Effet de la suspension précoce du flux inducteur sur la détermination du neur ectoblaste médullaire

PAR

H. DAMAS

(Laboratoire d'Embryologie de la Faculté de Médecine de Bruxelles et Institut Ed. Van Beneden à Liège)

(Planch e 1 et 5 figures dans le texte)
Effet de la suspension précoce du flux inducteur sur la détermination du neurectoblaste médullaire

PAR

H. DAMAS

(Laboratoire d'Embryologie de la Faculté de Médecine de Bruxelles et Institut Ed. Van Beneden à Liège)

(Planche 1 et 5 figures dans le texte)

DIVISION DU TRAVAIL

- Position du problème.
- Matériel et Méthodes.
- Expériences sur les Axolotls.
- Expériences sur les Xénopes.
- Discussion des résultats.
- Sommaire.

POSITION DU PROBLÈME

La plaque médullaire se dessine sur le dos des embryons d'Amphibiens dès qu'ils ont dépassé le stade gastrula. Elle se forme aux dépens de cellules qui, peu auparavant, ne se distinguaient du restant de l'ectoblaste ni par leur aspect, ni par leurs capacités de différenciation spontanée (HOLTFRERER 1931, 1933b). Depuis les expériences classiques de SPEMANN (1918), il est bien connu que cette différenciation est due à l'action du chordo-mésoblaste sous-jacent. LEHMANN (1928, 1929) et MANGOLD (1929) ont ensuite démontré que les propriétés de l'ectoblaste, dans la zone médullaire présomptive, se modifient brusquement au moment où le chordo-mésoblaste s'insinue sous lui et que, lors du creusement de la plaque médullaire, la séparation des ébauches nerveuses et du futur épiderme est définitivement acquise.

D'autre part, une plaque médullaire peut être induite dans l'ectoblaste banal de jeune neurula par une autre
plaque médullaire (induction homéogène, Mangold, 1929) par les somites ou le mésoblaste latéral (Holtfreter 1933), voire par des organisateurs tués ou des tissus fixés qui, vivants, ne présentent pas cette propriété (Holtfreter 1935a et b, Wehmeier 1935). Seule une action chimique peut expliquer en même temps le développement normal de la plaque médullaire et ces résultats expérimentaux. Il faut donc admettre que, durant la gastrulation et la neurulation, le chordo-mésoblaste fabrique et laisse diffuser vers la plaque médullaire présomptive, des substances inductrices et organisatrices. On s’est jusqu’à présent, très peu préoccupé de ce qui se passe durant cette période, entre le stade blastula où l’ectoblaste est encore incapable de se différencier spontanément en tissu nerveux, et le stade neurula où le sort de la plaque médullaire est définitivement fixé. A priori, on peut imaginer deux hypothèses. Ou bien la détermination de la plaque est brusque, instantanée, et suit en quelque sorte la loi du « tout ou rien », ou bien l’ébauche acquiert son caractère nerveux progressivement, au fur et à mesure qu’elle subit l’action des substances inductrices. Lehmann (1929) conclut son travail en admettant « ...dass zwei Punkte charakteristisch für die Entwicklung des Anlagemusters in Ektoderm sind. 1. Die progressive Ausbildung und Lokalisierung der Differenzierungs potenzen. 2. Der Aufbau des Anlagemusters aus einem System labiler Zentren, dessen weitere Aufteilung und Festlegung durch mehrere teilweise gleichsinnige Faktoren geschieht. » (p. 380). Mangold (1929) qui étudiait l’action inductrice de portions de plaque médullaire présomptive placées dans la cavité blastocéllienne de jeunes gastrulas, constate également qu’une période de « détermination labile » précède le moment où le sort de l’ébauche est fixé de façon définitive. De plus, lorsqu’on compare l’évolution de fragments prélevés avant qu’apparaîsse le dessin de la plaque médullaire (moment de sa détermination définitive), on constate « ...dass die Quantität des medullaren Materials mit den Alter des Transplantats immer zunimmt. » (p. 665). Ces
deux auteurs admettent donc que le matériel inducteur agit d'une manière progressive.

Cette hypothèse est également suggérée, mais avec une nuance importante, par la théorie du « potentiel morphogénétique » proposée par Dalcq et Pasteels (1937). Suivant elle, la différenciation d'un feuillette fonction de sa teneur en substances inductrices. Chez une neurula, cette teneur (le potentiel morphogénétique du tissu) décroîtait du dos vers le ventre et de l'avant vers l'arrière. Ce double gradient dorso-ventral et céphalo-caudal créerait toute une hiérarchie entre les territoires embryonnaires. Les limites des diverses ébauches correspondraient à autant de seuils, de teneurs en substances organisatrices où la réaction du tissu induit se modifierait brusquement.

S'il en est ainsi, l'induction du système nerveux par le chordo-mésoblaste ne peut être que progressive. La plaque médullaire est, en effet, l'organe ectoblastique le plus dorsal. C'est donc elle qui doit posséder le potentiel morphogénétique le plus élevé, la teneur la plus haute en substances organisatrices. Elle ne peut l'acquérir qu'en passant par les étapes intermédiaires. Une méthode de vérification de cette hypothèse se suggère d'elle-même. En séparant chordo-mésoblaste et plaque médullaire présomptueuse au cours de la neurulation, il est possible d'arrêter prématurément l'action inductrice et de disposer de lambeaux de tissu ectoblastique ayant une charge incomplète en substances organisatrices. L'étude du développement de ces lambeaux, greffés dans une portion indifférente d'autres embryons, peut trancher le dilemme posé plus haut. Si le développement suit la loi du « tout ou rien », on doit, suivant les cas, assister à l'assimilation du lambeau par les tissus de l'hôte, ou à sa transformation en tube neural. Si la détermination se fait progressivement et par paliers, les greffons doivent donner naissance à des structures caractéristiques de leur teneur momentanée en substances inductrices. Par conséquent, le type du tissu produit variera suivant le moment et l'endroit où le lambeau a été prélevé,
suitant que celui-ci aura été soumis plus ou moins longtemps à une action inductrice plus ou moins intense. Des exemples de développement aberrant, de « paragenèse », explicables seulement par une insuffisance de l'induction, ont été signalés récemment à propos du cerveau par A. DALCQ (1946). En étudiant comparativement les embryons doubles obtenus à partir de la blastula et de la gastrula du Discoglosse par « translocation latitudinale », cet auteur a pu déduire que la présence de masses croissantes de matériel inducteur entraîne une progression correlative dans la complexité du cerveau antérieur. Il a pu montrer que cet effet organisateur n'est pas en relation avec une structure préétablie du substrat inducteur. Il a conclu que la plaque préchordale est une formation homogène et polarisée, dont toutes les parties sont commutatives.

L'étude du présent problème m'a été suggérée par M. le Professeur A. DALCQ comme conséquence des notions dégagées des recherches qui viennent d'être rappelées. Avant de décrire les expériences et leurs résultats, je tiens à exprimer ici ma gratitude envers M. A. DALCQ qui a bien voulu inspirer et guider ce travail et en discuter les résultats. Je remercie très vivement aussi M. J. PASTEEELS dont l'aide et les conseils, toujours accordés de la façon la plus cordiale, me furent des plus précieux.

La plaque médullaire constitue un ensemble encore fort vaste et, du cerveau à l'extrémité de la moelle, se développe en structures très variées. Son étude, au point de vue qui vient d'être précisé, pose donc des problèmes multiples. Aussi, il fut décidé de la partager entre deux chercheurs et tandis que M. GALLERA se voyait réserver l'examen de la région cérébrale, j'ai entrepris l'étude de la portion proprement médullaire.

MATÉRIEL ET MÉTHODES

Les opérations ont été effectuées sur *Rana esculenta*, *Xenopus laevis*, *Pleurodeles waltii* et *Sireodon mexicanum*. Elles ont consisté à prélever sur des gastrulas âgées ou de
jeunes neurulas, des lambeaux de plaque médullaire présomptive et à les greffer dans la région ventrale d'un hôte de même espèce et de même âge.

Chez les Amphibiens, la plaque médullaire dessine une raquette dont la portion étalée fournira le cerveau tandis que la région étroite est, dans sa plus grande partie, l'ébauche de la moelle. Son extrémité tout à fait postérieure n'est cependant pas destinée à devenir du tissu nerveux, mais s'invaginera le long des parois du canal neurentérique pour constituer la chorée et les somites de la queue (Bijtel 1931, 1936, Pastuels 1939). Par conséquent, pour toucher l'ébauche de la moelle, il faut opérer sur la portion retrécie de la plaque et s'arrêter à une certaine distance en avant du blastopore. Pour éviter la greffe simultanée de l'ébauche de la crête neurale, il suffit de prélever les lambeaux d'ectoblaste bien en dedans de la ligne pigmentée qui marque le pourtour de la plaque, ou en dedans de sa position future (cf. Raven 1932). Enfin, si le greffon provient de la région médiane, le transfert éventuel du chordo-mésoblaste sous-jacent se dénonce immédiatement par la présence de nodules chordaux dans les tissus de l'hôte.

Les figures I, II, et IV montrent des schémas de l'opération effectuée. Elle consiste à prélever un lambeau rectangulaire d'ectoblaste dans la moitié postérieure du dos d'une gastrula âgée ou dans la moitié postérieure de la plaque médullaire d'une jeune neurula. L'incision postérieure se trouve largement en avant du blastopore afin d'éviter de toucher le matériel myogène postérieur. Le lambeau, détaché avec soin de son substrat, éventuellement nettoyé des quelques cellules mésoblastiques qu'il pourrait avoir entraînées, est alors sectionné en deux ou trois morceaux successifs qui sont greffés sur la face ventrale d'un hôte du même âge. Il est généralement admis qu'un greffon placé à cet endroit ne subit aucune influence de la part de son hôte. La question mérite cependant d'être discutée plus loin.

Les donneurs ont tous été colorés au bleu de Nill. Immédiatement après l'opération, ils furent fixés et débités en
coupes afin de vérifier la nature du greffon. Les hôtes ont été placés jusqu'à cicatrisation dans du liquide de HOLTRETER (1931), ensuite pendant un jour ou deux dans un mélange en parties égales de liquides de HOLTRETER et de Richards (1940) et enfin dans de l'eau alimentaire filtrée sur porcelaine. Les élevages ont été faits à la température de la salle, vers 20°. Lorsque l'hôte avait atteint le stade de larve nageuse, à celui bien développé et pigmenté, il était fixé au Zenker, enchaîné suivant la méthode de LEHMANN (1929) qui permet de conserver le bleu de Nil dans les coupes. Les coupes à 10 microns, ont été colorées à la naphtopurpurine. Lorsque, malgré les précautions prises, aucune trace de couleur n'a pu être retrouvée dans les greffons, les préparations ont été démontées et recolorées à l'hématoxylène éosine.

Les quatre espèces animales utilisées ne présentent pas toutes les mêmes avantages. Les essais faits sur Rana esculenta (24 individus portant 2 greffons) durent tous être éliminés. Chez les neurulas de cette espèce, le clivage des feuilletés se fait mal. L'expérience ne présente guère de sécurité. Ou bien la greffe a fourni des nodules chordaux, ou bien elle ne comprenait vraisemblablement que la couche pigmentaire de l'ectoblaste. Les opérations se font beaucoup mieux sur les trois autres espèces. Malheureusement, les larves de Pleurodèles (30 individus portant 2 greffons), dont les géniteurs étaient en assez mauvais état, périssent toutes en cours d'élevage.

Restent donc utilisables les Xénopeps et les Axolotls. Le développement de ces deux espèces n'est pas tout à fait comparable. Chez le Xénope (fig. 1, a et d), lorsque la plaque médullaire commence à se creuser, l'ectoblaste possède encore à peu près la même épaisseur sur tout le pourtour de la larve. Au même stade, chez l'Axolotl (fig. 1, a et b), il est très mince ventralement et s'épaissit progressivement sur les côtés pour atteindre son épaisseur maximale au niveau des bords de la plaque médullaire. Puis, il s'amincit un peu vers le plan médio-dorsal, pour redevenir très
étroit au-dessus de la chorde. Il est probable que ces aspects différents traduisent une inégalité dans la vitesse de détermination des tissus.

![Diagram](image)

Fig. I. — Coupes schématisées de jeunes neurulas.

a) Axolotl n° 20.

b) Coupe de cet individu, passant immédiatement en avant du greffon A.

c) Xénope n° 17.

d) Coupe de cet individu, passant immédiatement en avant du greffon A.

D'autre part, la croissance des Xénope est extrêmement rapide et, très tôt, leurs tissus deviennent fonctionnels. Une larve de 5 jours a résorbé presque entièrement son vitellus et nage avec activité. Un Axolotl de 6 jours parait, extérieurement, aussi avancé dans son développement. L'œil est grand, bien pigmenté, la queue bien développée. Mais l'animal est plus lent et il se montre que la plupart de ses tissus sont encore encombrés de plaquettes vitellines. L'intestin, toujours rectiligne, est bourré de réserves et occupe toute la cavité générale du corps. La différenciation histologique n'est pas avancée. Il en est de même, évidemment, pour les greffons. Il sera nécessaire de rappeler ces faits en cours d'exposé.
Une dernière chose est à signaler ici. Si dans les tissus d’Axolotl, le bleu de Nil se conserve très bien et peut être retrouvé sur coupes, il n’en est pas de même pour les tissus du Xénope. Dans ce cas, évidemment, il est parfois difficile d’être assuré de l’origine réelle des structures trouvées dans les greffons. La chose est d’autant plus regrettable que, comme on le verra plus loin, on y trouve des tissus très variés dont certains ressemblent très fort à ceux de l’hôte.

EXPÉRIENCES SUR LES AXOLOTLS

24 donneurs ont été utilisés. Les plus jeunes achevaient de résorber leur bouchon vitellin. Les plus âgés étaient des neurulas à plaque médullaire dessinée, entourée par un bourrelet épaissi et redressé. Sur ce nombre ont pu être étudiés 11 individus dont 8 portaient 2 greffons, 1 portait 3 greffons et deux portaient un seul greffon.

Il ne paraît pas utile de décrire chacune de ces expériences. Il suffit, semble-t-il, d’exposer les résultats d’une expérience faite avec un donneur très jeune et d’une autre utilisant un donneur très âgé, puis de résumer globalement les autres expériences.

Axolotl N° 11. — Le donneur (fig. 11a) est une gastrula âgée, à blastopore légèrement rétréci vers le dos. Il ne présente ni sillon dorsal ni aucune indication pigmentaire de la plaque médullaire. Les greffons se sont détachés parfaitement et les coupes du donneur montrent que le chorde-mésoblaste est demeuré intact. Les greffons sont placés sur la face ventrale d’un hôte de même âge, en grande partie sous l’épiblaste (fig. 11b). Dès le lendemain, les plaies sont cicatrisées et les greffons recouverts par l’épiblaste de l’hôte. Après 6 jours, l’animal est devenu une larve nageuse, à œil bien pigmenté, branchies très développées mais queue tordue vers le bas (fig. 11c). Il présentait une tache décolorée dans la région hépatique. Un peu en arrière, sur la ligne médiane, un peu de couleur bleue signalait le greffon A. À l’extrémité postérieure de l’abdomen, un gros tubercule arrondi à base colorée représente le greffon B, tandis que C s’est développé en un petit appendice caudal surnuméraire situé un peu en avant de la naissance de la queue, du côté gauche.
L'examen des coupes montre que la tache blanche, située dans la région du foie, correspond à une cicatrice opératoire. A ce niveau, le derme est inexistant et le tissu hépatique est soude à l'épiderme.

![Diagramme](image)

Fig. II. — Axolotl n° 11.

Schéma de l'opération :

a) Donneur, vue dorsale.

b) Hôte, vue ventrale au moment de l'opération.

c) Hôte, au moment de la fixation.

Greffon A. — Il se retrouve sous l'aspect d'une ampoule nerveuse piriforme attachée à la fois au tissu conjonctif de la paroi médio-ventrale de l'abdomen et à l'intestin encore vitellin. A son niveau, la cavité céolomique et le péritoine sont interrompus. L'ampoule contient une petite cavité, à peu près centrale. Sa moitié antérieure, la plus épaisse, n'a pas un contour bien défini, mais s'interpénètre avec le tissu conjonctif. Autour d'elle, existent, dans le conjonctif, des cellules à noyau arrondi, à protoplasme peu abondant, contenant souvent quelques grains de bleu de Nil (pl. I, fig. 1). Certaines de ces cellules sont collées contre l'ampoule nerveuse. D'autres semblent s'en détacher. D'autres enfin sont libres dans le tissu ambiant. Les images ainsi formées ressemblent complètement à celles qu'on observe au niveau des zones d'émission de la crête neurale. L'extrémité postérieure de l'ampoule, plus étroite, est bien limitée vis-à-vis du conjonctif par une sorte de gaine fibreuse.
A cet endroit, des cellules d'aspect mésectodermique entourent encore l'ampoule, mais elles sont tout à fait indépendantes.

Greffon B. — Il a provoqué la formation d'une saillie arrondie à l'extrémité postérieure de l'abdomen. On y trouve, contre le péritoine, entourée d'un tissu conjonctif anormalement abondant, une grosse ampoule nerveuse à cavité à peu près centrale. La paroi de cette ampoule est pluristratifiée, mais encore non différenciée (pl. I, fig. 2). Un second nodule nerveux, plus petit et plein, flotte, isolé, dans la cavité générale, juste au-dessus du premier. Les limites de ces masses nerveuses sont très nettes mais, autour d'elles, existent, dans le conjonctif, des cellules plus ou moins isolées parmi lesquelles on peut trouver tous les intermédiaires entre la cellule d'aspect mésectodermique et la cellule conjonctive banale. Il s'y mêlent un certain nombre de cellules pigmentaires. Entre la grosse ampoule nerveuse et l'épiderme, existe encore une sphère aplatie, à paroi mince, une sorte de kyste épithélial creux (pl. I, fig. 2) dont les cellules contiennent quelques grains de couleur. Enfin, l'épiderme qui recouvre le mamelon présente une surface interne irrégulière. En quatre endroits, il pénètre, en racines, dans le tissu conjonctif. Deux de ces racines traversent tout le mamelon et s'avancent jusqu'au contact du péritoine. Leur base est large et creuse, mais dans un cas, la cavité qu'elle contient ne communique pas avec l'extérieur. Leur sommet constitue un cordon plein (pl. I, fig. 3). Les deux autres, plus petits, sont des cordons massifs de la base au sommet. Certaines cellules de ces racines, mais pas toutes contiennent des grains de bleu de Nil.

Greffon C. — Il s'est développé en une petite queue supplémentaire. Mais celle-ci ne contient pas d'organes axiaux. A sa base existe seulement une très petite ampoule creuse, à paroi bi-stratifiée, composée de jeunes cellules nerveuses. L'intérieur de l'appendice est rempli de tissu conjonctif parsemé de nombreuses cellules pigmentaires et...
de très abondantes cellules à noyau fort colorable, protoplasme condensé autour du noyau, d'aspect mésectodermique net. Au niveau de cette queue, la sangle musculaire de l'hôte est anormalement épaisse. Mais il faut signaler qu'aucun grain de couleur n'a pu y être retrouvé, alors qu'il en existe dans beaucoup de cellules mésectodermiques et épidermiques.

En résumé, aucun des trois greffons ne s'est entièrement développé en ampoule nerveuse. Tous trois ont fourni des cellules d'autres types, mésectodermiques principalement.

D'autre part, le volume des ampoules nerveuses décroit d'un greffon à l'autre. Dans le premier, la presque totalité du greffon est devenue nerveuse. Il existe seulement un petit nombre de cellules migratrices. Dans le second, la proportion de ces cellules grandit et il s'y ajoute des cellules pigmentaires et des formations atypiques : kyste épithélial et racines épidermiques. Du troisième greffon, une petite partie seulement est devenue nerveuse. Le reste est transformé en cellules migratrices, pigmentaires, voire conjonctives banales. L'épaississement de la sangle musculaire de l'hôte à hauteur de l'appendice caudal surnuméraire pourrait peut-être suggérer que le troisième greffon a été prélevé dans la zone myogène postérieure. L'absence de grains de couleur dans ces cellules, le fait qu'elles ne sont pas disposées en somites tendent au contraire à faire admettre qu'elles proviennent bien de l'hôte. Leur abondance exagérée peut être le résultat soit de ce qu'elles ont été empêchées de s'étaler, le greffon représentant alors un obstacle mécanique, soit de ce qu'elles ont été attirées par le greffon qui constituait une sorte de centrale trophique.

AXOLOTL no 21. — Le donneur est une neurula à plaque médullaire nettement dessinée et commençant à se soulever sur les bords. Il est représenté dans la figure 1a. Deux greffons carrés, de taille égale, ont été prélevés dans la moitié gauche de la plaque médullaire, nettement en dedans du bourrelet périphérique et en avant du blastopore. Ils ont été portés sur la face ventrale d'une neurula un peu plus âgée. A fut greffé tout
à fait en surface, un peu à gauche de la ligne médiane. B se trouvait bien sur la ligne sagittale. Son quart antérieur était recouvert par l'épiplaste de l'hôte. L'étude du donneur montre que les sections ont été faites de façon très nette, sans entamer les autres feuillots et sont situées bien en dedans des limites de la plaque médullaire.

Figure III. — Axolotl n° 21.
Profil de l'hôte au moment de la fixation.

Les plaies de l'hôte se cicatrisèrent très vite et deux jours après l'opération, l'animal pouvait être transféré à l'eau ordinaire. Il a été fixé après 5 jours. C'était à ce moment une larve nageuse, à œil bien pigmenté, branches très développées. Sa queue présentait une légère anomalie. Le greffon A formait une faible saillie colorée dans la région hépatique. Le greffon B, situé à mi-longueur de l'abdomen, était une saillie cylindrique à base fortement colorée (fig. III).

Greffon A. — La paroi abdominale contient dans le plan médian, en face du début de l'intestin, un gros massif nerveux creusé de cinq petites cavités excentriques. Ce massif, non encore différencié, est bien limité par rapport au tissu conjonctif voisin. Cependant, son bord gauche, légèrement imprécis, est étiré et se continue dans un groupe d'une dizaine de cellules dont la nature nerveuse ou mérectoderme est difficile à déterminer.

Greffon B. — La protubérance cylindrique causée par ce greffon contient à sa base une grosse ampoule nerveuse. Celle-ci dépasse même la paroi abdominale et s'implante à un endroit dans l'intestin. Elle contient une grande cavité légèrement excentrique qui n'est limitée du côté externe et antérieur que par une couche cellulaire. Le bord droit de l'ampoule est également creusé d'une grande vacuole. Un
certain nombre de cellules pigmentaires sont collées contre ce tissu nerveux et, de ses bords droit et gauche, se détachent des groupes de cellules migratrices. Dans le tissu conjonctif amiant, quelques cellules plus ou moins indépendantes font la transition entre ce mésectoderme et les cellules conjonctives banales. L'épiderme qui recouvre le mamelon n'a pas une surface complètement régulière. Des protubérances courtes se dirigent à plusieurs endroits vers le massif nerveux. De nombreuses cellules épidermiques contiennent d'ailleurs des grains de bleu de Nil et proviennent donc du greffon.

Cette expérience montre qu'au stade de jeune neurula, la détermination de la plaque médullaire postérieure a progressé très fort sans cependant devenir totale. En effet, les massifs nerveux sont beaucoup plus importants que dans l'expérience précédente. Le greffon antérieur s'est transformé à peu près complètement en ampoule nerveuse. Quant au greffon postérieur, il a encore formé du mésectoderme, y compris des cellules pigmentaires, et une partie de ses cellules sont demeurées dans l'épiderme où elles affectent d'ailleurs des caractères spéciaux.

Ces deux expériences sont typiques. Le tableau I montre que les autres ont donné des résultats fort semblables.

Il est bon de passer rapidement en revue les diverses rubriques afin de pouvoir signaler les particularités qui n'ont pu être décrites à propos des Axolotls 11 et 21.

Masses nerveuses. — Tous les greffons, sans exception, se sont développés en masses nerveuses. Mais elles sont, en général, peu différenciées. 6, sur 21, (2B, 8A et B, 17A et B, 20 A) sont toujours des masses pleines. Les cavités qui creusent les autres sont souvent minuscules, de la taille d'un noyau cellulaire environ. 4 greffons seulement (6A, 18A, 14A et B) se sont différenciés en substances blanche et grise. Mais jamais leur conformation n'est typiquement médullaire. L'ampoule présentant l'aspect le plus normal
<table>
<thead>
<tr>
<th>Stade des donneurs</th>
<th>Gastroïde</th>
<th>Début du dessin</th>
<th>Plaque dessinée</th>
<th>N° de l'expérience</th>
<th>Neurales à plaque médullaire creusée</th>
<th>Grefion</th>
<th>Massif nerveux</th>
<th>Kyste épithélial</th>
<th>Col. pigmentaires</th>
<th>Tissu conjonctif</th>
<th>Épaississement épidermique</th>
<th>Excroissance externe</th>
<th>Réaction de l'hôte</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>A</td>
<td>2</td>
<td>11</td>
<td>8</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>B</td>
<td>B</td>
<td>6</td>
<td>14</td>
<td>15</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>C</td>
<td>C</td>
<td>18</td>
<td>14</td>
<td>17</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>D</td>
<td>D</td>
<td>18</td>
<td>14</td>
<td>20</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>E</td>
<td>E</td>
<td>18</td>
<td>14</td>
<td>21</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>F</td>
<td>F</td>
<td>23</td>
<td>18</td>
<td>21</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

N. B. — Les embryons sont rangés d'après l'ordre d'âge croissant du donneur au moment de l'intervention.
(6A) est sphérique. La substance blanche y est représentée par des groupes de fibres occupant à peu près le plan équatorial de la sphère. La cavité y est rejetée sur le côté le plus proche du péritoine. Elle a la forme d'une calotte et n'est limitée d'un côté que par une seule couche nerveuse.

La comparaison des divers résultats montre que plus embryon opéré était âgé, plus grande était la portion du greffon devenue nerveuse. Si la plaque médullaire était dessinée au moment de l'opération, le greffon antérieur s'est pratiquement transformé tout entier en ampoule nerveuse et, dans le greffon postérieur, les cellules migratrices, pigmentaires et conjonctives, les épaississements épidermiques sont relativement peu nombreux.

Kystes épithéliaux. — Dans deux greffons (11B et 6A), existe, intercalé entre l'épiderme et une grosse ampoule nerveuse, un kyste épithélial à paroi mince. L'un d'entre eux a été décrit plus haut (pl. I, fig. 2). L'autre a une paroi si mince qu'en coupe équatoriale, il paraît limité par un endothélium. Mais il ne peut s'agir d'un capillaire dilaté, car cette formation sphérique n'est prolongée par rien ni en avant ni en arrière. Deux cas ne suffisent pas pour permettre de discuter la signification de ces kystes. La question est heureusement éclairée par les résultats des expériences sur les Xénopes.

Cellules migratrices. — Les descriptions précédentes signalent la présence fréquente, autour des ampoules nerveuses, de cellules plus ou moins indépendantes, à noyau comparable à ceux des éléments nerveux, à protoplasmé condensé, parfois lobé. Les greffons antérieurs prélevés sur des neurulas à plaque médullaire légèrement creusée, sont les seuls à en être dépourvus. Dans les autres, surtout dans les greffons provenant de gastrulas, ces cellules sont très abondantes. Fréquemment, leurs rapports avec les ampoules nerveuses sont tels qu'on a l'impression d'assister à une émission de crête neurale par la moelle (11B, 8A, 18A et B. 14B, 15B, 20B, 21B, 22B). L'existence de cellules libres,
souvent chargées de grains de bleu de Nil et dont l'aspect présente tous les intermédiaires possibles entre celui des cellules se détachant des ampoules nerveuses et les cellules conjonctives banales, montre qu'une partie du greffon est douée de propriétés migratrices et va se disperser dans le conjonctif comme la crête neurale. Dans un cas (8 A), des cellules se libérant de la paroi d'une ampoule nerveuse, chargées de couleur et donc provenant bien du greffon, plongent dans la cavité du sinus de Cuvier et se mélangent aux éléments sanguins. Elles ont donc bien pris le caractère de cellules mésenchymateuses primitives, capables de se transformer aussi bien en éléments libres qu'en éléments fixes. Enfin, dans les excroissances constituées par certains greffons, ces cellules forment une sorte de mésenchyme condensé.

Cellules pigmentaires. — Dans certains greffons, les structures nerveuses ou les amas de cellules migratrices sont intriqués de cellules pigmentaires. On en a vu des exemples plus haut. Il est évidemment impossible de trouver dans ces éléments des traces de bleu de Nil. Mais leur position paraît prouver de façon claire qu'ils proviennent du greffon bien que, normalement, ce type cellulaire dérive de la crête neurale.

Cellules conjonctives. — Lorsque le greffon s'est développé en une excroissance un peu volumineuse, il contient toujours du tissu conjonctif. Vraisemblablement, ce dernier provient du donneur. Mais c'est là chose difficile à prouver car ces cellules, étirées et à faible protoplasme, ne contiennent que rarement des traces de couleur. A cause de ce manque de preuve, le tableau porte un ? lorsque la saillie n'est guère développée, car dans ce cas, il serait très possible que des cellules conjonctives aient migré de l'hôte vers le greffon.

irrégulière (2B, 6B, 15B, 17B). Dans ces deux derniers cas, il constitue même des sortes de perles suspendues par un pédicule étroit (pl. I, fig. 4). Des « racines » épidermiques, analogues à celles décrites plus haut, ont été observées dans 3 cas (11B, 8B, 20B) (pl. I, fig. 3). Dans deux cas, signalés par un ? dans le tableau, la surface profonde de l'épiderme présente des irrégularités nombreuses, qui ne constituent pas de vraies racines mais contrastent très fort avec l'aspect habituel, parfaitement lisse, de la zone de contact épiderme-derme.

Enfin, au niveau du greffon 6 A, l'épiderme, fort épaissi, marqué de grains de bleu de Nil, contient une lentille cellulaire nettement tranchée qui ressemble très fort à une ébauche d'organe sensoriel. Cette lentille est située contre une ampoule nerveuse sphérique différenciée en substances blanche et grise.

Excroissance externe. — Tous les greffons postérieurs se sont développés en une saillie importante : soit une petite queue surrénale (11C fig. II), soit une excroissance plus ou moins étirée (2B, 6B, 20B, 21B fig. III, 22B), ou un simple mamelon garni de replis superficiels. Or, tous avaient été pris à bonne distance du blastopore. En arrière de 11C, par exemple, il eût été aisément possible de prélever encore un greffon de même taille (fig. II). C'est donc que la région postérieure de la plaque médiullaire de l'Axolotl possède une tendance propre à l'extension fort nette, car l'absence de toute structure musculaire ou chordale dans les greffons permet de croire qu'ils ont bien été prélevés en avant de la zone myégène.

Réaction de l'hôte. — Dans deux cas, l'implantation du greffon a eu pour résultat une modification de la structure de l'hôte. Le premier a été décrit et discuté plus haut. Il s'agit d'un gonflement de la sangle musculaire de l'hôte au niveau du greffon (11C).

Le second cas est plus complexe. Le greffon postérieur de l'Axolotl 6 a été, involontairement, placé sur le flanc
droit de l'hôte un peu en avant de la région cloacale. Il s'est trouvé implanté juste à hauteur du canal de Wolff et a arrêté celui-ci. Le greffon forme une saillie épaisse arquée vers le bas. L'extrémité du canal de Wolff s'est dilatée en une petite vessie et s'ouvre à l'extérieur le long du bord ventral du greffon. Ce dernier a certainement collaboré à la fabrication de la paroi « vésicale » car plusieurs cellules de celle-ci contiennent des grains de couleur. C'est, en particulier, le cas pour deux endroits où cette paroi, contiguë aux masses nerveuses dérivant du greffon se creuse en deux tubes, l'un conique, l'autre cylindrique, assez profonds, tubes qui suggèrent très fort des néphrostomes mais sont entièrement dépouvrus de cils vibratiles et possèdent un revêtement moins épais que les néphrostomes réels (pl. I, fig. 5).

EXPÉRIENCES SUR LES XÉNOPES

25 donneurs ont été utilisés. Les plus jeunes étaient des gastrulas à blastopore étiré dans le sens sagittal, à dos à peine aplati. Ils ne présentaient aucune indication, même pigmentaire, de la plaque médullaire. Les plus âgés avaient une plaque médullaire dessinée, creusée légèrement et s'étendant sur plus de la moitié du pourtour de la larve. 21 individus ont survécu à l'opération mais 4 ont dû être éliminés parce que l'un ou l'autre greffon contient des nodules chordaux. 18 opérations peuvent donc être discutées. Parmi elles, 15 comptent 2 greffons, les autres 3 greffons. Sur ce total de 39 greffons, 37 ont été retrouvés. Les deux disparus sont les greffons postérieurs pris sur les donneurs les plus jeunes.

Voici de nouveau la description de deux opérations typiques, utilisant comme donneurs l'une une gastrula âgée, l'autre une jeune neurula.

XÉNOPE N° 14. — Le donneur est une gastrula à dos légèrement aplati. Le blastopore, très allongé ; se réduit en fente vers l'avant (fig. IVa). Dans la région antérieure, quelques traces pigmentaires commencent à signaler la plaque médul-
SUSPENSION PRÉCOCE DU FLUX INDUCTEUR

Laire céphalique. Il n'y a aucune indication de sillon dorsal. Les deux greffons, de taille égale, ont été prélevés à droite du plan sagittal. L'examen du donneur montre que seul l'ectoblaste a été enlevé. Les lambeaux ont été fixés sur la face ventrale d'un hôte un peu plus âgé (fig. IVb). Celui-ci a supporté l'opération parfaitement et, dès le second jour, pouvait être transféré à l'eau ordinaire. Le cinquième jour, lors de la fixation, il était devenu un petit têtard très actif, aux yeux tout à fait noirs. Par transparence, on pouvait voir que son intestin était vide de vitellus et s'était disposé en tortillon. Le greffon A se signalait par une petite saillie ventrale à hauteur du pronéphros. Le greffon B était invisible.

Greffon A. — La paroi ventrale de l'abdomen contient un groupe de très grosses cellules (6 ou 7) à noyaux assez grands, bourrées de fibrilles, de nature ganglionnaire indiscutable (pl. I, fig. 6). Plusieurs sont creusées d'énormes vacuoles. Ce massif soulève le péritoine et se prolonge dans la cavité abdominale par un petit cordon dirigé obliquement vers l'arrière. Ce cordon, de 90 microns de longueur, ne s'attache à rien et est constitué d'une enveloppe péritonéale, d'un axe fibrillaire, de cellules pigmentaires et de cellules à noyaux arrondis, à limites peu précises. Il est vraisemblable qu'il contient les fibres issues de cellules ganglionnaires et qu'il les rattachait à des segments de l'intestin. II aura été brisé par les mouvements subis par cet organe. L'examen le plus minutieux n'a pas permis de trouver trace du greffon dans la paroi intestinale.
Autour des cellules ganglionnaires, existe un nombre anormalement grand de cellules et celles-ci n’ont pas l’aspect d’éléments conjonctifs. Alors que ces derniers ont déjà, au stade en question, un noyau étiré, les cellules du greffon ont un noyau arrondi, fortement colorable (pl. I, fig. 6). Leur protoplasme est condensé autour du noyau. Dans certaines, on trouve quelques gros grains de pigment. A cause de leur aspect spécial et de la présence de ces grains, on peut considérer ces cellules comme mésectodermiques, migratrices ou pigmentaires.

Greffon B. — Il n’existe aucune trace visible de ce greffon. On ne peut croire, cependant, qu’il se soit détaché de l’hôte, car le lendemain de l’opération, il demeurait bien visible comme une tache colorée sur la paroi abdominale.

Donc, dans cette expérience, aucun des deux greffons ne s’est développé en ampoule nerveuse. Le second s’est adapté complètement à sa situation nouvelle : il était encore indéterminé. Le premier, au contraire, constitue un massif étranger dans la paroi ventrale de l’hôte. Il montre des caractères nerveux, car il fournit des cellules ganglionnaires. Mais celles-ci, de même que le mésectoderme (cel. migratrices et pigmentaires) proviennent normalement de la crête neurale.

Fig. V. — Xénope n° 17.
Profil de l’hôte au moment de la fixation.

Xénope n° 17. — Le donneur est une neurula déjà avancée. Sa plaque médullaire, bien dessinée, commence à se soulever sur les bords. Elle s’est allongée en se rétrécissant et couvre plus de la moitié du pourtour de la larve (fig.10). Trois greffons, légèrement inégaux, ont été prélevés dans la moitié gauche

Greffon A. — Dans la paroi ventrale du corps, à hauteur et en arrière du sinus de Cuvier, existe une grosse trainée de cellules étrangères allant de l'épiderme à la face antérieure du foie et au péritoine. De l'avant vers l'arrière et de l'épiderme au péritoine, on y trouve trois grosses cellules pigmentaires, puis une ampoule nerveuse à cavité excentrique. Sa paroi antéro-externe est uni-stratifiée et non différenciée. Sa paroi postéro-interne, très épaisse, est mal délimitée vis-à-vis du conjonctif et se prolonge en une trainée importante de fibres nerveuses, obliquement vers le dehors et le haut, vers la face antérieure du foie (pl. I, fig. 7). Dans le cavité de l'ampoule, existe une jeune cellule pigmentaire. D'autre part, l'ampoule est entourée par des masses cellulaires, d'aspect fort semblable à celui des éléments nerveux, mais qui semblent se dissocier et se disperser sur les bords, de sorte qu'il est fort difficile de déterminer si l'on a affaire à des cellules nerveuses ou à des mésectoderme. Fréquemment, ces amas sont creusés de vacuoles. De plus, la trainée de fibres nerveuses est entourée de jeunes cellules pigmentaires et de cellules à noyau proportionnellement très gros, à protoplasme condensé et fort colorable, qui sont certainement mésectodermiques (pl. I, fig. 7). En arrière de ce cordon de fibres, sous le péritoine, se trouve un groupe de grosses cellules ganglionnaires (environ 16) remarquables par la petite taille de leurs noyaux (pl. I, fig. 8). Elles sont dispersées dans le tissu conjonctif
et entourées de cellules pigmentaires et de cellules d’aspect mi-conjonctif, mi-mésectodermique. L’extrémité postérieure du massif est rejointe par la sangle musculaire ventrale de l’hôte, qui s’avance beaucoup plus vers le plan médian que celle de droite.

Greffon B. — Dans le paroi ventrale et postérieure de l’abdomen, se trouve une autre ampoule nerveuse accompagnée de quelques cellules pigmentaires. Ici aussi, la cavité de l’ampoule est excentrique. En avant et ventralement, elle n’est limitée que par un épithélium cubique simple, tandis qu’en arrière et dorsalement, existe une épaisse couche de substance grise suivie d’un paquet de fibres nerveuses. La surface de l’ampoule est irrégulière. A son bord ventral est accolée une petite masse nerveuse pleine. En plusieurs endroits, des groupes de cellules semblent s’en détacher pour gagner le tissu conjonctif. La substance blanche se prolonge à droite et à gauche par des cordons nerveux qui rejoignent le péritoine (pl. I, fig. 9). Autour de ces cordons, les cellules d’aspect mésectodermique sont nombreuses et les cellules conjonctives anormalement abondantes.

Un peu en arrière, une douzaine de grosses cellules ganglionnaires, dont certaines sont creusées de très fortes vacuoles, soulèvent le péritoine. Elles sont comme coiffées d’une couche continue de cellules pigmentaires. Une sorte de lacune sanguine, bourrée de globules, occupe la région postérieure de l’amas. En dehors des cellules ganglionnaires, contre le péritoine, existe une ampoule creuse, elliptique, limitée par un épithélium très plat.

Greffon C. — Dans l’axe de la nageoire pré-anale, au milieu de tissu conjonctif, se trouvent trois grosses cellules ganglionnaires collées les unes contre les autres (pl. I, fig. 10). Il s’en échappe des dendrites dirigées vers le bas mais dont il est impossible de trouver la destination. Au-dessus du groupe, une série, peu nombreuse, de cellules migratrices et
pigmentaires rejoint le péritoine. C’est tout ce qui a pu être retrouvé du greffon.

En résumé, chez ce Xénope, neurula fort avancée cependant, la plaque médullaire n’était pas encore complètement déterminée. Tous les greffons ont fourni des tissus qui normalement dérivent de la crête neurale. Le greffon C n’a même fourni que cela. D’autre part, les trois greffons constituent une progression décroissante. La quantité de cellules mésectodermiques (migratrices et pigmentaires) dérivant du greffon B est beaucoup plus grande que celle qui provient du greffon A et, inversement, le nombre de cellules nerveuses est extrêmement plus grand dans cette dernière. Quant au greffon C, il s’est résorbé en grande partie. Quelques-uns de ses éléments seulement sont devenus soit ganglionnaires, soit mésectodermiques.

De nouveau, le résultat des autres expériences est résumé dans un tableau qui est suivi d’une brève discussion des divers types de tissus formés (tableau II).

Ampoules nerveuses. — Très peu de greffons en ont fourni. On verra plus loin que, des 39 greffons, 9 doivent être considérés comme incomplets et ne peuvent intervenir dans la discussion. Mais que, sur les 30 restants, 12 seulement aient montré une détermination nerveuse typique, est un résultat remarquable. Aucune ampoule n’a été trouvée dans des greffons provenant de gastrulas.

Ces ampoules présentent des aspects très variés. Les moins caractéristiques sont des masses pleines, sphériques, à disposition radiaire, de nature nerveuse encore incertaine, soit que leurs cellules, énormes, puissent éventuellement être de jeunes éléments ganglionnaires (une des deux ampoules de 3A pl. 1, fig. 11), soit que leur différenciation fut trop peu avancée pour que l’on puisse éviter l’hypothèse qu’il s’agit d’un jeune kyste épithélial (8C). Un de ces nodules pleins (8B), constitué de hautes cellules radiales, a tout à fait l’aspect d’une ébauche médullaire jeune.
TABLEAU II. — Résultat des expériences sur les Xénoptes

<table>
<thead>
<tr>
<th>Stade des donneurs</th>
<th>Gastrula</th>
<th>Début du dessin</th>
<th>Plaque méd. dessinée</th>
<th>Plaque médullaire creusée</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11 14 16 19 23b</td>
<td>1 6 8</td>
<td>13 3 4 2</td>
<td>20 15 18 9 17 7</td>
</tr>
<tr>
<td>N° de l'expérience</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ampoule nerveuse</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kyste épithélial</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cel. ganglionnaires</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cel. migratrices</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cel. pigmentaires</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tissu conjonctif</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Replis épidermiques</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Excroissance ext.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

H. DAMAS

38

24
Le greffon 1B montre un stade un peu plus évolué : une masse sphérique de hautes cellules radiaires aux sommets écartés les uns des autres. Une petite cavité médullaire s'est ainsi formée, mais la différenciation de la paroi n'a pas progressé.

Typiquement nerveuses sont des sphères à cavité centrale assez grande, à paroi épaisse dans laquelle les limites cellulaires ont disparu, les noyaux se sont étalés et le protoplasme est devenu fibrillaire (2A, 7A et B pl. I, fig. 12). La structure du greffon devient tout à fait celle de la moelle dans un certain nombre de cas. Autour d'une cavité généralement excentrique, de nombreux noyaux sont groupés en substance grise tandis que la périphérie du massif est différenciée en substance blanche (6A, 9B). Si le développement du greffon est fort avancé, la substance blanche, devenue très abondante, s'irradie vers les tissus voisins (18A, 17A et B) de sorte que la limite externe de l'ampoule est très imprécise.

Plusieurs de ces ampoules ont la paroi creusée de vacuoles. Dans des formations très différenciées (18A par exemple), ces cavités sont peut-être des images de dégénérescence. Mais dans une ampoule encore épithéliale, elles ont probablement une autre signification qui sera discutée à propos des kystes épithéliaux.

Quelques ampoules nerveuses ont une paroi d'épaisseur fort inégale. C'est le cas d'une des deux ampoules du greffon 3A (pl. I, fig. 11). Aux endroits les plus épais, sa paroi

Note du tableau II :

2) Les greffons B des expériences 11 et 14 se sont entièrement confondus dans les tissus de l'hôte.

3) Le greffon B de l'expérience 23b a fourni deux kystes épithéliaux, l'un à paroi épaisse, l'autre à paroi mince.

4) Le greffon B de l'expérience 1 s'est développé en un tubercule allongé dont la partie externe s'est sectionnée et a été perdue.
contient plusieurs couches de noyaux et présente tout à fait l'aspect d'un tissu allant se différencier en substances blanche et grise. À d'autres endroits, c'est un épithélium cubique aux cellules creusées de grandes vacuoles. En un point voisin de l'épiderme de l'hôte, la paroi est même étirée en un épithélium pavimenteux simple.

Kystes épithéliaux. — Les structures les plus curieuses obtenues dans les greffons sont les kystes épithéliaux. La formation de ce genre la plus parfaite (2A, pl. 1, fig. 12) est une ampoule presque sphérique tapissée par un épithélium aussi plat que le péritoine. Les autres sont moins belles : ou elles ne sont pas aussi sphériques (23b B, 1er kyste, 17B, 18B) ou leur paroi est plus épaisse, à épithélium presque cubique (23b B, 2e kyste).

La nature de ces formations est éclaircie par l'étude de certaines ampoules nerveuses. L'ampoule à paroi irrégulière, très mince d'un côté, décrite plus haut, peut être considérée comme un stade intermédiaire entre l'ampoule nerveuse typique et le kyste épithélial (3A). Un autre intermédiaire est représenté par une ampoule creuse à paroi assez mince constituée de cellules cubiques creusées d'énormes vacuoles dont certaines sont même ouvertes vers la cavité (3B, pl. 1, fig. 13). Cet aspect correspond certainement à un stade de formation d'un kyste à paroi mince et permet de considérer ces kystes comme des **ampoules nerveuses avortées**.

Cellules ganglionnaires. — Un des résultats les plus fréquents (18 cas) est la transformation du greffon (ou d'une partie) en grandes cellules ganglionnaires. Greffes antérieures ou postérieures en ont fourni aussi bien les unes que les autres sans que le tableau II montre une prédominance nette dans une direction ou dans l'autre.

Des exemples typiques en ont été décrits plus haut (pl. 1, fig. 6, 8, 10). Souvent, il est possible de suivre les prolongements qui s'échappent de ces cellules vers le foie (23b A), le tube digestif (6A, 3A, 2B), la sangle musculaire (16A, 19A, 17A) ou des capillaires (1A, 18A).
Les cellules ganglionnaires présentent souvent des aspects que l'on peut interpréter comme des signes de dégénérescence. Presque toutes sont creusées d'énormes vacuoles. Dans deux cas (23A, 3A), leur protoplasme ne contient pas de fibrilles mais est comme coagulé en une pâte homogène creusée ça et là de vacuoles. Dans un cas déjà décrit (17A), les noyaux sont minuscules et dans un autre (3B), ils sont réduits à des grains homogènes, avides de couleur, comme s'ils étaient pycnosés.

Cellules migratrices. — On a vu plus haut qu'autour des greffons existent des cellules qui, par leur aspect, forment une série progressive unissant les cellules médullaires non encore différenciées et les cellules conjonctives. Elles sont parfois groupées autours des ampoules nerveuses ou des cellules ganglionnaires (19A, 23b A et B, 6A, 8A, 3A, 15A, 17A et B, 18A et B, 7B). Fréquemment, les images s'interprètent d'elles-mêmes comme une émission de créte neurale. Elles peuvent aussi être isolées et indépendantes. Elles rappellent alors très fort les cellules migratrices de la créte neurale céréphalique comme aussi les cellules conjonctives primitives à potentialités multiples.

Évidemment, il existe tous les intermédiaires possibles entre ces deux types comme aussi entre ces cellules migratrices et les jeunes cellules pigmentaires ou les grandes cellules conjonctives banales.

Cellules pigmentaires. — C'est le type cellulaire le plus fréquemment rencontré (22 cas). Mais, les tissus du Xénope sont toujours fort pigmentés. Aussi, l'origine des éléments observés est fort discutable.

Une ampoule nerveuse ou un amas de cellules ganglionnaires touchant le péritoine est souvent coiffé d'une accumulation locale de cellules pigmentaires (pl. I, fig. 9). Comme le péritoine contient toujours de ces cellules plus ou moins dispersées, les images peuvent s'interpréter comme le résultat d'une attraction exercée par les tissus nerveux.
Mais lorsque les cellules pigmentaires sont mélangées aux autres éléments du greffon, leur origine est indiscutable. On en trouve à tous les stades de leur évolution : depuis la cellule contenant quelques granulations jusqu’à l’espèce d’outre distendue par l’accumulation des grains (pl. I, fig. 7, 10, 12 et 13).

Tissu conjonctif. — Le greffon s’est certainement transformé en partie en tissu conjonctif lorsqu’il s’est développé en tubercule allongé (4 cas). De plus, les greffons postérieurs, à l’exception de celui qui fut prélevé sur la larve la plus âgée, ont fourni une quantité de tissu reconnaissable (ampoule nerveuse, kyste, cell. ganglionnaires, migratrices et pigmentaires) beaucoup moindre que les greffons antérieurs. Or, ils étaient, à l’origine, de même taille. Il faut donc admettre dans ces cas qu’une partie du greffon a été absorbée par l’hôte et s’est mélangée au tissu conjonctif ambiant. Le même raisonnement est applicable au greffon 14A, qui n’a fourni que peu d’éléments reconnaissables. Les deux greffons disparus (11B, 14B) doivent aussi s’être transformés en tissu conjonctif.

Dans les greffons 4A et B, l'épiderme est très épais, constitué de quatre à cinq couches de cellules polygonales. Sa surface est comme crênelée, car les cellules se terminent en lobes indépendants.

9 greffons n'ont fourni que des replis épidermiques superficiels, à l'exclusion de toute autre formation (11A, 6B, 13A et B, 4A et B, 2B, 20A, 9A). Ces greffons proviennent aussi bien de la région antérieure que de la région postérieure de la plaque, de gastrulas que de neurulas déjà avancées. Mais, dans tous ces cas, sauf un (2B), les protocoles d'expérience ou l'étude du donneur ont émis des doutes sur la réussite de l'opération. Ou bien, lors de la transplantation, les greffons ont paru anormalement minces, ou bien les coupes du donneur montrent que la couche profonde de l'ectoblaste doit être demeurée en place. On peut donc se demander si la formation de replis épidermiques superficiels n'est pas le résultat de la greffe de la seule couche pigmentaire de l'ectoblaste.

Deux cas de formations de replis épidermiques accompagnés d'autres structures parlent dans le même sens. Dans les expériences 15C et 18C, ces replis sont séparés des autres portions du greffon par un assez long espace, environ 100 microns. Il s'agit donc peut-être d'un fragment qui a été isolé du reste du greffon par les manipulations.

Excroissances externes. — Dans deux cas seulement (23b B et 1B), les greffons ont montré une tendance nette à l'extension et se sont développés en un appendice plus ou moins cylindrique. Rien n'y a été trouvé qui ressemble à des fibres musculaires. Les greffons avaient donc été prélevés assez loin du blastopore pour éviter la zone chordale et myogène postérieure.

Deux autres greffons (8C et 18B) constituent des bourses-flures hémisphériques bien visibles sur la larve et déformant la nageoire. Ces mamelons consistent en un amas de tissu conjonctif lâche au centre duquel se trouvent les autres structures du greffon.
DISCUSSION DES RÉSULTATS

Les expériences effectuées sont trop peu nombreuses pour avoir une valeur statistique. Elles ne peuvent être considérées que comme des indications qualitatives. A ce titre, les résultats acquis paraissent déjà intéressants.

1. Très remarquable est la grande variété de tissus fournis par les greffons. Aucune expérience ne montre la transformation intégrale des deux greffons en ampoules nerveuses, différenciation normale des lambeaux de plaque médullaire nettement déterminée. D’autre part, la portion du greffon qui n’est pas devenue médullaire n’a pas été simplement résorbée par l’hôte. Elle a, généralement, donné naissance à des formations atypiques qui ne répondent ni à l’origine, ni à la position nouvelle du lambeau. Les cellules ganglionnaires, migratrices et pigmentaires, qui normalement proviennent toutes de la crête neurale, sont nombreuses dans les tissus transplantés. Tel est le résultat essentiel des expériences présentes.

2. On peut se demander si ce résultat n’est pas dû à l’influence des tissus de l’hôte. Il est généralement admis que l’entoblaste n’exerce aucune action inductrice sur l’ectoblaste. Dans la paroi abdominale, au voisinage de la ligne médiane, le greffon ne rencontrerait donc, au moment de sa transplantation, aucun tissu susceptible de l’influencer. Ce n’est que longtemps après, alors qu’il ne possède plus une plasticité suffisante pour réagir à leur contact, qu’il est rejoints par le mésoblaste latéral. L’endroit choisi pour les greffes semble donc écarter cette hypothèse.

Cependant, il y a lieu de constater ici que M. GALLERA (communication orale) en greffant des portions de cerveau antérieur au contact du foie, a constaté en quelques cas leur transformation partielle en pancréas. D’après lui, le foie et le pancréas se montrerait capables d’exercer une action assimilatrice sur l’ectoblaste.

Rien de semblable n’a été constaté dans les expériences décrites ici. Tout au plus, l’attraction de fibres provenant
d'ampoules nerveuses ou de cellules ganglionnaires par le foie ou l'intestin pourrait-elle suggérer l'existence d'interactions entre l'ectoblaste et l'entoblaste. Il ne semble pas qu'elle puisse s'interpréter comme l'indice d'une action inductrice ou assimilatrice.

Quoi qu'il en soit, la question mérite d'être posée. Elle ne peut être tranchée que par l'étude du développement in vitro de fragments médullaires présomptifs. Les expériences seront entreprises aussitôt que possible.

3. Dans plusieurs greffons, existent des images qui semblent indiquer une dégénérescence des structures formées. Du moins, les nombreuses vacuoles qui creusent les cellules de toutes les espèces : épidermiques, médullaires, ganglionnaires, mésenchymateuses, paraissent pouvoir s'interpréter de la sorte. De même, l'aspect coagulé et rétrécit du contenu de certaines cellules ganglionnaires, ou les noyaux minuscules, condensés, comme pycnotiques, d'autres. Ces images résultent peut-être d'une réaction de l'hôte sur le greffon, réaction qui tendrait à éliminer ces structures anormales, surénuméraires et en quelque sorte parasites.

4. Comme il fallait s'y attendre, la proportion de tissus nerveux formés est plus grande dans les expériences utilisant des neurulas que dans celles faites aux dépens de gastrulas. Le fait est particulièrement évident chez les Xénopotes, chez qui aucun greffon provenant de gastrula ne s'est développé en ampoule nerveuse.

5. Toutes les expériences utilisant des Axolotls ont fourni des ampoules nerveuses. Ce ne fut pas le cas chez les Xénopotes. Chez cette dernière espèce, donc, la plaque médullaire est déterminée moins tôt. On se rappelle que l'examen des coupes de donneurs tendait déjà à le faire admettre (voir page 20).

Un autre fait parle dans le même sens. Les greffons antérieurs de jeunes neurulas d'Axolotl se sont transformés entièrement en ampoules nerveuses — on peut en effet
faire abstraction des quelques cellules d'aspect mésoectoderminque qui existent dans les expériences Ax 17A et Ax 21A, car leur importance proportionnelle est minime. Les greffons prélevés aux mêmes stades chez les Xénopes ont fourni des tissus très variés ce qui indique une détermination incomplète.

HOLTFRÉTER (1939) a déjà indiqué que les somites des Urodèles cultivés in vitro indépendamment de la chorée, montrent une capacité autonome de différenciation en myoblastes plutôt que ceux des Anoure. Cette conclusion est parallèle à celle qu'amènent les observations présentes à propos du neurectoblaste.

6. Les expériences suggèrent que le tissu médullaire peut présenter divers degrés d'induction. L'étude comparée des ampoules nerveuses chez le Xénope a montré un certain nombre de types : masses pleines à cellules disposées radiairement, ampoules creuses dont la paroi est constituée de hauts éléments rayonnants, ampoules à paroi pluri-stratifiée différenciée ou non en substances blanche et grise. Ces aspects divers ne doivent pas être dus à une différence dans le degré d'évolution histologique du tissu, car les pièces ont été fixées sensiblement au même âge et les organes voisins présentent dans toutes le même degré de spécialisation. Peut-être le volume du fragment et le nombre de cellules nerveuses ont-ils une influence sur leur capacité de différenciation ? Mais il est extrêmement probable que ces aspects différents expriment une intensité inégale de l'induction. Ainsi se verrait confirmée l'idée de LEHMANN (1929) et de MANGOLD (1929) suivant laquelle l'induction médullaire doit être un processus progressif.

Il a été montré plus haut que les kystes épithéliaux doivent être rapprochés des ampoules nerveuses et considérés comme des ampoules avortées. Leurs cellules se sont, comme celles du tube neural, étalées et refermées autour d'une cavité. Mais elles n'ont pas subi de différenciation nerveuse et se sont, au contraire, aplaties de plus en plus.
Leur disposition devient comparable à celle des cellules formant le toit des vésicules cérébrales. Il est donc logique de les interpréter comme le résultat d'une induction nerveuse insuffisante. Cette opinion a déjà été émise par Holtfreter (1933) qui a décrit des kystes assez semblables, mais à paroi un peu plus épaisse. Il est intéressant de noter que ces kystes ont été trouvés plus fréquemment chez le Xénope que chez l'Axolotl. Tandis que, chez le premier, on en trouve dans des tissus provenant de neurulas déjà âgées, chez l'Axolotl, seuls les greffons prélevés sur des gastrulas en ont formé. Or, à plusieurs reprises déjà, les tissus de l'Axolotl ont montré une détermination nerveuse plus hâtive que ceux du Xénope.

7. Les grandes cellules ganglionnaires ont été trouvées uniquement chez le Xénope. Ce sont des éléments nerveux, mais leur disposition ne rappelle nullement la structure de la moelle épinière. Normalement, les cellules de ce type se forment aux dépens de la crête neurale. Aussi peut-on suggérer que ces cellules ont subi une induction nerveuse nette, mais insuffisante pour les faire s'organiser en ampoule nerveuse typique. Dans la gamme des « potentiels morphogénétiques » de l'ectoblaste, elles se situerait à un niveau immédiatement inférieur à celui de la moelle. Leur absence dans les expériences sur l'Axolotl s’expliquerait alors par la détermination plus précoce des tissus, que d'autres arguments tendent à faire admettre.

8. De nombreux greffons ont fourni des éléments mésectodermiques (cel. migratrices ou pigmentaires). En beaucoup d'endroits, on voit des groupes cellulaires quitter les ampoules et les images sont très semblables à celles qui montrent l'émission de crête neurale par la moelle. Les cellules pigmentaires ne se forment jamais aux dépens de cellules conjonctives banales ou de la moelle. Leur présence dans les greffons démontre qu'une partie de ceux-ci présentait les caractères de la crête neurale. Les cellules migratrices, d'autre part, sont vraisemblablement destinées à se disperser.
simplement dans le tissu conjonctif et à se confondre avec lui. L'observation de quelques cellules qui quittent la paroi d'une ampoule nerveuse pour se mêler aux cellules sanguines du sinus de Cuvier démontre qu'il s'agit d'éléments très adaptables. On pourrait donc interpréter ces cellules migratrices comme des étapes vers l'absorption du greffon par l'hôte, comme des exemples de développement conforme à la nouvelle localisation du greffon. Cependant, leurs caractères histologiques, leur ressemblance avec les jeunes cellules pigmentaires, leurs rapports avec les ampoules nerveuses plaident contre cette opinion. Il est plus logique de les interpréter comme de la crête neurale, c'est-à-dire comme des éléments qui ont été soumis à une induction légère, insuffisante cependant pour les transformer en cellules ganglionnaires ou médullaires. L'absence de structures compliquées, analogues à celles fournies par la crête neurale céphalique — os, cartilage, par exemple — ne doit pas étonner outre mesure car, dans ses transplantations de crête neurale troncale, Raven (1932) n'a jamais obtenu de dérivés de ce genre.

9. Dans deux cas, des formations absolument atypiques se sont développées aux dépens du greffon. Le premier est l'ébauche d'organe sensoriel existant dans un épiderme épaissi d'Axolotl. Comme cette sorte de placode est contiguë à une ampoule nerveuse, on peut se demander si elle n'est pas due à l'action inductrice de celle-ci.

D'autre part, chez un Axolotl, les tissus d'un greffon se sont incorporés à la paroi du canal de Wolff, élargi en vesse. C'est là certainement un exemple d'absorption du greffon par les tissus de l'hôte. Ici encore, cependant, le greffon trahit des caractères spéciaux : la paroi "vésicale", au lieu d'être lisse, présente, précisément à l'endroit où elle est constituée par les tissus du donneur, des plis, des sortes de canaux ayant un faux aspect de néphrostomes.

10. Le tissu conjonctif présent dans le greffon s'est, peut-être, formé par le détour du mésectoderme. Il est plus
probable qu'il représente une partie de l'explant non encore déterminée et qui s'est développée en fonction de sa nouvelle situation. On remarquera, à ce propos, qu'il est beaucoup plus fréquent dans les expériences sur les Xénopeps que dans celles sur les Axolotls, nouvel exemple de la détermination moins hâtive des tissus d'Anoures. Il se rencontre, d'autre part, surtout dans les greffons postérieurs et dans ceux provenant de gastrulas. C'est ainsi que, chez les Xénopeps, les deux greffons postérieurs prélevés sur les gastrulas les plus jeunes ont été absorbés entièrement par les tissus de l'hôte et sont donc, vraisemblablement, devenus du tissu conjonctif puisqu'ils se trouvaient sous l'épiblaste.

11. Certaines excroissances épidermiques révèlent également une indétermination d'une partie du greffon. C'est ainsi que les perles épidermiques observées chez l'Axolotl doivent être considérées, d'après HOLTFRETER (1933) comme produites par le développement d'un ectoblaste n'ayant encore subi aucune induction et dépourvu de rapport avec le derme. Ces épidermes pluri-stratifiés ont toujours été trouvés dans les greffons postérieurs.

Quant aux "racines" épidermiques observées chez la même espèce, elles sont, d'après le même auteur, l'indice d'un début d'induction nerveuse.

Il a été constaté, d'autre part, que les structures épidermiques anormales présentées par certains Xénopeps s'expliquent vraisemblablement par une greffe incomplète, n'ayant porté que sur la seule couche pigmentaire de l'ectoblaste.

12. Les résultats montrent, de façon nette, que, à chaque moment, la détermination de la plaque médullaire décroît de l'avant vers l'arrière.

Chez les Axolotls, par exemple, les greffons antérieurs ont, toujours, fourni une variété de tissus beaucoup moindre que les greffons postérieurs. Lorsque l'expérience a porté sur des neurulas, le premier s'est développé entièrement, ou presque, en masse nerveuse, tandis que le second
fournissait en outre des aspects cellulaires caractéristiques de la crête neurale et du tissu conjonctif. Le tableau III le démontre immédiatement.

Dans ce tableau — et il en est de même dans le tableau IV — les greffons sont disposés d’après leur position sur le donneur. Lorsque deux greffons seulement ont été prélevés, le premier (A) correspond à peu près au greffon moyen (B) d’une expérience en comportant trois. La première catégorie n’est donc presque pas représentée.

Tableau III

Nombre de types de tissu produits chez l’Axolotl par les greffons

<table>
<thead>
<tr>
<th>Expériences</th>
<th>Greffon antérieur</th>
<th>Greffon moyen</th>
<th>Greffon postérieur</th>
<th>Stade</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>3 (4?)</td>
<td>5</td>
<td>gastrulas</td>
</tr>
<tr>
<td>11</td>
<td>6</td>
<td>6</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>3 (4?)</td>
<td>3 (4?)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>2</td>
<td>4</td>
<td>début du dessin de la plaque médullaire</td>
</tr>
<tr>
<td>18</td>
<td>2</td>
<td>2</td>
<td>2 (5?)</td>
<td>plaque médullaire dessinée</td>
</tr>
<tr>
<td>14</td>
<td>2</td>
<td>2 (5?)</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>1</td>
<td>1</td>
<td>4 (5?)</td>
<td>neurulas à plaque médullaire commencé à se creuser</td>
</tr>
<tr>
<td>17</td>
<td>1 (2?)</td>
<td>2 (4?)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>1 (2?)</td>
<td>3 (4?)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>2 (2?)</td>
<td>3 (4?)</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>1 (2?)</td>
<td>3 (5?)</td>
<td>5</td>
<td></td>
</tr>
</tbody>
</table>

Un tableau analogue (IV) à propos des Xénopes permet la même constatation, mais pas avec la même netteté. Pour le dresser, il faut, évidemment, faire abstraction des greffons n’ayant fourni que les excroissances épidermiques dont la signification spéciale a été discutée plus haut (p. 43).
TABLEAU IV

Nombre de types de tissus produits chez le Xénope par les greffons

<table>
<thead>
<tr>
<th>Expérience</th>
<th>Greffon antérieur</th>
<th>Greffon moyen</th>
<th>Greffon postérieur</th>
<th>Stade</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>4</td>
<td></td>
<td>résorbé</td>
<td>gastrulas</td>
</tr>
<tr>
<td>16</td>
<td>1 (2?)</td>
<td>3</td>
<td>3 (4?)</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>23b</td>
<td>3</td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1 (2?)</td>
<td>4</td>
<td></td>
<td>début du dessin de la plaque médullaire</td>
</tr>
<tr>
<td>6</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2 (3?)</td>
<td>1</td>
<td>1 (2?)</td>
<td>plaques médullaires dessinées</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td></td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>3</td>
<td>1 (2?)</td>
<td>2 (3?)</td>
<td>neurulas à plaque médullaire commençant à se creuser</td>
</tr>
<tr>
<td>15</td>
<td>3</td>
<td></td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

Le tableau IV présente deux exceptions : dans les expériences 8 et 17, les greffons postérieurs ne sont pas ceux qui ont fourni la plus grande variété de tissus. De plus, il n’y a pas grande différence entre les résultats obtenus avec les trois types de greffons et les tissus fournis par les neurulas ne sont pas moins variés que ceux provenant de gastrulas. Ces trois faits sont certainement dus à la lenteur de la détermination de la plaque médullaire chez le Xénope. Pour obtenir des greffes se développant uniquement en ampoules nerveuses, il faudrait opérer sur des neurulas plus âgées encore.
Mais, ce que le tableau ne peut montrer, c'est la part du greffon qui a été absorbée par l'hôte et n'est plus reconnaissable. Or, cette part décroît avec l'âge du donneur, certes, mais aussi d'autant plus que le greffon est pris plus en avant sur la plaque médullaire. Il suffit, pour s'en convaincre, d'examiner sur le tableau II quels sont les greffons qui ont fourni du tissu conjonctif : ce sont tous les greffons postérieurs, — à l'exception du greffon X 14A, prélevé sur la gastrula la plus jeune qui ait donné des résultats utilisables. L'exemple, décrit plus haut du Xénope n° 17 est d'ailleurs caractéristique à cet égard.

Ainsi donc, les expériences sur les Xénopes aussi bien que celles sur les Axolotls démontrent que la détermination de la plaque médullaire, à chaque moment de son développement, décroît de l'avant vers l'arrière. MANGOLD (1929), on s'en souvient, est arrivé à la conclusion qu'entre les stades gastrula et neurula, la proportion de tissu nerveux fourni par un greffon prélevé dans la plaque médullaire présomptive, augmente avec l'âge du donneur. Cette conclusion demeure valable (cf. § 4), mais uniquement lorsqu'on compare entre elles des portions identiques de la plaque médullaire.

13. La formation, aux dépens de la plaque médullaire présomptive ou dessinée, de structures dérivant normalement de la crête neurale — cellules ganglionnaires, migratrices ou pigmentaires — s'interprète plus aisément en admettant que la nature des tissus formés dépend de la quantité de substances inductrices reçues qu'en la supposant déterminée par des facteurs différents. Rien dans ces expériences ne parle en faveur de l'hypothèse que le développement du tube médullaire suit la loi du « tout ou rien ». Au contraire, on constate une gamme progressive de réactions : absorption par les tissus de l'hôte, cellules mésoectoderminques, cellules ganglionnaires, kystes épithéliaux, ampoules nerveuses plus ou moins différenciées. On peut, sans grande présomption, les interpréter comme les résultats d'inductions de plus en plus intenses.
Cette conclusion rejoint celles de LEHMANN (1929) et de MANGOLD (1929) concernant la nature progressive de l'induction médullaire, mais en y ajoutant une précision nouvelle : l'induction de la plaque médullaire ne doit différer que quantitativement et non qualitativement de celle de la crête neurale.

On se rappellera que, récemment RAVEN et KLOOS (1945) ont étudié l'effet inducteur de fragments de chordo-méso-blaste de jeunes neurulas d'Axolotl et de Triton, greffés dans le blastocèle de larves de même espèce et ont observé la formation simultanée d'ampoules médullaires et de crête neurale. Ces auteurs ont interprété leurs résultats en admettant que la différence entre les deux types d'induction est d'ordre quantitatif. Ils y ont vu une confirmation de la thèse soutenue par DALCQ. Les expériences présentes sont en quelque sorte la réciproque de celles des auteurs hollandais et aboutissent aux mêmes conclusions.

En résumé, le résultat essentiel de cette investigation est de montrer que l'activité inductrice suscitant la portion médullaire de la plaque neurale est effectivement un processus progressif, s'établissant suivant un champ-gradient (cf. RAVEN 1943) décroissant en direction céphalo-caudale et dorso-latérorale. En suspendant le flux inducteur, on peut modifier, tant au point de vue de la conformation que de la différenciation, la destinée des matériaux qui auraient formé in situ le tube médullaire lui-même. Dans leur évolution normale, ceux-ci passent donc par une série de paliers correspondant aux capacités morphogènes du mésoctoderme troncal, sous ses diverses modalités, pour atteindre finalement le niveau médullaire. Ce résultat justifie donc le bien-fondé et l'utilité de la conception du potentiel morphogénétique de DALCQ et PASTEELS et du parti que DALCQ en a tiré pour l'interprétation de la morphogenèse dans l'axe nerveux.
SOMMAIRE

1. Le travail actuel envisage la question de savoir si la détermination de la plaque médullaire suit un processus quantitatif ou si elle se fait suivant la loi du « tout ou rien » et si la séparation de la crête neurale peut s'expliquer par un processus quantitatif.

2. Les expériences effectuées ont consisté à prélever dans la moitié postérieure de la plaque médullaire de gastrulas âgées et de jeunes neurulas, d’un côté du plan médian, deux ou trois lambeaux successifs d’ectoblaste et à les greffer sur la face ventrale d’un hôte de même âge. Les espèces animales utilisées étaient *Stredon mexicanum* et *Xenopus laevis*.

4. Certains replis épidermiques, à allure d’organes de la ligne latérale, observés chez le Xénope, s’expliquent comme les résultats de greffes n’ayant porté que sur la seule couche pigmentaire de l’ectoblaste.

5. Certains greffons présentaient des images très nettes de dégénérescence qui semblent indiquer une tendance de l’hôte à les résorber.

6. La formation de types cellulaires dérivant normalement de la crête neurale aux dépens d’ectoblaste médullaire présomptif tend à démontrer que la détermination de la plaque médullaire suit un processus quantitatif et que les cellules de la plaque passent par les stades mésectodermique et ganglionnaire avant d’atteindre le caractère médullaire.
7. La comparaison des résultats des greffons antérieurs avec ceux des greffons postérieurs montre qu'à chaque moment le degré de détermination de la plaque médullaire décroit de l'avant vers l'arrière.

BIBLIOGRAPHIE

Id. 1933a. — *Roux' Archiv.*, 127, 619-775.

Id., 1933b. — *Roux' Archiv.*, 129, 668-793.

RAVEN, Ch., 1932. — *Roux' Archiv.*, 125, 210-292.

Id., 1943. — *Acta Biotheoretica*, 7,

EXPLICATION DE LA PLANCHE

FIG. 1. — Axolotl n° 11, greffon A. Ampoule nerveuse située dans le tissu conjonctif de la paroi abdominale et s'élevant jusqu'à l'intestin. Quelques cellules migratrices s'en détachent, ventralement et à gauche (265 ×).

FIG. 2. — Axolotl n° 11, greffon B. Ampoule nerveuse occupant toute l'épaisseur de la paroi abdominale. Quelques cellules migratrices sont collées contre elle. Entre l'ampoule et l'épiderme, un kyste épithélial à paroi mince (265 ×).

FIG. 3. — Axolotl n° 11, greffon B. Racine épidermique pénétrant dans le tissu conjonctif jusqu'au péritoine (400 ×).

FIG. 4. — Axolotl n° 17, greffon B. Perle épidermique (400 ×).

FIG. 5. — Axolotl n° 6, greffon B. Le greffon situé sur le flanc de l'hôte s'est développé en un massif volumineux qui a empêché le développement vers l'arrière du canal de Wolff. Celui-ci s'est dilaté, en dedans du greffon, en une vaste cavité. La paroi de cette « vessie » porte, du côté fourni par le greffon, des plis — dont l'un est visible sur la photo — ayant un faux aspect de néphrostome (100 ×).

FIG. 6. — Xénope n° 14, greffon A. — Groupe de cellules ganglionnaires occupant toute l'épaisseur de la paroi abdominale. Une cellule pigmentaire surmonte le groupe. La cellule ganglionnaire adjacente au péritoine est creusée d'une grande vacuole sphérique (400 ×).

FIG. 7. — Xénope n° 17, greffon A. Ampoule nerveuse. La coupe passe en arrière de la cavité, au niveau d'une trainée de fibres nerveuses qui se dirigent vers le foie. À droite, un peu de substance grise. Vers le bas, groupe de cellules migratrices quittant le massif nerveux. Quelques vacuoles creusent les cellules nerveuses les plus ventrales. Deux cellules pigmentaires dans le conjonctif ambiant (400 ×).

FIG. 8. — Xénope n° 17, greffon A. Cellules ganglionnaires situées immédiatement sous le péritoine lequel contient de grosses cellules pigmentaires (400 ×).

FIG. 9. — Xénope n° 17, greffon B. Coupe dans la partie postérieure d'une ampoule nerveuse, montrant un peu de substance grise, de la substance blanche se prolongeant en deux nerfs et, le long de ceux-ci, des groupes de cellules migratrices. Au-dessus du greffon, le péritoine est bourré de cellules pigmentaires (400 ×).

FIG. 10. — Xénope n° 17, greffon C. Deux cellules ganglionnaires isolées au milieu du conjonctif de la nageoire pré-anale. Elles portent quelques fibres se dirigeant vers le bas. Une cellule pigmentaire et des cellules trop grosses pour être des cellules conjonctives ordinaires les accompagnent (400 ×).

FIG. 11. — Xénope n° 3, greffon A. Deux masses nerveuses. La première, pleine, en hernie dans la cavité abdominale, est composée de cellules radiaires, énormes, qui seraient peut-être devenues ganglionnaires. La seconde, creuse, située dans l'épaisseur de la paroi abdominale, est très mince au contact de l'épiderme. Sa moitié gauche est creusée de nombreuses vacuoles. En deux endroits, à droite au contact du péritoine et à gauche à peu de distance de l'épiderme, des groupes de cellules mésectodermiques quittent l'ampoule (400 ×).
FIG. 12. — Xénope n° 2, greffon A. Ampoule nerveuse commençant à se différencier et, dorsalement par rapport à elle, un kyste épithélial à paroi très mince. Dans le tissu conjonctif, quelques cellules pigmentaires et migratrices (400 ×).

Fig. 13. — Xénope n° 3, greffon B. — Kyste épithélial en formation, composé d’une couche unique de cellules creusées toutes de très grandes vacuoles. Certaines de ces vacuoles sont ouvertes dans la cavité du kyste. Le kyste est entouré de grosses cellules pigmentaires et est relié à l’épiderme par des cellules migratrices (400 ×).

Fig. 14. — Xénope n° 6, greffon B. Épaississement épidermique creusé d’un petit tube aveugle. Quelques cellules épidermiques contiennent des grains pigmentaires et une d’elles, voisine de l’orifice du tube, a l’aspect d’une cellule de Leidig (400 ×).