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ABSTRACT

We have computed a new grid of evolutionary subdwarf B star (sdB) models from the start of central He burning, taking into account
atomic diffusion due to radiative levitation, gravitational settling, concentration diffusion, and thermal diffusion. We have computed
the non-adiabatic pulsation properties of the models and present the predicted p-mode and g-mode instability strips. In previous
studies of the sdB instability strips, artificial abundance enhancements of Fe and Ni were introduced in the pulsation driving layers.
In our models, the abundance enhancements of Fe and Ni occur naturally, eradicating the need to use artificial enhancements. We
find that the abundance increases of Fe and Ni were previously underestimated and show that the instability strip predicted by our
simulations solves the so-called blue edge problem of the subdwarf B star g-mode instability strip. The hottest known g-mode pulsator,
KIC 10139564, now resides well within the instability strip even when only modes with low spherical degrees (l ≤ 2) are considered.
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1. Introduction and state of the art

Subdwarf B stars (sdBs) are extreme horizontal branch stars
burning helium in their cores (for a review on sdBs, see Heber
2009). They typically have masses around 0.5 M� and have only
a thin hydrogen layer left at their surfaces, which is too thin to
sustain hydrogen shell burning. Because of their thin envelopes,
sdBs are unusually bright in the near-UV. They are identified as
the source of the unexpected UV-upturn observed in elliptical
galaxies (Podsiadlowski et al. 2008). The formation of sdBs is
not well understood. It is unclear how the sdB progenitors lost
most of their hydrogen envelopes.

More than 50 per cent of the sdBs have been found to be part
of short period binaries (Maxted et al. 2001). This suggests that
binary evolution may play an important role in their formation.
Several evolutionary channels have been proposed: (1) common-
envelope ejection channels, leading to sdBs in binaries with or-
bital periods below ∼10 d and a white dwarf or low-mass main
sequence companion; (2) a stable Roche lobe overflow channel
resulting in binary systems with orbital periods between ∼10 d
and∼100 d and much thicker hydrogen envelopes; and (3) a dou-
ble helium white dwarf merger channel that gives rise to single
sdB stars with very thin hydrogen envelopes and a wider mass
range (Han et al. 2002, 2003). Recently, sdBs with planetary
companions were found (Silvotti et al. 2007; Charpinet et al.
2011; Beuermann et al. 2012), rejuvenating the idea that inter-
actions of a star with a planetary companion might also lead to

� Appendix A is available in electronic form at
http://www.aanda.org

the formation of sdBs (Soker & Harpaz 2000). The evolutionary
scenarios remain largely untested. Since they result in different
predicted populations of sdBs, accurate determinations of their
masses and envelopes, as well as periods of sdB binaries, can be
used to discriminate between the different channels.

Many sdBs show stellar oscillations. Pulsation modes for
which the pressure force is the dominant restoring force,
p-modes, were predicted in sdB stars by Charpinet et al. (1996)
and discovered around the same time by Kilkenny et al. (1997).
The first detection of gravity (g-) mode pulsations, for which
buoyancy is the dominant restoring force, in sdBs was accom-
plished by Green et al. (2003). Asteroseismic techniques can
therefore be used to probe the internal structure of sdBs and
to measure the masses of their cores and envelopes (see e.g.
Van Grootel et al. 2010; Fontaine et al. 2012, and references
therein; and Van Grootel et al. 2013). Asteroseismology of sdBs
is not only useful to constrain the evolutionary scenarios, but
also allows us to test our knowledge of physical processes such
as atomic diffusion and stellar winds (Charpinet et al. 2009b; Hu
et al. 2011), as well as to test tidal theory through spin-orbit syn-
chronizations of sdBs in short period binaries (Van Grootel et al.
2008; Charpinet et al. 2008; Pablo et al. 2011, 2012). Recent re-
views of sdB asteroseismology can be found in Fontaine et al.
(2006b), Østensen (2009, 2010), Charpinet et al. (2009a, 2013)
and Kawaler (2010).

Pulsations in sdBs are driven by the opacity (κ) mechanism,
which operates in stellar layers where chemical elements are par-
tially ionized (Unno et al. 1989). Charpinet et al. (1996) showed
that p-modes could be driven if radiative levitation could bring
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enough iron in the driving region. Charpinet et al. (1997) con-
firmed this idea by implementing iron abundance profiles into
static sdB models, which were based on radiative levitation cal-
culations assuming diffusive equilibrium. Using time-dependent
diffusion calculations, Fontaine et al. (2006a) showed that the
convergence towards diffusive equilibrium is fast compared to
the evolutionary timescale, thereby validating this diffusive equi-
librium approach. Fontaine et al. (2003) argued that the same
opacity mechanism was responsible for the driving of g-modes
and recognized that radiative levitation is a crucial factor for the
mechanism to work in this case as well. In this pioneering study,
the stars that were theoretically predicted to show g-mode pul-
sations were several thousand Kelvin too cool compared to the
observed pulsators. Using OP (Badnell et al. 2005) instead of
OPAL (Iglesias & Rogers 1996) opacity tables, and by enhanc-
ing not only the Fe, but also the Ni abundance in the envelope,
Jeffery & Saio (2006) obtained a predicted instability strip that
reduced the so-called blue-edge problem.

Using artificial enhancements of Fe and Ni in the pulsation
driving region, Hu et al. (2009) showed that gravitational set-
tling, thermal diffusion and concentration diffusion acting on H
and He shifts the theoretical blue-edge of the instability strip far-
ther to about 1000 K from the observed value. Recently, Hu et al.
(2011) added diffusion due to radiative levitation to their evolu-
tion code, next to the already implemented gravitational settling,
thermal diffusion and concentration diffusion, and solved the dif-
fusion equations for H, He, C, N, O, Ne, Mg, Fe and Ni. Because
of the inclusion of radiative levitation, Fe and Ni enhancements
are built up in the pulsation driving region, therefore eliminating
the need to include artificial abundance enhancements. The au-
thors showed that the resulting evolutionary models can excite
low-degree g-modes at relatively high effective temperatures,
suggesting that the blue-edge problem could be resolved. In this
work, we present a grid of models computed using the codes of
Hu et al. (2011) to readdress the instability strip issue.

2. Model grid

We have set up tools to compute grids of evolutionary tracks of
sdB stars using a modified version of the stellar evolution code
STARS (Eggleton 1971). The most important changes are the
implementation of gravitational settling, thermal diffusion and
concentration diffusion by Hu et al. (2010), the implementation
of radiative levitation by Hu et al. (2011) and the coupling of
the STARS code to the non-adiabatic pulsation code MAD (Dupret
2001) as described in Hu et al. (2008). The evolutionary tracks
are computed starting from red giant branch models from which
most of the envelope was stripped off. The free parameters of the
starting models are the total mass of the star and the mass of the
remaining hydrogen envelope. For the grid presented here, we
assumed solar metallicity with the metal mixture of Grevesse &
Noels (1993) and no mass loss due to winds during the sdB evo-
lution. The total masses (M∗) range from 0.35 M� to 0.55 M� and
the envelope masses from 10−5 M∗ to 10−1.8 M∗. The grid con-
tains over nine thousand models on 77 evolutionary tracks. The
computation of one evolutionary track takes about 6 days of CPU
time on a single core of a 2.8 GHz quad-core Intel Xeon X5560
Nehalem CPU.

3. Instability strips

3.1. Iron and nickel abundance enhancements

Hu et al. (2011) showed that the build up of the Fe abundance
in the driving region proceeds relatively quickly and reaches an
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Fig. 1. Abundance enhancement of Fe in the driving region at T =
200 000 K, 107 years after the start of central He burning. The lines
connect the enhancement factors of models with the same total mass
but different envelope masses.
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Fig. 2. Same as Fig. 1 but for Ni instead of Fe. In earlier work, en-
hancement factors of 10 or 20 were assumed, which is clearly an
underestimation.

equilibrium situation in about 105 years, as was also shown by
Fontaine et al. (2006a). Hu et al. (2011) found that it takes longer
before the equilibrium situation is reached for Ni, but this also
happens in less than 107 yr. For the test track presented in that
paper, it was clear that the Ni abundance increase compared
to the initial abundance was much higher than was previously
assumed. From our grid spanning a range of envelope masses
and total masses, we have measured the height of the Fe and
Ni abundance peaks in the driving region 107 years after the
start of the sdB evolution on the zero-age horizontal branch. The
resulting abundance enhancement factors compared to the ini-
tial abundance are shown in Fig. 1 for Fe and in Fig. 2 for Ni.
For the same core mass, a higher envelope mass results in a
higher effective temperature and a higher surface gravity. The
former increases the efficiency of the radiative levitation, but this
is counteracted by the increased settling due to the higher sur-
face gravity. The net result is that models with different envelope
masses, but the same core mass, tend to have similar abundance
enhancements. The figures only show a datapoint for the evolu-
tionary tracks that reached an age of 107 years, which is not the
case for all tracks because of numerical convergence problems.

While previous studies of the instability strips of sdBs used
parametrized enhancement factors of up to 20 for the abundances
of Fe and Ni in the driving regions (Jeffery & Saio 2006; Hu et al.
2008), our simulations predict that especially the Ni abundance
increase is orders of magnitude higher. For low mass models
(M∗ = 0.35 M�), we find an increase by a factor of ∼300 for Ni.
For higher mass models, we find enhancement factors of up
to 4000. The large difference in enhancement factors between Fe
and Ni is caused by the initial underabundance of Ni compared
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Fig. 3. Ratio of the abundance of Ni and Fe in the driving region
at 107 years after the start of the central He burning as a function of the
total mass of the star. Black dots show models with log(Menv/M�) < 3.5
and grey dots models with log(Menv/M�) ≥ 3.5.

20000250003000035000
Teff (K)

5.0

5.5

6.0

lo
g
g

0.35M�

0.39M�

0.43M�

0.47M�
0.51M�

0.55M�

Fig. 4. Instability strip for p-mode pulsations in sdB stars. The ini-
tial points of evolutionary tracks of stars with identical core masses are
connected with a grey dotted line and the masses are indicated on the
plot. Envelope masses rise from left to right and range from 10−5 M∗
to 10−1.8 M∗. Sections of the tracks where more than 1 (10) p-modes
with spherical degree l ≤ 3 are predicted to be excited, are coloured
in green (blue). The rest of the tracks is shown in black. A sample of
known p-mode pulsators are indicated with yellow points and red points
indicate known hybrid pulsators.

to Fe of a factor of 16.1 in the Grevesse & Noels (1993) mixture.
The absolute Ni abundances in the driving region are typically
between 1 and 4 times that of Fe (see Fig. 3), which is com-
patible with the results presented by Michaud et al. (2011, see
right panel of their Fig. 5). For models with a low envelope mass
(log(Menv/M�) < 3.5 shown in black), there is a clear trend of
an overabundance of Ni compared to Fe that increases with the
total mass of the star.

3.2. Pressure and gravity mode instability strips

The higher Fe and Ni opacity bumps in the driving region influ-
ence the instability strips. In Fig. 4 we show the predicted in-
stability strip for p-mode pulsations. The evolutionary tracks are
coloured green (blue) when at least 1 (10) p-modes of spherical
degree l ≤ 3 have a positive work integral in our non-adiabatic
pulsation computations. Figure 5 shows the same for g-modes.
The dots indicate a sample of pulsators taken from Green et al.
(2008) that was already shown in Østensen (2010): p-mode pul-
sators are shown in yellow, g-mode pulsators in magenta and
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Fig. 5. Same as Fig. 4 but for g-mode pulsations in sdB stars. Red
points still indicate known hybrid pulsators that show p- and g-modes.
Magenta points indicate known g-mode pulsators. The black point in-
dicates KIC 10139564 (Baran et al. 2012), which is a hybrid pulsator
that predominantly shows p-mode pulsations. The vertical dashed lines
indicate the blue edges of the instability strips predicted by Jeffery &
Saio (2006) and Hu et al. (2009).

hybrid pulsators that show both p- and g-mode pulsations in red.
The small apparent offset between the spectroscopically deter-
mined surface gravities and effective temperatures, and the evo-
lutionary tracks for typical ∼0.47 M� sdBs was seen in earlier
studies (see e.g. Fig. 1 in Østensen 2009 where sdB models
from Kawaler & Hostler 2005 are shown). As shown in Dorman
et al. (1993), the exact position of the zero-age extreme horizon-
tal branch depends not only on the core mass of the sdBs but
also on the assumed metallicity, and a change from solar to sub-
solar metallicity shifts the zero-age extreme horizontal branch to
lower log g and higher Teff .

All pulsators fall within the instability strips, which in
our simulations extend to slightly cooler temperatures than the
known pulsators in the case of p-modes and to hotter temper-
atures in the case of g-modes. The predicted instability strips
for g-mode pulsations, including l = 1–3 modes, showed a blue
edge around 28 500 K in the study by Jeffery & Saio (2006), and
around 30 000 K in the study by Hu et al. (2009). In our case, we
find that g-modes can be excited at all temperatures covered by
the grid, and the models with several (≥10) excited modes have
temperatures above ∼33 500 K.

As an illustration, Fig. 6 shows which modes are driven
along the evolutionary track of an sdB with a total mass
of 0.47 M� and an envelope mass of 9.0×10−5 M�. Fontaine et al.
(2003) showed that the blue-edge of the instability strip is highly
sensitive to the spherical degree. This can also be seen in this ex-
ample, in which g-modes of degree l = 2–4 are excited at all ages
(except for the very first model), while the l = 1 g-modes are not
excited during the first 50 Myr, and then only 1 mode is excited
until almost the end of the evolutionary track. The example also
illustrates that modes of high spherical degrees are not needed
to explain the observed pulsators: plenty of l = 2 g-modes are
found to be excited at ∼32 000 K. Such low-degree modes are
easier to observe in photometry since they suffer much less from
partial geometric cancellation. More details on the model, in-
cluding the effective temperature, the surface gravity and the Ni
and Fe abundance enhancements in the driving region as a func-
tion of time, are given in Tables A.1 and A.2. The pulsational
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Fig. 6. Predicted pulsation spectra per spherical degree for the evolutionary track with a total mass of 0.47 M� and an envelope mass of 9.0 ×
10−5 M�. Excited p-modes are shown in red, excited g-modes in green. The effective temperature of the models is shown on the top axis.

characteristics of all models in the grid are available in electronic
form1.

3.3. Envelope mixing and KIC 10139564, the hottest hybrid
sdB star pulsator

The larger overlap between the p- and g-mode instability strips
compared to previous studies is comforting, since recent work on
Kepler data has made clear that sdB pulsators that predominantly
show g-modes often also have one or a few excited p-modes (see
e.g. Baran et al. 2011) and that p-mode pulsator KIC 10139564
also shows g-mode pulsations while it has an effective tempera-
ture that is close to 32 000 K (Baran et al. 2012, indicated with
a black point on Fig. 5). In Hu et al. (2011) it was shown that
a weak stellar wind or a mixing process in the envelope, effects
which are not accounted for in the grid presented in Sect. 3.2,
both tend to reduce the build up of Fe and Ni in the envelope.
We have also not considered thermohaline convection (see e.g.
Ulrich 1972; Kippenhahn et al. 1980), which is another process
that could lower the build-up of driving elements by radiative
levitation (Théado et al. 2009).

To test the effect of an extra source of turbulent mixing in
the envelope, we have recomputed our grid of models using ex-
tra turbulent mixing. The resulting instability strip is shown in
Fig. 7, using the same colours and symbols as in Fig. 5. Gravity
modes are still excited at all temperatures covered by the grid,
but fewer modes are excited and the edge of models with at
least 10 excited modes shifts to ∼30 000 K. As a result of the
extra mixing it takes longer to build up enough Fe and Ni in
the driving region, and models with thin envelopes only start to
show excited modes late in their evolution (see black parts of the
tracks).

1 https://fys.kuleuven.be/ster/Projects/sdbgrid/
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Fig. 7. Same as Fig. 5, showing g-mode excitation in sdBs but for a grid
computed using enhanced envelope mixing. Fewer modes are excited
than in the case without extra mixing and it takes longer until enough
Fe and Ni is accumulated in the driving region to excite pulsations.

Our models indicate that when turbulent mixing in the en-
velope is included, the g-mode instability strip still covers all
observed g-mode pulsators. While this is not a proof that such
a mixing process is indeed present, our test shows that we can-
not exclude it based on the observed instability strip, which is
important because Hu et al. (2011) showed that surface mixing
has the potential to explain the surface He abundances observed
in sdBs.

Stellar evolution calculations with radiative levitation are
hampered by numerical instability because of the short diffusion
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timescales. With additional turbulent mixing in the outer layer,
the numerical stability improves. Therefore, some of the evo-
lution tracks in Figs. 4 and 5 are stopped because of non-
convergence, in particular those of hotter stars that have higher
radiative accelerations in the envelope, while those in Figs. 7 are
more complete.

4. Conclusions

We have computed grids of evolutionary subdwarf B star mod-
els based on the theoretical work of Hu et al. (2011) and using
their implementation of the atomic diffusion processes, which
include radiative levitation, gravitational settling, thermal dif-
fusion and concentration diffusion. The diffusion equations are
solved for H, He, C, N, O, Ne, Mg, Fe and Ni. We have mea-
sured the build up of Fe and Ni in the pulsation driving region.
We find that depending on the total mass of the star and the mass
of the hydrogen envelope, Fe gets enhanced by a factor of 10–60
and Ni by a factor of 300–4000 due to the inclusion of these
diffusion processes compared to the initial abundances. Previous
studies proposed that enhancements of Fe and Ni in the driving
region around log Teff ∼ 5.5 caused pressure and gravity mode
pulsations in sdBs. Our results show that these assumptions were
valid, and that Fe and Ni are built up to sufficient amounts in the
driving region to drive pressure and gravity modes as observed
in sdB stars. While previous studies assumed parametrized en-
hancements of up to a factor of 20, which could explain most
of the observed pulsators, we find that the true enhancements
factors can be much larger. We have studied the effect of the Fe
and Ni enhancements on the instability strip for p- and g-mode
pulsators by computing the non-adiabatic pulsation properties of
the models. While the g-mode instability strip in previous studies
did not extend to high enough temperatures to include all known
pulsators, we obtained a g-mode instability strip that predicts
that modes can be excited in stars at all effective temperatures
covered by the grid, and models have at least 10 excited modes
at effective temperatures up to ∼33 500 K, which is hotter than
what is observed and resolves the problem of the too narrow in-
stability strip. Further improvements to the work presented here
can come from, for example, the inclusion of thermohaline mix-
ing in the models and updates to the opacity tables.
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Appendix A: Excited modes for different spherical degrees

In this Appendix, we provide detailed information on the model with a total mass of 0.47 M� and an envelope mass of 9.0 ×
10−5 M�, for which the pulsational characteristics were shown in Fig. 6. In Tables A.1 and A.2 the period range and the number of
excited modes is given for p- and g-modes, respectively. The tables also list the effective temperature (Teff), surface gravity (log g)
and Fe and Ni abundance enhancements (XFe/XFe,init and XNi/XNi,init) in the driving region as a function of time.

Table A.1. Number (No.), period range (p), and order range (n) of excited p-modes for different spherical degrees for the evolutionary track with
a total mass of 0.47 M� and an envelope mass of 9.0 × 10−5 M�.

Teff log g Age XFe XNi l = 0 l = 1 l = 2 l = 3 l = 4
(K) (Myr) /XFe,init /XNi,init No. prange (s) nrange No. prange (s) nrange No. prange (s) nrange No. prange (s) nrange No. prange (s) nrange

34 142 6.07 0.0 1.0 1.0 0 – – 0 – – 0 – – 0 – – 0 – –
32 769 5.99 5.1 33.8 1602.6 6 68–149 1–6 6 65–132 1–6 6 62–120 1–6 5 67–112 1–5 5 65–107 1–5
32 544 5.97 10.4 34.0 1658.2 6 72–151 1–6 6 68–134 1–6 5 72–123 1–5 5 70–114 1–5 5 67–109 1–5
32 413 5.96 14.5 33.1 1636.9 6 73–153 1–6 6 69–136 1–6 5 74–124 1–5 5 71–116 1–5 5 69–111 1–5
32 311 5.95 19.7 33.8 1678.9 6 75–155 1–6 6 70–138 1–6 5 76–126 1–5 5 72–118 1–5 4 70–114 1–5
32 240 5.94 25.1 31.4 1625.7 6 76–157 1–6 6 71–140 1–6 5 77–128 1–5 5 74–120 1–5 5 71–116 1–5
32 185 5.93 30.5 32.1 1670.8 6 77–158 1–6 6 72–142 1–6 5 78–130 1–5 5 75–122 1–5 5 72–118 1–5
32 159 5.92 34.8 34.3 1776.4 6 78–160 1–6 5 84–144 1–5 5 79–131 1–5 5 76–123 1–5 4 84–120 1–4
32 134 5.91 40.1 34.7 1821.1 6 80–162 1–6 5 85–146 1–5 5 81–133 1–5 5 77–125 1–5 4 85–121 1–4
32 102 5.90 45.1 33.6 1793.2 6 81–163 1–6 6 76–148 1–6 5 82–135 1–5 5 78–127 1–5 4 87–123 1–4
32 092 5.89 50.4 35.2 1895.1 6 82–165 1–6 5 88–150 1–5 5 83–137 1–5 5 79–128 1–5 4 88–125 1–4
32 072 5.88 54.7 34.1 1863.1 6 83–166 1–6 6 78–151 1–6 5 84–138 1–5 5 80–130 1–5 4 89–127 1–4
32 070 5.87 60.1 36.3 1988.1 6 84–168 1–6 5 91–153 1–5 5 85–140 1–5 5 81–132 1–5 4 91–129 1–4
32 058 5.87 65.4 32.8 1874.3 6 85–170 1–6 5 92–156 1–5 5 87–142 1–5 5 83–134 1–5 4 92–131 1–4
32 052 5.86 69.6 35.1 1988.5 6 87–171 1–6 5 93–157 1–5 5 88–144 1–5 5 84–135 1–5 4 93–132 1–4
32 059 5.85 74.9 37.0 2101.0 6 88–173 1–6 5 95–159 1–5 5 89–145 1–5 5 85–137 1–5 4 95–135 1–4
32 071 5.84 80.1 35.1 2062.7 6 89–175 1–6 5 96–162 1–5 6 36–147 1–17 5 86–139 1–5 4 96–137 1–4
32 072 5.83 85.3 36.3 2135.2 6 90–177 1–6 5 97–164 1–5 6 37–149 1–17 5 88–141 1–5 4 98–139 1–4
32 089 5.82 89.5 37.7 2229.6 6 92–179 1–6 5 98–165 1–5 6 37–151 1–17 5 89–143 1–5 4 99–140 1–4
32 116 5.82 94.9 37.6 2259.1 6 93–180 1–6 5 100–168 1–5 6 38–153 1–17 5 90–145 1–5 4 100–143 1–4
32 145 5.81 100.2 37.7 2312.2 6 94–182 1–6 5 101–170 1–5 6 39–155 1–17 5 91–147 1–5 5 39–145 1–16
32 182 5.80 105.4 37.6 2353.1 6 96–184 1–6 6 40–172 1–17 6 39–156 1–17 5 93–149 1–5 5 40–147 1–16
32 215 5.79 109.5 37.8 2391.8 6 97–186 1–6 6 40–174 1–17 6 40–158 1–17 5 94–151 1–5 5 40–149 1–16
32 258 5.78 114.6 40.2 2540.6 6 98–187 1–6 5 105–176 1–5 5 99–160 1–5 5 95–153 1–5 5 41–151 1–16
32 327 5.78 119.7 42.7 2744.9 6 99–189 1–6 6 42–178 1–17 5 100–161 1–5 5 96–155 1–5 5 41–153 1–16

Table A.2. Same as Table A.1 but for excited g-modes.

Teff log g Age XFe XNi l = 1 l = 2 l = 3 l = 4
(K) (Myr) /XFe,init /XNi,init No. prange (s) nrange No. prange (s) nrange No. prange (s) nrange No. prange (s) nrange

34 142 6.07 0.0 1.0 1.0 0 – – 0 – – 0 – – 0 – –
32 769 5.99 5.1 33.8 1602.6 0 – – 7 298–1433 1–10 11 237–1324 1–14 14 207–1241 1–17
32 544 5.97 10.4 34.0 1658.2 0 – – 9 298–1640 1–12 14 238–1541 1–17 18 208–1359 1–20
32 413 5.96 14.5 33.1 1636.9 0 – – 8 297–1672 1–12 15 238–1578 1–18 17 209–1335 1–20
32 311 5.95 19.7 33.8 1678.9 0 – – 9 297–1775 1–13 17 238–4877 1–55 18 209–1443 1–21
32 240 5.94 25.1 31.4 1625.7 0 – – 9 296–1773 1–13 16 237–5048 1–56 17 209–1478 1–21
32 185 5.93 30.5 32.1 1670.8 0 – – 10 295–1959 1–14 15 236–5066 1–56 18 208–1508 1–21
32 159 5.92 34.8 34.3 1776.4 0 – – 10 295–1988 1–14 16 236–5251 1–58 18 208–4057 1–58
32 134 5.91 40.1 34.7 1821.1 0 – – 10 294–2017 1–14 17 235–5230 1–57 20 207–1628 1–23
32 102 5.90 45.1 33.6 1793.2 0 – – 10 293–2041 1–14 17 234–5057 1–55 20 206–1646 1–23
32 092 5.89 50.4 35.2 1895.1 0 – – 11 293–2099 1–15 17 234–2279 1–23 21 206–3988 1–56
32 072 5.88 54.7 34.1 1863.1 0 – – 11 292–2116 1–15 17 233–5012 1–54 21 205–1689 1–24
32 070 5.87 60.1 36.3 1988.1 1 455 1 11 292–2143 1–15 17 233–1977 1–20 22 204–1774 1–25
32 058 5.87 65.4 32.8 1874.3 1 454 1 11 291–2171 1–15 17 232–1931 1–20 22 204–1795 1–25
32 052 5.86 69.6 35.1 1988.5 1 454 1 12 291–2192 1–15 19 231–4955 1–53 21 203–1811 1–25
32 059 5.85 74.9 37.0 2101.0 1 454 1 13 290–2350 1–16 18 231–1965 1–21 22 202–1850 1–26
32 071 5.84 80.1 35.1 2062.7 1 453 1 15 290–7120 1–53 17 230–1988 1–21 22 202–1861 1–26
32 072 5.83 85.3 36.3 2135.2 1 452 1 12 289–2287 1–16 18 230–2123 1–22 22 201–1881 1–26
32 089 5.82 89.5 37.7 2229.6 1 452 1 13 289–2424 1–17 19 229–2163 1–23 22 201–1896 1–26
32 116 5.82 94.9 37.6 2259.1 1 451 1 14 288–2534 1–18 22 228–4896 1–52 24 200–2024 1–28
32 145 5.81 100.2 37.7 2312.2 1 450 1 14 287–2557 1–18 20 228–2321 1–24 24 199–2043 1–28
32 182 5.80 105.4 37.6 2353.1 1 449 1 16 287–2635 1–20 19 227–2358 1–24 25 199–3637 1–48
32 215 5.79 109.5 37.8 2391.8 1 448 1 17 286–6561 1–49 21 226–4716 1–50 25 198–2154 1–29
32 258 5.78 114.6 40.2 2540.6 2 446–2459 1–9 15 285–2625 1–19 23 226–4608 1–48 27 198–2197 1–30
32 327 5.78 119.7 42.7 2744.9 6 444–3058 1–12 19 284–6805 1–51 21 225–2444 1–25 28 198–2338 1–31
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