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Introduction

Introduction

Let us denote T = R / Z. We are interested in the pointwise convergence of the
Fourier partial sums

n
Snfix— Z < f,ex > er(x) where eg:x+— e2imke

k=—n
« Du Bois Reymond (1873) : There is f € C(T) such that S,, f () diverges at 0
« Kolmogorov (1926) : There is f € L!(T) such that S,, f () diverges at every

+ Kahane et Katznelson (1966) : If A C T is a F, of Lebesgue measure zero, there
is f € C(T) such that S,, f(x) diverges at every x € A

+ Carleson et Hunt (1967) : If f € LP(T) (1 < p < +o0), S, f converges almost
everywhere.
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Introduction

Introduction

Let us denote T = R / Z. We are interested in the pointwise convergence of the
Fourier partial sums

n
Snf iz Z < f,ex > er(x) where eg:x+— e2imke

k=—n

+ Du Bois Reymond (1873) : There is f € C(T) such that S,, f () diverges at 0
« Kolmogorov (1926) : There is f € L(T) such that S, f(x) diverges at every =

+ Kahane et Katznelson (1966) : If A C T is a I, of Lebesgue measure zero, there
is f € C(T) such that S,, f(x) diverges at every x € A

+ Carleson et Hunt (1967) : If f € LP(T) (1 < p < +o0), S, f converges almost
everywhere.

Question.

Let = be a divergent point of the Fourier series of f € LP(T). Characterization of the
divergence rate ? What about the size of the set of the points with a given divergence
rate ?
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Hausdorff dimension

Let B C R™ and s > 0. We set
H;3(B) = inf Zdiam(Bj)s : (Bj)jen ¢ — covering of B
jEN
and we define the s-dimensional Hausdorff outer measure H* by

H*(B) =supH;(B) = lim Hj(B)
>0 §—0+

There is a critical value of s for which the graph of s — #H*(B) “jumps” from +o0 to 0.
This critical value is called the Hausdorff dimension dimy (B) of B :

|dimH(B) =sup{s > 0: H*(B) = +o0} |
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Divergence of Fourier series
Nikolsky’s inequality. If f € LP(T),
150 flloo < Con'/?(If 11

Question.
Let 3 € [0,1/p]. What can we say about the size of the set {x : |5, f(z)| = n®} ?

Aubry (2006)
Ifp>1and f € LP(T), then

dimy {x :limsupn=?|S,, f(z)| > 0} <1-p8p, VBel0,1/p].

n—oo

Moreover, if 5 € [0, 1/p] is fixed, this result is optimal : Given a set E such that
dimy E < 1 — fBp, there is f € LP(T) such that

limsupn =[S, f(z)| = +o0 Vz € E.

n—oo
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Introduction

 Divergence index at z :

log |.S,,
Bf(x) = limsup 208 PnJAT)1 |9 f(2)]
n—-+00 logn

- Level set: E(B, f) := {z : By(z) = B}

- Multifractal spectrum of the divergence : 8 — dimy E(8, f)
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Introduction

 Divergence index at z :

1 n
Bf(x) = limsup 208 PnJAT)1 |9 f(2)]
n—-+00 logn

- Level set: E(B, f) := {z : By(z) = B}

- Multifractal spectrum of the divergence : 8 — dimy E(8, f)

Bayart, Heurteaux (2011)

Quasi-all (in the sense of Baire category theorem) function f € LP(T) satisfies

dimy E(8,f) =1—Bp, VB €[0,1/p)].

For these functions, one has in particular

dimy {a: :limsupn =P8, f(z)| > O} =1-p3p, VBe€0,1/p].
n—oo

C. Esser (Université Lille 1) Multifractal analysis of the divergence of wavelet series Logrofio, June 2016

5/1



Divergence of wavelet series

Wavelet basis

The Fourier series of a continuous function may diverge at some points. Is this
property inherent to any orthogonal decomposition ?

Haar basis (1910). In this orthonormal basis of L?(RR), the expansion of any
continuous function converges uniformly on any compact.
This basis is given by

vp:x—olx—k), keZ
Vi x> 2/2(Vr —k), jENKEZ
wheregz):1[0,1[and¢:1[07%[—1[%71[

— Prototype of wavelet basis. Uniform convergence of the expansion of any
continuous function on any compact set (Walter 1995)
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Divergence of wavelet series
Wavelet basis of L2(R). Orthonormal basis of the form

iz ole—k), kel
Yjg e 22D — k), jeENKkEZ

Classical assumptions. The wavelet ¢ is

+ well localized : %) is rapidly decreasing, i.e. for all N € N, there is C'y > 0 such

that o
N
D S
|¢(ac)|_(1 FIEE Vr e R

« oscillating : there is M € N such that
/xmw(x)dmzo vm € {0,...,M —1}.
R

« regular : 1) is at least piecewise continuous
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Divergence of wavelet series

We are interested in the pointwise convergence of the wavelet expansion of f

o< for>er(@) + D> < fbin > k(@)

keZ FENkeZ

Remark. Unlike the Fourier series, there is no “natural order” for the wavelets.
Consequently, the notion of pointwise convergence has no natural definition.
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Divergence of wavelet series

We are interested in the pointwise convergence of the wavelet expansion of f

o< for> (@) + D) < Fobin > Yjal2)

kEZ jEN keZ
Remark. Unlike the Fourier series, there is no “natural order” for the wavelets.
Consequently, the notion of pointwise convergence has no natural definition.

+ We study the pointwise convergence of

SI<fioe>e@)|+ YD 1< e > tju(@)|

kEeZ jENKEZ

which does not depend on the chosen order (similar behavior, unlike Fourier
series)

- We consider the periodic case : An orthonormal wavelet basis of L?(T) is given
by the constant function equal to 1 and the periodized wavelets

gz Y dle—1), jeN ke{0,...,27 —1}
leZ
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Divergence of wavelet series

Case of L” spaces
Hélder’s inqualities If f € LP(T),

(1 _ 1 J
| < £ 0> < Co2G 72 fll, = || < £00 > Uyl < O27

since || W, xlloo < 27%.
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Case of L spaces
Hélder’s inqualities If f € L?(T),
< £ > [ S Cu2G D f], = || < £ 85> U] < C27
since || 1 [loe < 27%.
Aubry (2006)
Ifp > 1and f € LP(T), then for all 3 € [0,1/p],

J 29-1
dimgg ¢ @ imsup 2P/ Y "N " | < £,W5 0 > Wy ()| >0 p <1-fp
J—o0 J=0 k=0

Conversely, if 1 is the Haar wavelet and if 8 € [0, 1/p] is fixed, given a set E such that
dimy E < 1 — Bp, there exists f € LP(T) such that

J 291
limsup 277 (D" N " < f, 0, > U 4(2)| = 400 Vz € E.
J—o00 =0 k=0

4
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Multifractal analysis of the divergence

+ Divergence rate at « :

r}/f(x) = Sup {7 : 30 > Oa H(Jnakn)a | < fa wjn,kn > '(Z}jn,kn (l‘)| > 02’””}

+ Multifractal spectrum of the divergence :

Dy vy dimy {z: v5(z) =~}
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Multifractal analysis of the divergence

+ Divergence rate at « :

r}/f(x) = sup {7 : 30 > Oa El(]na kn)v | < fv wjn,kn > wjn,kn (1‘)| > 02’”-”}

+ Multifractal spectrum of the divergence :

Dy vy dimy {z: v5(z) =~}
Remarks.

+ Since the wavelet is rapidly decreasing, we have

J

log [ YD 1< fivjn > vjk(@))|

j=0keZ

Vr(x) = h%ﬂ’ oz 27

+ A divergence rate gives a divergence of the wavelet series only if it is positive !
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Sobolev and Besov spaces

Sobolev spaces. If p > 1and s € R,
LPs = {fe LP(R): FH((L+[¢)*Ff) € LP(R)}

= {felP(R):D"feLP(R)Vk<s} ifseN
Besov spaces. If p,g > 0and s € R,

Byt i= {1 € LPR) : (27| F (637 ) o))y €1}
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Sobolev and Besov spaces

Sobolev spaces. If p > 1and s € R,
LPs = {fe LP(R): FH((L+[¢)*Ff) € LP(R)}
= {felP(R):D"feLP(R)Vk<s} ifseN
Besov spaces. If p,g > 0and s € R,
Byt i= {1 € LPR) : (27| F (637 ) o))y €1}
We will work in the Besov spaces. Thanks to the inclusions
1 ) )
B; s LP® s B; >

forallp > 1, s € R, we will get similar results in Sobolev spaces.
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Besov spaces and wavelets
We use a L°° normalization of the wavelets, i.e. we set
or(x) == p(x —k) and ;x(z) =92z —k) jEN, kEZ

The wavelet coefficients of f are denoted

Ch ;:/Rf(:zz)gok(x)dx and c¢j = 2j/ﬂ{f(£)¢j,k(x)dx

Caracterization of Besov spaces. Let s € R and p,q > 0. Then

» 1/p
(Z ‘cj,k2(s_%)j) ) =¢g; with ¢; €l?

kEZ

1/p
(Z |Ck|p> < 400

feBy!

keZ
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Divergence of wavelet series

1/p

| P
fe st),q - Z ‘Cj,k2(57%)j‘ =¢g; with ¢; € 11

kEZ

In particular,

IC>0: Y |2t ipP<e =
keZ

lej6] < O
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Divergence of wavelet series

1/p
| P
fe B;’q — E ‘Cj,k2(57%)j‘ =gy with g5 € 19
keZ

In particular,

IC>0: V) D |2t I <O = ||ejul < Cr2TV
keZ

Consequence. If f € B, then

vi(x) < ——s, VzeR

1
p

Remark. The interesting case is s < .
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Divergence of wavelet series

Proposition
If f € By, thenforally € [—s, - — 5], we have

dimy {fv (@) 29} <1—sp—p.

In particular, the divergence spectrum of f satisfies

Dy(y) <1—sp—p.

Idea. We set

E: :=limswp | J ]kQ—j—2<€—1>j,k2—i+2(5—1>j[

v .
IZH0 kileul =279
Since 3, |¢; k27 #|P < C, one has #{k : |c; x| > 27} < € 201-52=)i 0 that
. L—sp—p
d By < —————.
imy (E5) < T2
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Divergence of wavelet series

Let us show that

x ¢ BS = p(x) <7

We wish to estimate |c; x%; ()| Let us recall that

EBs =timsup | J k27 —2607 g2 4 ol 0i]
Jj—+oo keEj,'y
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Divergence of wavelet series

Let us show that

x ¢ BS = p(x) <7

We wish to estimate |c; x%; ()| Let us recall that

E = limsup U } J_ 2(6—1)j’ k277 4 2(5—1)j[
j—+oo kEE; .,

1. If |Cj’k| < 2’”, then |Cj,k1/}j,k(x)| < 2’Yj.
2.1f |ej k] > 277 | then from the fast decay of the wavelets,

Cn
0+ 2z N

Since z ¢ ES and |c; x| > 277, we have [27x — k| > 257 if j > and therefore

VN, 3Cy suchthat [¢(27z — k)| <

W2z — k)| < Cn27N,
Let us recall that |c; ;| < C27(5~1/P)J hence
|cjbj (@) < OnC2 (7 1/PUg=eNT < 977 jf j>
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Optimality of the result

Theorem
Quasi-all fonction f € B, 7 satisfies

and

; 1
Dy(v) =dimy {2 :yp(@) =7} =1 —sp—p, Vy€ [_8’5 —8} .

Steps of the proof.
1. Construction of a “saturation function” F,
2. Construction of the dense G set from F,
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Optimality of the result

Steps of the proof.
1. Construction of a “saturation function” F,, such that
+ F, € B;? using the wavelet characterization of the Besov spaces

© yr, (z) € [—s, % — s] for all z : the wavelet does not vanish “too often”

« Ta C {x tvp, () > L — s — aip} where 7., denotes the points a-aproximable by
dyadic numbers with a condition of non-annulation of the wavelet

+ Using ubiquity techniques, dimy 7o = £

+ Deduce that dimy, {x 1Y, (z) = % —5— aip} =1 foralla>1
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Optimality of the result

Steps of the proof.
1. Construction of a “saturation function” F, such that

+ F, € B;? using the wavelet characterization of the Besov spaces

© yr, (z) € [—s, % — 5] for all z : the wavelet does not vanish “too often”

« Ta C {x cyr, (x) > 1 >S5~ —} where 7, denotes the points a-aproximable by

dyadic numbers with a condition of non-annulation of the wavelet

+ Using ubiquity techniques, dimy 7o = £

p ap

- Deduce that dimy {as cyp (@) =1 — s L } =L foralla>1

2. Construction of the dense G set :
+ The set { fr:n € N} of finite wavelet series with rational coefficients is dense in B;?

C Gn = fn+ N%LFG has the same divergence properties than F, and {g,:n € N} is
still dense in B,

12Nn

* We consider the dense G's set [,y U sNa

B(gn,Tn), where 7, =

n>m
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Other results

+ Similar results obtained with the notion of prevalence. The idea is to consider the

coefficients
£J ko(L —S ) 27 % 1y

Cj k=
75
j

where &; 5, ~“4 N(0,1)

+ Similar results obtained with the notion of lineability, considering the linear span of
the functions Fy,, a > © + ¢
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Other results

+ Similar results obtained with the notion of prevalence. The idea is to consider the

coefficients

£Jk (-9)i9—=2J
Cik = M2

where &; 5, ~“4 N(0,1)

+ Similar results obtained with the notion of lineability, considering the linear span of
the functions Fy,, a > © + ¢

Thank you for your attention !
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