D����� − ����� (A1.8) 

which is defined up to an additive constant. Derivation with respect to a immediately gives 1047 

W2 and the recurrence can be started. Care must however be taken when using that recurrence. 1048 

The numerical tests that we performed suggest that it is not always stable. The relations given 1049 

in equation (A1.3) can nevertheless be used to derive analytical expressions of the Wm and 1050 

thus of any integral of the form of expression (A1.1). Based upon these results, the inversion 1051 

method developed above can be adapted for triangular elements of the form 1052 

	9 = 89 	 1�� − D�y, (A1.9) 

which have an Abel transform Vk(r0) for any r0 > a (all of which can now be calculated from 1053 

the W0, W1 and W2 above because of the linearity of the Abel transform), to be used instead of 1054 

Tk in the developments of equations (13), (16) and (19). In the case of planetary atmospheres, 1055 

choosing a of the order of the radius of the planet could be appropriate to build triangular 1056 

elements adapted to the observed atmosphere. 1057 

 1058 

APPENDIX 2. 1059 

In this section, we provide the detailed developments needed to analytically compute 1060 

the line-of-sight integration of a Haser model for mother and daughter species. 1061 

All integrals appearing in the l.o.s. integration of a Haser model for parent and daughter 1062 

species can always be reduced, after the substitution x = r/r0, to integrals of the form: 1063 

� = � ��	 exp�−r	���	√�� − 1 
+ . (A2.1) 
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We first derive P with respect to q: 1064 ���r = −� ��	 exp�−r	��√�� − 1 
+ = −	� �8	exp�−r	cosh�8�� 

� 	 (A2.2)	
where we made the variable change   x = cosh(t), t = arcosh(x), dt = dx / (x2−1)1/2. This 1065 

integral can be easily computed with the well-known formula for the modified Bessel 1066 

functions of the second kind, BK(n,z) (Abramowitz and Stegun, 1972): 1067 

n���, ¤� = � �8	expT−¤	¥��ℎ�8�U	cosh��	8� 
� 	 (A2.3)	

to be applied with n = 0, so that 1068 ���r = −n��0, r�,	 (A2.4)	
a result already given by Haser (1957). 1069 

Now, we must compute the indefinite integral of BK(0,q) to retrieve P up to an additive 1070 

constant. We use the following formula, from Olver et al. (2010), and which can also be 1071 

found in the digital version of the NIST handbook of mathematical functions (the Digital 1072 

Library of Mathematical Functions, DLMF) as equation 10.43.2: 1073 

��¤	¤(	�S(¦n���, ¤�
= √�	2(�+§ �� + +�� ¤	 ��S(¦n���, ¤�	`��� − 1, ¤� 	− �S�(�+�¦n��� − 1, ¤�	`���, ¤��	+ ¥, 

(A2.5)	
where SL(n,z) represents the modified Struve function (also called Struve-L), which can be 1074 

easily computed using a fast-converging series expansion (Abramowitz and Stegun, 1972): 1075 

`���, ¤� = �+�	¤�(�+C T+�	¤U�9ΓTk + ��U		Γ�k + � + ���
 
9L�  (A2.6) 

 1076 

If we let n = 0 in equation (A2.5), the gamma function can be evaluated as Γ(1/2) = π1/2 and 1077 

expression (A2.5) reduces to  1078 

�dz	n��0, z� = π2 	¤	Tn��0, ¤�	`��−1, ¤� + n��−1, ¤�	`��0, ¤�U 	+ ¥, (A2.7) 

so that we can write 1079 

� = − «� 	r	Tn��0, r�	`��−1, r� + n��−1, r�	`��0, r�U + ¬. (A2.8) 

We determine the integration constant C by noting that, when q becomes infinitely large, the 1080 

integrant in (A2.1) becomes zero for any x ∈ ]1,∞[, so that P tends to 0 as well. The limit of 1081 
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equation (A2.8) for q tending to infinity is computed using the asymptotic developments 1082 

given by Abramowitz and Stegun (1972). For large values of z, noting BI(n,z) the modified 1083 

Bessel functions of the first kind, we have 1084 

n���, ¤�~* �2	¤ ��® �1 − 4	�� − 18	¤ + ⋯� 
`���, ¤�~n±�−�, ¤� + 1�C �−1�9�+§Tk + +�U§T� + +��9UT®�U�9�(�+

 
9L�  

n±��, ¤�~6 12�	¤ ��® �1 − 4	�� − 18	¤ + ⋯� 
(A2.9) 

with |arg(z)| < 3π/2 when z is complex. For very large values of z, the exponential term in the 1085 

expression of BI(n,z) will largely dominate the series that appears in the asymptotic 1086 

development of SL(n,z), so that we can immediately write that 1087 

lim®→ ¤	n��0, ¤�	`��−1, ¤� = lim®→ ¤	n��−1, ¤�	`��0, ¤� = +�		 (A2.10) 

It follows that, in (A2.8), C = π/2 and we have 1088 

� = � ��	 exp�−r	���	√�� − 1 
+ = π2	�1 − r	Tn��0, r�	`��−1, r� + n��−1, r�	`��0, r�U� (A2.11) 

It is always possible to compute P numerically, although this integration must be carried out 1089 

with extreme care as the integrant tends to infinity when x approaches 1. The analytical 1090 

expression (A2.11) uses special functions that can be rapidly computed with modern 1091 

computers, with an accuracy that will approach the machine precision. The advantage of 1092 

(A2.11) is thus twofold: it offers a better accuracy and it is faster than numerical integration, 1093 

which is important when P must be evaluated a large number of times, as it is the case in least 1094 

squares fit procedures. The benefit can be expected to be even larger when handling a more 1095 

sophisticated model using similar analytic expressions such as the three-generation Haser-like 1096 

model (Combi et al., 2004). 1097 

For the sake of completeness, we define a suite of integrals of the form 1098 

\( = � ��µ�−r���(√�� − 1 	�� 
+ 		. (A2.12) 

Proceeding by parts, it is easily shown that these integrals satisfy a recurrence of third order 1099 

(letting U=exp(-q x)/xn+1 and dV=x/(x2-1)1/2 dx): 1100 

\(�� = r� + 1	\(�+ + �� + 1\( − r� + 1\(�+			. (A2.13) 

Evaluation of any three of the Dn (n ≥ 0) suffices to start the recurrence, and successive Dn’s 1101 

are also related by a derivative versus parameter q. We already know D0 = BK(0,q) (equation 1102 
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A2.4) and D1 = P(q) (equation A2.11). Integral D2 is evaluated proceeding by parts, letting  1103 

U = exp(-qx) and dV=dx/(x2 (x2-1)1/2) to find 1104 

\� = r� �	��µ�−r��√�� − 1 	�� − r	� ��µ�−r���	√�� − 1 	�� 
+

 
+  (A2.14) 

The first of these integrals is computed using the change of variable x = cosh(t), 1105 

t = arcosh(x), dt = dx / (x2-1)1/2 and equation (A2.3), while the second integral is given in 1106 

equation (A2.11) so that 1107 

\� = r	n��1, r� − r	��r�		. (A2.15) 

Recurrence (A2.13) can then be started and all the Dn’s can be computed. These results can be 1108 

used to compute indefinite integrals of Dn(q) and in particular the analytical primitive of P(q), 1109 

an unexpected result. Because -Dn-1 is the derivative of Dn versus q, the recurrence (A2.13) 1110 

can be transformed in a set of differential equations that admit Dn as solutions. A similar 1111 

remark can be made concerning recurrence (A1.3). 1112 

 1113 

 1114 
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Figures and captions. 1220 

 1221 

 1222 

Figure 1. Geometry of the observation of an expanding coma. A remote observer collects the 1223 

light emitted by the gas of the coma, summed up along the line of sight that passes through 1224 

the tangent point T, i.e., the point of the line of sight nearest to the comet center. T is at a 1225 

distance r0 of the comet center, while a point of the line of sight is at distance r from the 1226 

center. Variable s is counted from point T along the line of sight and can be considered to 1227 

vary between -∞ and +∞ when the observer is at great distance. The coma expands radially at 1228 

a velocity v0. The angle between the expansion direction and the line of sight, noted α, 1229 

changes along the line of sight. 1230 

 1231 

  1232 
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 1233 

 1234 

Figure 2. Representation of a function f decomposed into a set of linear segments using a 1235 

linear combination of triangular functions. The sum of the colored dash lines triangles gives f, 1236 

represented with the black segments. 1237 

 1238 

 1239 
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 1240 

Figure 3. A triangular function and its Abel transform, both shown in arbitrary units. The peak 1241 

of the Abel transform occurs at a somewhat lower radial distance than that of the summit of 1242 

the triangle. 1243 
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 1245 

Figure 4. Abel transform of a theoretical nucleo-centric profile varying as 1/r2. Panel (a) 1246 

shows the Abel transform F: the solid line gives the exact analytical values, triangles and 1247 

diamonds show the profiles obtained after inverse transform fitting using purely triangular 1248 

elements and triangular elements multiplied by 1/r2 respectively. Panel (b) shows the emission 1249 

rate profile f, of which F is the Abel transform. Triangles show the emission rate profile fitted 1250 

using triangular elements; diamonds represent the profile fitted using triangular elements 1251 

multiplied by 1/r2. Panels (c) and (d) show the absolute value of the relative difference 1252 

between the exact and the fitted emission rates obtained using the purely triangular elements 1253 

and the triangular elements multiplied by 1/r2, respectively. No regularization was applied for 1254 

these inverse Abel transform fits. 1255 

 1256 
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 1257 

Figure 5. Same as figure 4, but combined with a Tikhonov regularization. 1258 

 1259 
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 1260 

Figure 6. Inversion of a realistic simulated profile including noise and a regular binning. Panel 1261 

(a): line-of-sight integrated profile, i.e., Abel transform of the ~1/r2 emission rate. The dashed 1262 

line shows the exact transform, while the solid line shows the noisy values to be used in the 1263 

inverse Abel transform method. Panel (b) shows the absolute value of the relative difference 1264 

between the noisy and the smooth profiles from panel (a). Panel (c) shows the exact Abel 1265 

transform (dotted line) and the values fitted over the noisy profile of panel a, using triangular 1266 

elements divided by r2. Short (long) dashes show the fitted profile obtained without 1267 

(respectively with) regularization. The dark (light) grey shade show the ±1σ interval obtained 1268 

applying error propagation for the unregularized (respectively the regularized) fit. Panels (e) 1269 

and (f) are similar to panels (c) and (d), respectively, using purely triangular elements for the 1270 

fits instead of triangles divided by r2. 1271 
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 1272 

Figure 7. Inversion of a ~1/r l.o.s.-integrated profile modified by a Gaussian disturbance 1273 

(panels (a) and (b)). The ideal disturbed l.o.s.- integrated profile is represented by the dotted 1274 

line in panel (a). The noisy signal actually used as input for the inversion algorithm is omitted 1275 

for clarity. The long dashes show the fitted l.o.s.-integrated profile, the grey shade delimits the 1276 

1−σ uncertainty band. Panel (b) shows the local emission rate, the dotted line represents the 1277 

exact profile that we seek to retrieve; the long dashes show the fitted profile with the 1−σ 1278 

uncertainty delimited by the grey shade. Panels (c) and (d) show the results from the inversion 1279 

of a power law profile augmented by a constant offset. In panel (c), the dotted line shows the 1280 

~1/r l.o.s.-integrated profile, the dash-dot-dot-dot line shows the same profile increased by a 1281 

constant amount while the long dashes show the fitted profile with the grey shade delimiting 1282 

the ±1σ uncertainty band. Panel (d) shows the target ~1/r2 emission rate profile, the long 1283 

dashes represent the fitted profile and the grey shade delimits the ±1σ uncertainty band. 1284 
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 1286 

Figure 8. Panel (a): shows a simulated noisy l.o.s.-integrated Haser profile before (dotted line) 1287 

and after smoothing with a Savitsky-Golay filter (long dashes). Panel (b) shows the standard 1288 

deviation used to generated the noise of the profile shown in panel (a) (dotted line), which is 1289 

just the square root of the ideal profile (i.e., before artificial noise contamination). The long 1290 

dashed line shows the standard deviation estimated using the smoothed profile of panel (a) 1291 

and applying the formulas of equation (37) , while the short dashes show the uncertainties 1292 

obtained applying a square root scaling near the inner boundary of the profile. 1293 

 1294 

 1295 
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 1296 

Figure 9. Observation of the CN emission of comet 103P/Hartley2 on 07 November 2010 at 1297 

387 nm. Panel (a) shows the observed flux, i.e., the l.o.s.-integrated data (dotted line). The red 1298 

long dashed curve shows the fitted flux obtained with the inverse Abel transform method; 1299 

uncertainties are shown as grey shades (they are lower than the line thickness in the plot). 1300 

Panel (b) shows the emission rate obtained using the inverse Abel transform of the observed 1301 

flux shown in panel (a) (black short dashes), with the uncertainties indicated by grey shades 1302 

(which are again smaller than the line width in the plot). The blue long dashes show a Haser 1303 

model fitted to the black dashes. It has characteristic lengths Lp= 17500 km and Ld= 70100 1304 

km, indicated by the vertical solid lines. The vertical dotted lines correspond to the fourth data 1305 

point of the observation. 1306 

 1307 

 1308 
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 1309 

Figure 10. TRAPPIST observation of the CN emission at 387 nm of comet C2012 1310 

F6/Lemmon on February 17, 2013 (line styles and colors as in Figure 9). The characteristic 1311 

lengths of the fitted Haser profile are Lp = 31100 km and Ld = 235000 km, indicated by the 1312 

vertical solid lines. The vertical dotted lines correspond to the fourth data point of the 1313 

observation. 1314 

 1315 
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 1316 

Figure 11. Radial profiles of the emissions of molecules CN at 387 nm (panels (a) and (b)) 1317 

and C2 at 514.1 nm (panels (c) and (d)) from comet C/2013 A1 Siding Spring on November, 1318 

11 2014. Line styles and colors are the same as in Figure 9. The characteristic lengths of the 1319 

fitted Haser models are Lp = 37646 km and Ld = 37688 km for CN and Lp = 34273 km and Ld 1320 

= 34302 km for C2. The vertical dotted lines correspond to the fourth data point of the 1321 

observation. 1322 

 1323 

 1324 
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 1325 

Figure 12. Radial profile of the emission rates of CN at 387 nm (black dashed line) and of C2 1326 

at 514.1 nm (black dotted line) obtained by inverse Abel transform fitting of the ESO-1327 

TRAPPIST observation of comet C/2013 A1 Siding Spring on November, 11 2014. The light 1328 

blue lines represent a Haser model fitted to the emission rate of CN (dashed line) and C2 1329 

(dotted line) at nucleo-centric distance larger than 1.5×105 km. The vertical line indicates the 1330 

breaking of both radial profiles as an outburst signature, separating the pre- and post-outburst 1331 

gas. 1332 

 1333 

 QHCN QHCN
(F) 

103P/ Hartley 2 2.684 3.22 

F6/ Lemmon 88.8 102 

A1/ Siding Spring 42  

 1334 

Table 1. Production rates of HCN inferred by least squares fitting of the emission rate (QHCN) 1335 

and observed flux (QHCN
(F)) profiles for comets Hartley 2, Lemmon and Siding Spring (in 1025 1336 

particles s-1). This latter comet experienced an outburst so that the production rate obtained by 1337 

the least squares fitting is of little significance and only QHCN is listed. 1338 

 1339 


