Hépatocarcinome: Place de la chirurgie

Dr Olivier Detry
Chirurgie Abdominale & Transplantation
CHU Liège
Hépatocarcinome

• Sur foie sain
• Sur foie cirrhotique

Les cirrhoses asiatiques ne sont pas les mêmes que les nôtres...
Liver transplantation for unresectable hepatocellular carcinoma in normal livers

Conclusions: This is the largest reported series of patients transplanted for NC-HCC. Selection of patients without macrovascular invasion or lymph node involvement, or patients ≥12 months after previous liver resection, can result in 5-year survival rates of 59%. In contrast to HCC in cirrhosis, tumor size is not a predictor of post-transplant survival in NC-HCC.
HCC & chirurgie

• Destruction (éthanol et RFA)
• Résection: quel patient? quel type de résection?
• Transplantation hépatique après résection
• Transplantation hépatique
 - Milan
 - Extented criteria
Partial hepatectomy vs. transcatheter arterial chemoembolization for resectable multiple hepatocellular carcinoma beyond Milan criteria: A RCT

Lei Yin¹, Hui Li²,⁴, Ai-Jun Li¹,⁴, Wan Yee Lau¹,³, Ze-ya Pan¹, Eric C.H. Lai¹,³, Meng-chao Wu¹, Wei-Ping Zhou¹,*

¹The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai 200438, China;
²The Department of Dermatology, Shanghai Hospital, Second Military Medical University, Shanghai 200438, China; ³Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong Special Administrative Region

Log-rank, $\chi^2 = 24.246$, $p < 0.001$
Résection? Quel type de résection

- Open / laparoscopique
- Anatomique / non-anatomique
Anatomic versus nonanatomic resection in cirrhotic patients with early hepatocellular carcinoma

Alessandro Cucchetti, MD, a Guo-Liang Qiao, MD, b Matteo Cescon, MD, PhD, a Jun Li, MD, b Yong Xia, MD, b Giorgio Ercolessi, MD, a Feng Shen, MD, b and Antonio Daniele Pinna, MD, PhD, a
Bologna, Italy, and Shanghai, China

Background. Whether anatomic resection (AR) for hepatocellular carcinoma (HCC) can really confer a survival advantage over non-AR (NAR), especially for cirrhotic patients, remains unclear.

Methods. Prospectively collected data of 543 cirrhotic patients in Child-Pugh class A submitted to AR (n = 228) versus NAR (n = 315) for early HCC in an Eastern (n = 269) and a Western (n = 274) surgical unit, were reviewed. To control for confounding variable distributions, a 1-to-1 propensity score match was applied to compare AR and NAR outcomes (n = 298).

Results. The 5-year recurrence-free and overall survivals of the 543 patients were 32.3% and 60.0%, respectively, without differences between the 2 centers (P = .635 and .479, respectively). AR conferred better overall and recurrence-free survival than NAR (P = .009 and .041, respectively), but NAR patients suffered from significantly worse hepatic dysfunction. After 1-to-1 match, AR (n = 149) and NAR (n = 149) patients had similar covariate distributions. In this matched sample, AR still conferred better recurrence-free survival over NAR (P = .044) but the beneficial effect of AR was limited to the reduction of early recurrence (<2 years) of poorly differentiated tumors and of tumors with microvascular invasion (P < .05), resulting in better overall survival (P = .018).

Conclusion. In cirrhotic patients, AR for early HCC can lead to a lower early recurrence rate in tumors with unfavorable tumor features, whereas NAR will not worsen the recurrence rate in well/moderately differentiated tumors or in the absence of microvascular invasion. (Surgery 2014;155:512-21.)

From the Liver and Multiorgan Transplant Unit, a S. Orsola Hospital, Alma Mater Studiorum – University of Bologna, Bologna, Italy; and the Eastern Hepatobiliary Surgery Hospital, b Shanghai, China
Fig 1. Overall (upper plot) and recurrence-free (lower plot) survivals of the matched cohort of 298 cirrhotic patients. Recurrence-free survival changes its slope from year 2 after surgery onward, dividing early from late recurrences. Linear interpolation for early recurrence: Constant = 0.977; b1 = −0.016; r^2 = 0.984. For late recurrence: constant = 0.801; b1 = −0.008; r^2 = 0.988.
Resection or Transplantation for Early Hepatocellular Carcinoma in a Cirrhotic Liver

Does Size Define the Best Oncological Strategy?

Rene Adam, MD, PhD,*†‡ Prashant Bhangui, MS,* Eric Vibert, MD,*†‡ Daniel Azoulay, MD, PhD,*†§
Gilles Pelletier, MD, PhD,* Jean-Charles Duclos-Vallée, MD, PhD,*†‡ Didier Samuel, MD, PhD,*†‡
Catherine Guettier, MD,* and Denis Castaing, MD*†‡

Annals of Surgery • Volume 256, Number 6, December 2012
FIGURE 1. A, OS for solitary HCC-cirr (≤5 cm), resection versus transplantation. B, RFS for solitary HCC-cirr (≤5 cm), resection versus transplantation.
Salvage Versus Primary Liver Transplantation for Early Hepatocellular Carcinoma: Do Both Strategies Yield Similar Outcomes?

Prashant Bhangui, MD,*†‡ Marc Antoine Allard, MD,*†‡ Eric Vibert, MD, PhD,*†‡ Daniel Cherqui, MD,*†‡ Gilles Pelletier, MD,*†‡ Antonio Sa Cunha, MD,*†§ Catherine Guettier, MD,*†‡ Jean-Charles Duclos Vallee, MD,*†‡ Faouzi Saliba, MD,*†‡ Henri Bismuth, MD,* Didier Samuel, MD, PhD,*†‡ Denis Castaing, MD,*†‡ and René Adam, MD, PhD*†§

Summary Background Data: In compensated cirrhosis with early hepatocellular carcinoma (HCC-cirr), upfront liver resection (LR) and salvage liver transplantation (SLT) in case of recurrence may have outcomes comparable to primary LT (PLT).

Objective: An intention-to-treat (ITT) analysis comparing PLT and SLT strategies.

Methods: Of 130 HCC-cirr patients who underwent upfront LR (group LR), 90 (69%) recurred, 31 could undergo SLT (group SLT). During the same period, 366 patients were listed for LT (group LLT); 26 dropped-out (7.1%), 340 finally underwent PLT (group PLT). We compared survival between groups LR and LLT, LR and PLT, and PLT and SLT.

Results: Feasibility of SLT strategy was 34% (31/90). In an ITT analysis, group LLT had better 5-yr/10-yr overall survival (OS) compared with group LR (68%/58% vs. 58%/35%; \(P = 0.008\)). Similarly, 5-yr/10-yr OS and disease-free survival (DFS) were better in group PLT versus group LR (OS 73%/63% vs. 58%/35%, \(P = 0.0007\); DFS 69%/61% vs. 27%/21%, \(P < 0.0001\)). Upfront resection and microvascular tumor invasion were poor prognostic factors for both OS and DFS, presence of satellite tumor nodules additionally predicted worse DFS. Group SLT had similar postoperative and long-term outcomes compared with group PLT (starting from time of LT) (OS 54%/54% vs. 73%/63%, \(P = 0.35\); DFS 48%/48% vs. 69%/61%, \(P = 0.18\), respectively).

Conclusions: In initially transplantable HCC-cirr patients, ITT survival was better in group PLT compared with group LR. SLT was feasible in only a third of patients who recurred after LR. Post SLT, short and long-term outcomes were comparable with PLT. Better patient selection for the “resection first” approach and early detection of recurrence may improve outcomes of the SLT strategy.

FIGURE 2. Overall survival resection ± salvage LT [group LR] (n = 130) versus patients listed for PLT (including drop-outs) [group LLT] (n = 366). Res, resection.
Liver Resection as a Bridge to Transplantation for Hepatocellular Carcinoma on Cirrhosis

A Reasonable Strategy?

René Adam, MD, PhD, Daniel Azoulay, MD, PhD, Denis Castaing, MD, Rony Eshkenazi, MD, Gérard Pascal, MD, Kentaro Hashizume, MD, Didier Samuel, MD, PhD, and Henri Bismuth, MD, FACS Hon.

Objective: To assess the viability of a strategy of primary resection with secondary liver transplantation (LT) for hepatocellular carcinoma (HCC) on cirrhosis.

Summary Background Data: LT is the optimal treatment of HCC with cirrhosis. Owing to organ shortage, liver resection is considered as a reasonable first-line treatment of patients with small HCC and good liver function, with secondary LT as a perspective in case of recurrence. The viability of such strategy, positively explored in theoretical models, is not documented in clinical practice.

Methods: Among 358 consecutive patients with HCC on cirrhosis treated by liver resection (n = 163; 98 of whom were transplantable) or transplantation (n = 195), the feasibility and outcome of secondary transplantation was evaluated in a 2-step fashion. First, secondary LT for tumor recurrence after resection (n = 17) was compared with primary LT (n = 195), to assess the risk and the outcome of secondary LT in patients who effectively succeeded to be treated by this approach. Second, primary resection in transplantable patients (n = 98) was compared with that of primary LT (n = 195) on an intention-to-treat basis, to assess the outcome of each treatment strategy and to determine the proportion of resected patients likely to be switched for secondary LT. Transplantability of resected patients was retrospectively determined according to selection criteria of LT for HCC.

Results: Operative mortality (≤2 months) of secondary LT was significantly higher than that of primary LT (28.6% versus 2.1%; P = 0.0008) as was intraoperative bleeding (mean transfused blood units, 20.7 versus 10.5; P = 0.0001). Tumor recurrence occurred more frequently after secondary than after primary LT (54% versus 18%; P = 0.001). Posttransplant 5-year overall survival was 41% versus 61% (P = 0.03), and disease-free survival was 29% versus 58% (P = 0.003) for secondary and primary LT, respectively.

Of 98 patients treated by resection while initially eligible for transplantation, only 20 (20%) were secondarily transplanted, 17 of whom (17%) for tumor recurrence and 3 (3%) for hepatic decompensation. Transplantability of tumoral recurrence was 25% (17 of 69 recurrences). Compared with primarily transplanted patients, transplantable resected patients had a decreased 5-year overall survival (50% versus 61%; P = 0.05) and disease-free survival (18% versus 58%; P < 0.0001), despite the use of secondary LT.

On a multivariate analysis including 271 patients eligible for transplantation and treated by either liver resection or primary LT, liver resection alone (P = 0.0001; risk ratio [RR] = 3.27) or liver resection with secondary LT (P < 0.05; RR = 1.87) emerged as negative independent factors of disease-free survival as compared with primary LT. A number of nodules > 3 (P = 0.002; RR = 2.02) and a maximum tumor size exceeding 30 mm (P < 0.0001; RR = 1.93) were also predictive of lower disease-free survival.

Conclusions: LT after liver resection is associated with a higher operative mortality, an increased risk of recurrence, and a poorer outcome than primary LT. In addition, liver resection as a bridge to LT impairs the patient transplantability and the chance of long-term survival of cirrhotic patients with HCC. Primary LT should therefore remain the ideal choice of treatment of a cirrhotic patient with HCC, even when the tumor is resectable.

Liver transplantation for HCC: do size & number really matter??

Pr Olivier Detry

Dpt of Abdominal Surgery & Transplantation
CHU Liege, University of Liege
LIVER TRANSPLANTATION FOR THE TREATMENT OF SMALL HEPATOCELLULAR CARCINOMAS IN PATIENTS WITH CIRRHOSIS

Vincenzo Mazzaferro, M.D., Enrico Regalia, M.D., Roberto Docù, M.D., Salvatore Andreola, M.D., Andrea Pulvirenti, M.D., Federico Bozzetti, M.D., Fabrizio Montalto, M.D., Mario Ammatuna, M.D., Alberto Morabito, Ph.D., and Leandro Gennari, M.D., Ph.D.

Figure 1. Overall Survival (Panel A) and Recurrence-free Survival (Panel B) after Liver Transplantation in 48 Patients with Small Hepatocellular Carcinomas and Cirrhosis.
LIVER TRANSPLANTATION FOR THE TREATMENT OF SMALL HEPATOCELLULAR CARCINOMAS IN PATIENTS WITH CIRRHOSIS

Vincenzo Mazzaferro, M.D., Enrico Regalia, M.D., Roberto Docì, M.D., Salvatore Andreola, M.D., Andrea Pulvirenti, M.D., Federico Bozzetti, M.D., Fabrizio Montalto, M.D., Mario Ammatuna, M.D., Alberto Morabito, Ph.D., and Leandro Gennari, M.D., Ph.D.

Figure 3. Correlation of Post-Transplantation Pathological Confirmation of Early-Stage Hepatocellular Carcinoma with Overall Survival (Panel A) and Recurrence-free Survival (Panel B) among 48 Patients with Cirrhosis.
Milan out HCC criteria

- UCSF: 1 nodule ≤ 6.5 cm, ≤ 3 nodules (largest 4.5 cm & total ≤ ⊗ 8 cm
- up-to-7: ≤ 7 nodules, largest ≤ 7 cm
- Tokyo: 5-5 rule: ≤ 5 nodules, largest ≤ 5 cm
- Hangzou: total ≤ ⊗ 8 cm or > ⊗ 8 cm with AFP < 400ng/ml
- Asan (South Korea): ≤ 5 cm, ≤ 6 nodules
- Shangai: 1 nodule ≤ 9 cm, ≤ 3 nodules (largest 5 cm & total ≤ ⊗ 9 cm
AFP model

Table 2. Simplified, User-Friendly Version of the AFP Model

<table>
<thead>
<tr>
<th>Variables</th>
<th>β coefficient</th>
<th>Hazard ratio</th>
<th>Points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Largest diameter, cm</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤3</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3–6</td>
<td>0.272</td>
<td>1.31</td>
<td>1</td>
</tr>
<tr>
<td>>6</td>
<td>1.347</td>
<td>3.84</td>
<td>4</td>
</tr>
<tr>
<td>Number of nodules</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1–3</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>≥4</td>
<td>0.696</td>
<td>2.01</td>
<td>2</td>
</tr>
<tr>
<td>AFP level, ng/mL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≤100</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>100–1000</td>
<td>0.668</td>
<td>1.95</td>
<td>2</td>
</tr>
<tr>
<td>>1000</td>
<td>0.945</td>
<td>2.57</td>
<td>3</td>
</tr>
</tbody>
</table>

Low risk: ≤ 2
High risk: > 2

NOTE. The score is calculated by adding the individual points for each obtained variable. A cut-off value of 2 separates between patients at high and low risk of recurrence. In this simplified version, a cut-off value of 2 selected exactly the same patients as the original Cox score cut-off value of 0.7.
The “up-to-7 Criteria”

The “up-to-7” criteria could be a good starting point for prospective clinical trials on expansion of Milan Criteria

[Mazzaferro et al, Lancet Oncology 2009]
Proving the existence of a good outcome group ("up-to-7") outside the Conventional Milan Criteria

Median follow-up: 53 months

Mazzaferro et al. Lancet Oncology 2009
Be-LIAC cohort

Milan Criteria

5 yr Recurrence rate

<table>
<thead>
<tr>
<th></th>
<th>IN</th>
<th>OUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN</td>
<td>10% +- 2.5</td>
<td>33% +- 7</td>
</tr>
</tbody>
</table>

aFP model

5 yr Recurrence rate

<table>
<thead>
<tr>
<th></th>
<th>IN</th>
<th>OUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN</td>
<td>12% +- 2.5</td>
<td>39% +- 9</td>
</tr>
</tbody>
</table>

Asan Criteria

5 yr Recurrence rate

<table>
<thead>
<tr>
<th></th>
<th>IN</th>
<th>OUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>IN</td>
<td>12% +- 2.5</td>
<td>44% +- 11</td>
</tr>
</tbody>
</table>

Graphs showing recurrence rate over time for each criteria.
Be-LIAC cohort

aFP model

<table>
<thead>
<tr>
<th></th>
<th>IN</th>
<th>OUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milan IN</td>
<td>167 (69%)</td>
<td>13 (5%)</td>
</tr>
<tr>
<td>Milan OUT</td>
<td>38 (16%)</td>
<td>24 (10%)</td>
</tr>
</tbody>
</table>

Asan criteria

<table>
<thead>
<tr>
<th></th>
<th>IN</th>
<th>OUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Milan IN</td>
<td>177 (74%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Milan OUT</td>
<td>36 (15%)</td>
<td>26 (11%)</td>
</tr>
</tbody>
</table>

5 yr: 24% +/- 8
5 yr: 17% +/- 6
Prognostic value of 18F-FDG PET/CT in liver transplantation for hepatocarcinoma

Olivier Detry, Laurence Govaerts, Arnaud Deroover, Morgan Vandermeulen, Nicolas Meurisse, Serge Malenga, Noella Bletard, Charles Mbendi, Anne Lamproye, Pierre Honoré, Paul Meunier, Jean Delwaide, Roland Hustinx
Patients

- 52 LT for HCC during the study period
- 27 fulfilled the inclusion criteria
 - 13 Milan in (SE)
 - 14 Milan out (rescue allocation & DCD)

- Mean follow-up: 26 months
- Mean interval between PET & LT: 4 months
Donor age as a risk factor in donation after circulatory death liver transplantation in a controlled withdrawal protocol programme

O. Detry¹, A. Deroover¹, N. Meurisse¹, M. F. Hans¹, J. Delwaide², S. Lauwick³, A. Kaba³, J. Joris³, M. Meurisse¹ and P. Honoré¹

Departments of ¹Abdominal Surgery and Transplantation, ²Hepato-Gastroenterology and ³Anaesthesiology and Intensive Care, Centre Hospitalier Universitaire de Liège, University of Liège, Liège, Belgium

Correspondence to: Professor O. Detry, Department of Abdominal Surgery and Transplantation, CHU Liège, Sart Tilman B35, B4000 Liège, Belgium (e-mail: olivier.detry@transplantation.be)
Patient survival

- One year survival: 85%
- Five-year survival: 70.6%
Recurrence-free survival
Recurrence-free survival

Percent survival

Months

- Milan in/PET -
- Milan in/PET+
- Milan out/PET-
- Milan out/PET+
Recurrence-free survival

Percent survival

Months

Milan in

Milan out/PET-
Liver transplantation for HCC: do size & number really matter??

YES!
HCC

• Number of nodules & size is not the magic bullet
• MILAN criteria are too restrictive and should be enlarged
• Tumor biology & differentiation
 - AFP
 - Response to adjuvant therapy
 - PET scan?
• Post transplant chemotherapy?
Project

• Prospective multicentric national evaluation of the prognostic value of 18FDG PET/CT in liver transplantation for HCC

 – Primary investigator: ULg
 – 6 Belgian Centers: ULg, ULB, UCL, KUL, UZA, UZG
A Hepatocellular Carcinoma 5-Gene Score Associated With Survival of Patients After Liver Resection

JEAN-CHARLES NAULT,¹,²,∗ AURÉLIEN DE REYNIES,³,∗ AUGUSTO VILLANUEVA,⁴,⁵ JULIEN CALDERARO,¹,⁶ SABRINA REBOISSOUL,¹,² GABRIELLE COUCHY,¹,² THOMAS DECAENS,⁷,⁸,⁹ DOMINIQUE FRANCO,¹⁰ SANDRINE IMBEAUD,¹,² FRANCIS ROUSSEAU,¹¹ DANIEL AZOULAY,⁸,¹² JEAN SARIC,¹³ JEAN-FRÉDÉRIC BLANC,¹⁴ CHARLES BALABAUD,¹⁵ PAULETTE BICOUÇAC-SAGE,¹⁵,¹⁶ ALEXIS LAURENT,⁸,⁹,¹² PIERRE LAURENT-PIUG,¹⁷ JOSEP M. LLOVET,⁴,⁵,¹⁸,¹⁹ and JESSICA ZUCMAN-ROSSI¹,²,²⁰

¹Inserm, UMR-674, Génomique Fonctionnelle des Tumeurs Solides, I.U.H. Paris, France; ²Université Paris Descartes, Labex Immuno-Oncology, Sorbonne Paris Cité, Faculté de Médecine, Paris, France; ³Ligue Nationale Contre le Cancer, Paris, France; ⁴KOC Translational Research Laboratory, Barcelona-Clinic Liver Cancer Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer, Liver Unit, Hospital Clinic, Barcelona, Spain; ⁵Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto Carlos III, Barcelona, Spain; ⁶AP-HP, Department of Pathology, Henri Mondor University Hospital, Créteil, France; ⁷AP-HP, Department of Hepatology, Henri Mondor University Hospital, Créteil, France; ⁸Université Paris-Est Créteil Val-de-Marne, Créteil, France; ⁹Inserm U955, Pathophysiology and Therapy of Chronic Viral Hepatitis, Créteil, France; ¹⁰AP-HP, Surgery Department, Hôpital Antoine Béclère, Clamart, France; ¹¹IntegraGen, Évry, France; ¹²Digestive, Hepatobiliary and Liver Transplantation, Assistance Publique-Hôpitaux de Paris, Créteil, France; ¹³Department of Surgery, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France; ¹⁴Gastroenterology Unit, CHU Bordeaux, Saint André Hospital, Bordeaux 33075, France; ¹⁵Inserm U1053, Université Bordeaux Segalen, Bordeaux, France; ¹⁶Department of Pathology, CHU de Bordeaux, Pôle de Clinique Hospital, Bordeaux, France; ¹⁷Paris Descartes University, Paris Sorbonne Cité, INSERM UMR-S775, Paris, France; ¹⁸Mount Sinai Liver Cancer Program, Division of Liver Diseases, Mount Sinai School of Medicine, New York, New York; ¹⁹Institut Catalán de Recerca i Estudis Avançats, Barcelona, Catalunya, Spain; and ²⁰Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Paris, France
Role of Stromal Protein PRELP in The Hepatocellular Carcinoma
Intratumoral vs Peritumoral PRELP Expression in HCC
PRELP Overexpression in HCC Correlates With Good Outcome

Good prognosis
(OS=82.7 months)

Poor prognosis
(OS=16.6 months)

Log-rank
$P=0.0162$

Good prognosis
(PRELP Overexpression)

Poor prognosis
(PRELP Overexpression)

Probability of OS

$N=120$
Anti-Tumor Effect of PRELP Overexpression in HCC

Experimental setup:

- **HCC (Alex)-CTRL**
- **HCC (Alex)-PRELP**

Subcutaneously

<table>
<thead>
<tr>
<th>Tumor lysate</th>
<th>MW (kDa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRELP</td>
<td>70</td>
</tr>
<tr>
<td>HSC70</td>
<td>70</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tumor volume (mm³)</th>
<th>Weeks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alex-CTRL</td>
<td></td>
</tr>
<tr>
<td>Alex-PRELP</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Tumor weight (mg)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>CTRL</td>
<td></td>
</tr>
<tr>
<td>PRELP</td>
<td></td>
</tr>
</tbody>
</table>

* *p<0.05
** **p<0.01

Experimental setup: subcutaneously
Acknowledgements

University of Liège, Belgium
Metastasis Research Laboratory
Prof. Vincent Castronovo, MD, PhD
Andrei Turtoi, PhD
Arnaud Blomme, PhD
Brunella Costanza
Vincent Hennequière

CHU Liège, Dept. of Abdominal Surgery
Prof. Dr. Olivier Detry

CHU Liège, Dept. of Oncology
Dr. Joelle Collignon

CHU Liège, Dept. of Pathology
Prof. Dr. Philippe Delvenne
Dr. Eugène M. Nzaramba

Mass Spectrometry Laboratory
Prof. Dr. Edwin De Pauw

Gunma University, Japan
Molecular Pharmacology and Oncology
Prof. Masahiko Nishiyama, MD, PhD
Susumu Rokudai, PhD
Takehiko Yokobori, MD, PhD
Reika Kawabata, PhD
Shinji Yoshiyama, PhD
Ikuko Horikoshi

General Surgical Science
Prof. Hiroyuki Kuwano, MD, PhD
Kenichiro Araki, MD, PhD
Mariko Tsukagoshi, MD
Yuji Kumakura, MD

Diagnostic Pathology
Prof. Tetsunari Oyama, MD, PhD

Section for Analytical Instruments
Touko Hirano, PhD
HCC

• Foie sain: résection ou transplantation
• Foie cirrhotique:
 Transplantation
 Résection
 Résecion puis transplantation