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In the last two decades, wavelet bases and associated methodologies have become quite
important in many domains, such as signal and image processing, harmonic analysis,
statistics, and so on. More recently, they also turn out to be quite useful in the proba-
bilistic framework of stochastic processes, in which, among other things, they allow to
obtain fine results concerning erratic sample paths behavior. The goal of our paper is to
derive a result, related with zeros of continuous compactly supported mother wavelets,
which is useful in this probabilistic framework. More precisely, let ψ be any arbitrary
such wavelet; we show that being given an arbitrary point x0 ∈ R there always exists at
least one integer kx0 ∈ Z such that ψ(x0 − kx0) �= 0.
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1. Introduction

Throughout our paper we define a mother wavelet to be a function in the Hilbert
space L2(R), denoted by ψ, with the property that the following collection of dilated
and translated copies of ψ:

{2 j
2ψ(2j · −k) : j ∈ Z and k ∈ Z}

forms a tight frame of L2(R). The notion of tight frame is defined in e.g. Sec. 3.2
of Ref. 11. We point out that it is a more general notion than the usual one of
orthonormal basis. Thus, the framework of our paper includes the classical one of
compactly supported wavelet bases stemming from multiresolution analyses.

A real-valued compactly supported mother wavelet can be constructed starting
from a two-scale functional equation (also called a refinement equation), in the space
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L2(R), of the form:

ϕ(x) = 2
2N−1∑
l=0

alϕ(2x− l), ∀x ∈ R, (1)

where the integer N ≥ 1 and the real-valued coefficients a0, . . . , a2N−1 are fixed and
such that a0 · a2N−1 �= 0. This kind of equations was first introduced by de Rham
in 1956 in order to construct continuous but nowhere differentiable functions.12

Later, refinement equations were reintroduced in the context of interpolation algo-
rithms.13,24 However, in contrast with de Rham’s work, the aim was to construct
curves as regular as possible. In particular, these interpolation algorithms have
applications in computer-aided design (CAD) since they allow to smooth polyhe-
dral curves.

Let us now recall precisely some important connections between a mother
wavelet and a two-scale functional equation of the type (1). First, we mention
that, throughout our paper, we use the convention that the Fourier transform of an
arbitrary function f ∈ L1(R) is defined, for each ξ ∈ R, as f̂(ξ) :=

∫
R
e−iξxf(x)dx.

Also, we mention that the Fourier transform of an arbitrary function g in L2(R)
is defined as ĝ = limn→+∞ f̂n, where the convergence holds in L2(R), and where
(fn)n is a sequence of functions belonging to L1(R)∩L2(R) and converging to g in
L2(R). Then, notice that the functional equation (1) can be rewritten in the Fourier
domain as

ϕ̂(2ξ) = m0(ξ)ϕ̂(ξ), ∀ ξ ∈ R,

where the trigonometric polynomial

m0(ξ) :=
2N−1∑
l=0

ale
−ilξ, ∀ ξ ∈ R, (2)

is called the low-pass filter. Also, recall that the trigonometric polynomial m1

defined as

m1(ξ) := m0(ξ + π)e−iξ, ∀ ξ ∈ R, (3)

is called the high-pass filter. We always impose to m0 to satisfy the usual condition:{
m0(0) = 1,

|m0(ξ)|2 + |m0(ξ + π)|2 = 1, ∀ ξ ∈ R .
(4)

Thanks to (4), the two-scale equation (1) has a unique solution, denoted by ϕ,
which belongs to the space L2(R) (see e.g. Ref. 18 and Sec. 6.2 of Ref. 11). The
function ϕ is called a refinable function. Observe that its Fourier transform satisfies

ϕ̂(ξ) =
+∞∏
j=1

m0(2−jξ), ∀ ξ ∈ R,

where the infinite product converges pointwise and uniformly on each compact
subset of R (see e.g. Sec. 6.2 of Ref. 11 and Sec. 2.3 of Ref. 15). Also observe that
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the function ϕ is compactly supported;18,20 more precisely, one has

supp(ϕ) ⊆ [0, 2N − 1]. (5)

Now, let m1 be the same trigonometric polynomial as in (3). One of the most
fundamental results of the wavelet theory is that the function ψ defined in the
Fourier domain through the relation

ψ̂(2ξ) := m1(ξ)ϕ̂(ξ), ∀ ξ ∈ R, (6)

is a mother wavelet (see e.g. Ref. 18 and Proposition 6.2.3 of Ref. 11). Notice that
it can easily be derived from (6) and (5) that ψ is a compactly supported function
satisfying supp(ψ) ⊆ [−N + 1, N ]. Also, we mention that a simple sufficient, but
not necessary, condition for the tight frame

{2 j
2ψ(2j · −k) : j ∈ Z and k ∈ Z}

to be an orthonormal basis of L2(R) is that the low-pass filter m0 vanishes nowhere
on the interval [−π/3, π/3] (see for instance Corollary 6.3.2 of Ref. 11).

Let us now explain the motivation behind our paper. In the last two decades,
wavelet bases and associated methodologies have become quite important in many
domains, such as signal and image processing, harmonic analysis, statistics, and
so on. More recently, they also turn out to be quite useful in the probabilistic
framework of stochastic processes, in which, among other things, they allow to
obtain fine results concerning erratic sample paths behavior (see e.g. Refs. 8, 23,
3, 7, 25, 4, 5, 16, 1 and 17). In this probabilistic framework, it is useful that the
mother wavelet ψ be a continuous (or more regular) function satisfying the following
property:

(P) the 1-periodic continuous functions of the family x ∈ R �→ ∑
k∈Z

|ψ(x − k)|α,
with α an arbitrary positive fixed parameter, never vanish.

Indeed, this property (P), or some variants of it, plays a crucial role at least
in the three papers3,26,6 as well as in the Ph.D. thesis.25 The goal of our paper
is to show that any arbitrary continuous compactly supported mother wavelet ψ
satisfies (P). Before ending this introduction, we mention that (P) can equivalently
be expressed in the following two ways:

(i) being given an arbitrary point x0 ∈ R there always exists at least one integer
kx0 ∈ Z such that ψ(x0 − kx0) �= 0;

(ii) one has
⋂
k∈Z

(Z+k) = ∅, where ∅ denotes the empty set, Z := {x ∈ R : ψ(x) =
0} is the set of the zeros of ψ, and (Z + k) := {x + k : x ∈ Z}, for any fixed
k ∈ Z.

2. Statement of the Main Result and Further Remarks

Theorem 2.1. Let ϕ be the unique solution of a two-scale functional equation of
the form (1), and let ψ be the compactly supported mother wavelet defined in terms
of ϕ through (6). If ϕ and ψ are continuous functions over the real line, then being
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given an arbitrary point x0 ∈ R there always exists at least one integer kx0 ∈ Z

such that ψ(x0 − kx0) �= 0.

The proof of Theorem 2.1 is postponed to Sec. 3. The remaining of the present
section is devoted to some remarks related with this theorem.

Remark 2.2. Theorem 2.1 becomes an obvious result when one replaces in its
statement ψ(x0 − kx0) �= 0 by ϕ(x0 − kx0) �= 0. Indeed, under the condition (4) on
the low-pass filter m0, it has been shown (see Ref. 18 for instance) that the integer
translates of ϕ form a partition of unity, that is, for every x ∈ R, one has∑

k∈Z

ϕ(x − k) = 1. (7)

Remark 2.3. In the particular case of a non-compactly supported Lemarié–Meyer
mother wavelet (see e.g. Refs. 21, 22 and 11), denoted by Ψ (to be distinguished
from a compactly supported mother wavelet ψ), results similar to Theorem 2.1
have already been obtained in Refs. 3, 6, 25 and 26. Since they are based on the
specific properties (a) and (b) of Ψ given below, the proofs of these earlier results
are different from the one which allows us in the next section to derive Theorem 2.1.

For the sake of completeness, let us now briefly present the main lines of these
proofs in Refs. 3, 6, 25 and 26. First, we recall that Ψ satisfies the following two
important “nice” properties:

(a) Ψ belongs to the Schwartz class S(R), that is the space of the infinitely differ-
entiable functions over the real line which, as well as all their derivatives of any
order, vanish at infinity faster than any polynomial;

(b) the Fourier transform of Ψ is a compactly supported function satisfying

supp Ψ̂ ⊆
{
ξ ∈ R :

2π
3

≤ |ξ| ≤ 8π
3

}
.

The strategy employed in Refs. 3, 6, 25 and 26 consists in arguing by contradiction.
So, one starts from the assumption that the equality Ψ(x0 − k) = 0 holds, for some
x0 ∈ R and for every k ∈ Z. Then, it turns out that all the Fourier coefficients of
the 2π-periodic continuous function

ξ �→ Fx0(ξ) :=
∑
m∈Z

eix0(ξ+2mπ)Ψ̂(ξ + 2πm) (8)

vanish. Thus, for all ξ ∈ R, one has Fx0(ξ) = 0, which in particular implies that
Fx0(4π/3) = 0. The latter equality combined with (8) and the property (b) implies
that Ψ̂(4π/3) = 0. This is impossible since the same property (b) and the classical
equality (see e.g. Refs. 22 and 11)∑

m∈Z

|Ψ̂(ξ + 2πm)|2 = 1, ∀ ξ ∈ R,

entail that Ψ̂(4π/3) �= 0.
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Remark 2.4. It is worth mentioning that a property for mother wavelets, very
similar to our Theorem 2.1, is needed in Ref. 14 for determining rates of divergence
of some wavelet series. More precisely, it is proved that if the corresponding mother
wavelet, denoted by ψ̌, is a continuous function on the real line whose support can
be unbounded (this is the sole difference with ψ in Theorem 2.1), it satisfies the
following property: there exists a finite set I included in N×Z such that

inf
x∈[0,1]

 ∑
(j,k)∈I

|ψ̌(2jx− k)|
 > 0.

Remark 2.5. Last but not least, we mention that in Ref. 2, in which the multi-
fractal behavior of traces of Besov functions is investigated, it is needed that the
smooth mother wavelet ψ, used in this study, satisfies a property bearing some
resemblance to our Theorem 2.1. More precisely, letting Gψ be the periodization of
ψ defined, for all x ∈ R, as

Gψ(x) :=
∑
k∈Z

ψ(x − k),

it is needed that the restriction of Gψ to the interval [0, 1] vanishes only on a
finite number of points, and also that the derivative G′

ψ vanishes at no one of
these points. It has been shown in Ref. 2 that a Lemarié–Meyer mother wavelet
Ψ satisfies such a property; it would be interesting and useful to show that other
classes of mother wavelets ψ share the same property. We mention that in the case
of a Lemarié–Meyer mother wavelet Ψ, the proof of this fact has been done in Ref. 2
in a very simple way. Namely, the use of Poisson’s formula and the property (b) of
Ψ gives

GΨ(x) =
∑
k∈Z

Ψ̂(2πk)e2iπkx = Ψ̂(−2π)e−2iπx + Ψ̂(2π)e2iπx = −
√

2 cos(2πx),

where the last equality results from the fact that Ψ̂(−2π) = Ψ̂(2π) = −√
2/2 (see

Sec. 5.2 and relations (4.2.4) and (4.2.5) in Ref. 11). Thus, it turns out that the set
{x ∈ [0, 1] : GΨ(x) = 0} reduces to {1/4, 3/4} and that one has G′

Ψ(1/4) �= 0 and
G′

Ψ(3/4) �= 0.

3. Proof of the Main Result

First we need to obtain some preliminary results and to introduce some additional
notations.

Definition 3.1. Let (ck)k∈Z be an arbitrary sequence of complex numbers having
a finite support, that is the set {k ∈ Z : ck �= 0} is finite. Let λ be the trigonometric
polynomial defined, for all ξ ∈ R, as

λ(ξ) =
∑
k∈Z

cke
ikξ.
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Then the even and odd parts of λ are the trigonometric polynomials, respectively
denoted by λe and λo, defined, for all ξ ∈ R, as

λe(ξ) := 2−1(λ(ξ) + λ(ξ + π)) =
∑
k∈Z

c2ke
2ikξ

and

λo(ξ) := 2−1(λ(ξ) − λ(ξ + π)) =
∑
k∈Z

c2k+1e
i(2k+1)ξ.

Lemma 3.2. Let (al)0≤l≤2N−1 be the sequence of the real-valued coefficients of
the low-pass filter m0 which is defined in (2) and which satisfies (4). Then the
polynomial functions of the complex variable z

Pe(z) :=
N−1∑
l=0

a2lz
2l and Po(z) :=

N−1∑
l=0

a2l+1z
2l+1 (9)

are coprime.

Proof. Let us consider the even and odd parts of the trigonometric polynomial m0,
that is (see Definition 3.1) the trigonometric polynomials m0,e and m0,o defined,
for all ξ ∈ R, as

m0,e(ξ) :=
N−1∑
l=0

a2le
−2ilξ and m0,o(ξ) :=

N−1∑
l=0

a2l+1e
−i(2l+1)ξ. (10)

In view of the fact that m0,e(ξ+π) = m0,e(ξ) and m0,o(ξ+π) = −m0,o(ξ), it easily
follows from (4) that

|m0,e(ξ)|2 + |m0,o(ξ)|2 =
1
2
, ∀ ξ ∈ R .

Thus, using (10) we get, for every ξ ∈ R, that(
N−1∑
l=0

a2le
−2ilξ

)(
N−1∑
l=0

a2le
2ilξ

)

+

(
N−1∑
l=0

a2l+1e
−i(2l+1)ξ

)(
N−1∑
l=0

a2l+1e
i(2l+1)ξ

)
=

1
2
.

Next multiplying both sides of this equality by ei(2N−1)ξ, we obtain that(
N−1∑
l=0

a2le
i(2N−1−2l)ξ

)(
N−1∑
l=0

a2le
2ilξ

)

+

(
N−1∑
l=0

a2l+1e
i(2N−2l−2)ξ

)(
N−1∑
l=0

a2l+1e
i(2l+1)ξ

)
=
ei(2N−1)ξ

2
,
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which, in view of (9), implies that, for every z ∈ C, one has(
N−1∑
l=0

a2lz
2N−1−2l

)
Pe(z) +

(
N−1∑
l=0

a2l+1z
2N−2l−2

)
Po(z) =

z2N−1

2
.

Consequently, if the polynomials Pe and Po have a common root, this root can only
be 0. But Pe(0) = a0 �= 0 by assumption and therefore, Pe and Po are coprime.

The following remark is a classical result; it has a very short proof which is given
for the sake of completeness.

Remark 3.3. One has
∑N−1

l=0 a2l =
∑N−1

l=0 a2l+1 = 1/2.

Proof. As done previously, we consider the polynomials m0,e and m0,o defined
by (10). Evaluating m0 at 0 and π and using (4), we get that

1 = m0(0) = m0,e(0) +m0,o(0) =
N−1∑
l=0

a2l +
N−1∑
l=0

a2l+1,

0 = m0(π) = m0,e(π) +m0,o(π) =
N−1∑
l=0

a2l −
N−1∑
p=0

a2l+1,

which implies that
∑N−1

l=0 a2l =
∑N−1

l=0 a2l+1 = 1/2.

For the sake of convenience, we set al := 0 for all l ∈ Z \{0, . . . , 2N − 1}. Then
the high-pass filter m1, defined in (3), can be expressed as

m1(ξ) =
∑
l∈Z

ble
−ilξ, ∀ ξ ∈ R, (11)

where

bl := (−1)l−1a1−l, ∀ l ∈ Z . (12)

Remark that the mother wavelet defined via (6) satisfies in the time domain

ψ(x) = 2
∑
l∈Z

blϕ(2x− l), ∀x ∈ R . (13)

Note that this last relation holds at every point x ∈ R thanks to the assumption of
continuity of the functions ϕ and ψ.

We are now ready to prove Theorem 2.1.

Proof of Theorem 2.1. Given an arbitrary fixed x0 ∈ R, let us consider the
trigonometric polynomial µx0 defined, for all ξ ∈ R, as

µx0(ξ) :=
∑
m∈Z

ψ(x0 −m)e−2imξ;

this is in fact a finite sum since the mother wavelet ψ is compactly supported.
Notice that, in order to obtain the theorem, it is enough to show that µx0 does

1750044-7



August 1, 2017 15:2 WSPC/S0219-6913 181-IJWMIP 1750044

A. Ayache & C. Esser

not vanish everywhere. Using (13), one can express µx0 in terms of the refinable
function ϕ in the following way:

µx0(ξ) = 2
∑
m∈Z

∑
l∈Z

blϕ(2x0 − 2m− l)e−2imξ, ∀ ξ ∈ R . (14)

On the other hand, let νx0 be the trigonometric polynomial defined, for all ξ ∈ R,
as

νx0(ξ) :=
∑
m∈Z

ϕ(2x0 −m)e−imξ;

this is again a finite sum since the refinable function ϕ is compactly supported.
Notice that one can derive from (11) that

m1(ξ)νx0(ξ) =
∑
l∈Z

ble
ilξ
∑
m∈Z

ϕ(2x0 −m)e−imξ

=
∑
l∈Z

∑
m∈Z

blϕ(2x0 −m)ei(l−m)ξ

=
∑
l∈Z

∑
p∈Z

blϕ(2x0 − l − p)e−ipξ

for each ξ ∈ R. Combining these equalities with (14), it follows that the trigono-
metric polynomial µx0(ξ) is the even part (see Definition 3.1) of the trigonometric
polynomial 2m1(ξ)νx0(ξ). Therefore, we have that

µx0(ξ) = 2(m1,e(ξ)νx0,e(ξ) +m1,o(ξ)νx0,o(ξ)), ∀ ξ ∈ R . (15)

Let us proceed by contradiction and assume that, for every ξ ∈ R, we have
µx0(ξ) = 0. Then the equality (15) reduces to

m1,e(ξ)νx0,e(ξ) = −m1,o(ξ)νx0,o(ξ), ∀ ξ ∈ R .

That is, for all ξ ∈ R, we have(∑
l∈Z

b2le
2ilξ

)∑
q∈Z

ϕ(2x0 − 2q)e−2iqξ


= −

(∑
l∈Z

b2l+1e
i(2l+1)ξ

)∑
q∈Z

ϕ(2x0 − 2q − 1)e−i(2q+1)ξ

.
In view of (12) and (5), this amounts to saying that, for each ξ ∈ R,(

N−1∑
l=0

a2l+1e
−2ilξ

) ∑
�2x0−2N+1�≤2q≤�2x0�

ϕ(2x0 − 2q)e−2iqξ


=

(
N−1∑
l=0

a2le
−i(2l−1)ξ

) ∑
�2x0−2N+1�≤2q+1≤�2x0�

ϕ(2x0 − 2q − 1)e−i(2q+1)ξ

,
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where �· denotes the integer part function. Multiplying both sides of the last
equality by e−iξei�2x0−2N+1�ξ, we obtain that(

N−1∑
l=0

a2l+1e
−i(2l+1)ξ

) ∑
�2x0−2N+1�≤2q≤�2x0�

ϕ(2x0 − 2q)e−i(2q−�2x0−2N+1�)ξ


=

(
N−1∑
l=0

a2le
−2ilξ

)

×
 ∑

�2x0−2N+1�≤2q+1≤�2x0�
ϕ(2x0 − 2q − 1)e−i(2q+1−�2x0−2N+1�)ξ

,
for every ξ ∈ R. This equality of trigonometric polynomials gives an equality
between the corresponding polynomials. More precisely, for each z ∈ C, we have(

N−1∑
l=0

a2l+1z
2l+1

) ∑
�2x0−2N+1�≤2q≤�2x0�

ϕ(2x0 − 2q)z2q−�2x0−2N+1�



=

(
N−1∑
l=0

a2lz
2l

) ∑
�2x0−2N+1�≤2q+1≤�2x0�

ϕ(2x0 − 2q − 1)z2q+1−�2x0−2N+1�

.
(16)

Let us now consider the polynomials Q1 and Q2 defined by
Q1(z) :=

∑
�2x0−2N+1�≤2q≤�2x0�

ϕ(2x0 − 2q)z2q−�2x0−2N+1�,

Q2(z) :=
∑

�2x0−2N+1�≤2q+1≤�2x0�
ϕ(2x0 − 2q − 1)z2q+1−�2x0−2N+1�.

Evaluating (16) at z = 1 and using Remark 3.3, we get∑
�2x0−2N+1�≤2q≤�2x0�

ϕ(2x0 − 2q) =
∑

�2x0−2N+1�≤2q+1≤�2x0�
ϕ(2x0 − 2q − 1)

i.e. Q1(1) = Q2(1), and the equality∑
m∈Z

ϕ(2x0 −m) = 1

given in (7) leads to

Q1(1) = Q2(1) =
1
2
. (17)

Next, we recall that we know from Lemma 3.2, that the polynomials

Po(z) :=
N−1∑
l=0

a2l+1z
2l+1 and Pe(z) :=

N−1∑
l=0

a2lz
2l

1750044-9
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are coprime. Thus, we can derive from (16) that Pe divides Q1, and Po divides Q2.
Remark that deg(Q2) ≤ �2x0−�2x0−2N+1 < 2N . Moreover, deg(Po) = 2N−1
since a2N−1 �= 0 by assumption. It follows that deg(Q2) = 2N − 1; thus, there
exists ζ ∈ C such that Q2 = ζPo. Moreover, Remark 3.3 gives Po(1) = 1

2 and
consequently, we obtain from (17) that ζ = 1 i.e.

Q2 = Po. (18)

In particular, Q2 is an odd polynomial, thus �2x0 − 2N +1 has to be even. Hence,
one gets that

Q1(0) = ϕ(2x0 − �2x0 − 2N + 1) = 0, (19)

where the last equality results from (5), since 2x0−2N+1−�2x0−2N+1 ≥ 0. Note
that (16) and (18) also lead toQ1 = Pe, which contradicts (19) since Pe(0) = a0 �= 0.
This concludes the proof of Theorem 2.1.

Remark 3.4 (Biorthogonal case). Let us end this note by a short comment
concerning biorthogonal wavelets. For more information about this framework, we
refer the reader to Refs. 10, 19 and Chap. 2 of Ref. 9. We consider a dual pair (ϕ, ϕ̃)
of continuous compactly supported refinable functions satisfying

ϕ(x) = 2
N2∑
l=N1

alϕ(2x− l) and ϕ̃(x) = 2
eN2∑

l= eN1

ãlϕ̃(2x− l)

for every x ∈ R. Let us set al := 0 for all l ∈ Z \{N1, . . . , N2} and ãl := 0 for all
l ∈ Z \{Ñ1, . . . , Ñ2}. In this biorthogonal setting, Eq. (4) becomes

m̃0(ξ)m0(ξ) + m̃0(ξ + π)m0(ξ + π) = 1, ∀ ξ ∈ R, (20)

where

m0(ξ) :=
N2∑
l=N1

ale
−ilξ and m̃0(ξ) :=

eN2∑
l= eN1

ãle
−ilξ, ∀ ξ ∈ R .

Let us note that (13) also becomes

ψ(x) = 2
∑
l∈Z

blϕ(2x− l) and ψ̃(x) = 2
∑
l∈Z

b̃lϕ̃(2x− l)

for every x ∈ R, where

bl := (−1)l−1ã1−l and b̃l := (−1)l−1a1−l, ∀ l ∈ Z .

Moreover, the numbers N2 − Ñ1 and Ñ2 − N1 are positive and odd (see Ref. 10).
Together with (20), this easily gives an equivalent of Lemma 3.2 for the sequences

1750044-10
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(al)l∈Z and (ãl)l∈Z. Consequently, the proof of Theorem 2.1 can be rewritten in a
similar way, up to the equality (16) which becomes ∑

eN1≤2l+1≤ eN2

ã2l+1z
2l+1− eN1

 ∑
�2x0−N2�≤2q≤�2x0−N1�

ϕ(2x0 − 2q)z2q−�2x0−N2�



=

 ∑
eN1≤2l≤ eN2

ã2lz
2l− eN1



×
 ∑

�2x0−N2�≤2q+1≤�2x0−N1�
ϕ(2x0 − 2q − 1)z2q+1−�2x0−N2�

. (21)

The last part of the proof can be easily adapted if N2 − N1 = Ñ2 − Ñ1. In the
case N2 −N1 < Ñ2 − Ñ1, the generalization of Lemma 3.2 and the comparison of
the degree of the polynomials appearing in (21) also lead to a contradiction. By
interchanging the roles played by ψ and ψ̃ when N2 −N1 > Ñ2 − Ñ1, one gets that
for every x0 ∈ R, there is kx0 ∈ Z such that

ψ(x0 − kx0) �= 0 or ψ̃(x0 − kx0) �= 0.
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