QUELQUES THÉORÈMES SUR LA COURBURE DES LIGNES (*).

I. Soient l, m, n les cosinus directifs de la binormale à une ligne L; soient l', m', n', l'', m'', n'' les dérivées de l, m, n; l'arc s étant pris pour variable indépendante. La courbure de L a pour expression :

$$\frac{4}{\rho} = \frac{\Sigma (lm' - ml) n''}{\Sigma m''}(**) .$$

II. Soient $\frac{4}{A}$, $\frac{4}{B}$, $\frac{4}{C}$ les courbures des projections de L, sur trois plans rectangulaires. Soient encore α, β, γ les angles formés, avec les axes, par la tangente à L. On a

$$\frac{4}{\rho^2} = \frac{\sin^6 \alpha}{A^2} + \frac{\sin^6 \beta}{B^2} + \frac{\sin^6 \gamma}{C^2} .$$

III. Les rayons A, B, C (pris avec des signes convenables), et les angles α, β, γ, satisfont à la condition

$$\frac{\sin^3 \alpha \cos \alpha}{A} + \frac{\sin^3 \beta \cos \beta}{B} + \frac{\sin^3 \gamma \cos \gamma}{C} = 0 .$$

IV. Si $\gamma = \frac{\pi}{2}$, les deux dernières équations se réduisent à

$$\frac{4}{\rho^2} = \frac{\sin^6 \alpha}{A^2} + \frac{\cos^6 \alpha}{B^2} , \quad \frac{\sin^2 \alpha}{A} - \frac{\cos^2 \alpha}{B} = 0 .$$

On conclut, de celles-ci: $\rho = A + B$.

Ainsi : Le rayon de courbure, d'une ligne quelconque, est égal à la somme des rayons de courbure des projections de cette ligne sur deux plans parallèles au premier rayon, et perpendiculaires entre eux (***) .

(E. C.)

(*) Extraits d'un Mémoire inédit.

(**) Cette formule, peu pratique, est tout à fait semblable à celle qui donne la torsion.