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I. INTRODUCTION

Insects are known to possess only one extracellular fluid, bathing the
cells and circulating throughout the body; the term “hemolymph” ig
thus more accurate than “blood” to designate this body fluid.

Insects have given up the physiological association between respiratory
and circulatory systems, the tracheal system insuring the arrival of
oxygen in the immediate vicinity of the cells. The hemolymph is thus
not conecerned with oxygen {ransport nor with the transport of COQ,.
Exceptions to this rule are found in the case of some chironomids, the
hemolymph of which carries a hemoglobin.

However, this is not the only peculiarity of inscet hemolymph and
the data accumulated mainly during the last decade have revealed that
1t 18 entirely different, especially from the biochemical point of view,
from the body fluids of all other arimal phyla. The most striking pecu-
liaritics are, as will be emphasized in this chapter, the tendency to the
replacement of the inorganie osmolar effectors, usually Na+ and Cl—, by
organic molecules, especially free amino acids and organic aeids, the
very special patiern of cationic composition characterizing several
orders, the seat of gluconeogenesis and the unique form of hemolymph
carbohydrate, namely trehalose, the presence of organic phosphates, and
of & wide variety of enzymes, and so on.

However, these biochemical characteristics are generally more deeply
marked in the more specialized inseet orders than in the more primitive
ones. The modern taxa of the class Insecta may thus be considered, ac-
cording to the views of taxonomists, as representing a collection of the
successive evolutionary levels, the most original and specialized bio-
chemical features being fully exploited by, for instance, the larval forms
of Lepidoptera.

In the present chapter, we shall pay particular attention to some
aspects of the physiological role and the adaptive significance of the
main biochemical constituents of insect hemolymph, considered especially
from an ecobiochemical point of view. Clotting in the hemeolymph is
discussed in a separate chapter (see Grégoire, Chapter 3, this volume).
Other physical or chemical properties of insect hemolymph, such as
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specific gravity, surface tension, gas content and gas transport, hydrogen
ion concentration and oxidoreduction will be omitted from the present re-
view, little recent information having heen made available on these
subjects since the reviews of Bueck (1953) and Wyatt (1961).

II. OSMOTIC PRESSURE

The osmotic pressure of the hemolymph is generally somewhat higher
than that of mammalian blood. The values obtained by differcnt authors,
and carefully compiled by Suteliffe (1963) show that the osmotic pres-
sure, cxpressed in terms of freezing point lowering, generally ranges from
—0.5° to —0.9°C. Minimal valucs have been obtained in the casc of
FEphemera danica larvae (—0.504°C), of three Trichoptera larvae
{—0.38° to —0455°C) and of Tipula montwm larvae (—0443°C).
Higher values have been observed in the larvae of Popillic japonica
{—1.03°C) and Ephestic kithniella (—1.130°C). The high wvalues ob-
gerved during pupal life in some Lepidoptera are not surprising, owing
to the increasing amount of hydrolytic products resulting from histely-
sis. |
Insects are able to regulate the osmotic pressure of their body fluids.
The role of the different solutes as osmolar cffectors is considered in the
following section. However, a dircet cffect of the relative amblent hu-
midity on the osmotic pressure of the hemolymph has been demon-
strated in Tenebrio molitor (from —0.8°C to —1.3°C: Marcuzzi, 1955,
195G). Some insects show a conmsiderable increase of the hemolymph
osmotic pressure during overwintering, owing to the accumulation of
glycerol (for instance, Monema flavescens; Asahina et al., 1954).

In contrast to the blood of vertebrates, the sum of the inorganic cations
and anions does not account for the total osmotic pressure. Free amino
acids, organic acids and other organic molecules play an important role
ag osmolar cffectors, especially in the most speeialized endopterygote
orders (see below).

111, OSMOLAR EFFECTORS

Tt iz well known that, in most other animal phyla, the osmotic pressure
of the body fluld is insured hy inorganic constituents, among which
sodium 1s generally the main cation, and chloride the main anien. The
situation is more complicated and sometimes entirely different in the
case of insects.
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As Sutelhffe (1962, 1963) has pointed out, and as it appears freom
examination of Figs. 1 and 2, the participation of inorganic cations ang
anions in the osmotic pressure of the hemolymph tends to decrease with
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Fra. 1. Osmotic effects of components illustrated as percentages of the total
osmolar concentration of hemolymph In pterygote insects. Each block in the figure
is visualized as two vertical sections, each section representing 50% of the total
osmolar concentration. The percentage contributions of cations are illustrated in
the left-hand section, with sodium at the base (stippled), followed by potassium
(black area), calcium (while area), and magnesium (vortical slripes). Anions are

lustrated in the right-hand gection, with chloride at the base (oblique stripes) {ol-
lowed by inorganic phosphate {fine stipplingy, Where possible, free amino acids are
illustrated in equal proporticns in both seetiens {coarse stipplng). The large blank
area in cach block represents the propertion of the total osmolar concentration that
must be accounted for by other compencnts of the hemolymph. (Sutcliffc, 1963.)

the evolutionary level of the insect. Among the most primitive Insecta
{Apterygota), Petrobwus maritimus shows a hemolymph composition very
similar to that of other arthropods, with the nearly exclusive participa-
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-Petrobius Lithobius Tulus Tegenaria
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Tia. 2. Osmotic effects of components illustrated as percentages of the total
osmolar coneentration of blood in: (A) an apterygote inscct, {B) a chilopod, (C} a
diplopod, (D) an arachnid, (E-G) crustaceans. (H) illustrates the osmotic effects of
components in the muscle fiber of Carcinus maeenas. Conventions as in Fig. L.
(Sutcliffe, 1963.)

tion of Na and Cl as osmotic effectors (Lockwood and Croghan, 1959).
In most primitive pterygote Insecta, all of which are exopterygotes
(Ephemeroptera, Odonata, Dictyoptera, Feteroptera, and, to a lesser
extent, in Orthoptera, Tsoptera, and Dermaptera), the sum of the four
cations contributes to nearly half of the osmotic pressure, Na playing
the principal role, while the concentrations of K, Ca, and Mg are very
low. In these orders, chloride is the main anion, inorganic phosphates
and organic molecules being in low coneentration. In these inseets, the
situation is not very different from that found in other animals, and
Suteliffe (1963) has suggested that “hemolymph with this type of com-
position represcnts the basic type of hemolymph in pterygote insects.”

In the Phasmidae, the situation s very similar, but Mg takes the place
of Na as the principal osmotic effector, and inorganic phosphates are
more abundant.

A third case is represented by the following endopterygote orders:
Megaloptera, Neuroptera, Mecoptera, Trichoptera, and Diptera. The
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sum of the cations is also responsible for nearly half of the osmotic
pressure, with Na as the prineipal effector, but chloride has a minor im-
portance and is partially replaced by amino acids and other small organic
molecules.

In Lepidoptera, Hymenoptera, and many Coleoptera, the importance
of cationg, as well as that of chloride, is considerably reduced, organic
molecules playing the main role as csmolar effectors. These groups, in
which the highest values of amino acid participation are found, arc also
recognized by Duchfiteau et al. (1953} as being highly specialized by
the existence of very low values of the Na index, and of very high values
of the Mg and K indices.

Figures 1 and 2 clearly illustrate the biochemical evelution of insects,
as far as hemolymph osmolar effectors are concerned. The great similar-
ity between the body fluid composition of the apterygote Petrobius and
the other Arthropoda is an excellent indication of the fact that primitive
insects emerged from the common arthropodial trunk with an internal
medium of the “basic” types, that is with sodium chloride as the almost
sole osmolar effector. The same type of hemolymph composition has
been kept by the modern Palacoptera, as well as by the three orders
originally derived from three distinct stocks of Neoptera exopterygotes
{according to Jeannel, 1949): Plecoptera, Dictyoptera, and Heteroptera,
But, in these primitive insects, we may find some indication of the evo-
[utionary tendencies developed later in the more specialized insects: a
slight reduction of the sodium chloride and the incorporation of small
organic molecules in the bulk of the hemolymph constituents. This
tendency develops considerably in the endopterygotes; the monophyletic
origin of this group suggests that the increasing utilization of free amino
acids {and other organic molecules) in replacement of chloride occurred
very early in the evolution of endopterygotes, probably prior to the
divergence of the ‘panorpoid complex.”

It appears that two different tendencies are to be seen during the
evolution of the different orders from the “panorpoid complex”: one of
these being the conservation of a high amount of inorganic cations, the
other tendency (represented by Hymecnoptera, Lepidoptera, and many
Coleoptera) being the strong deerease of inorganic cationg in the hemo-
Iymph. According to Suteliffe (1963), this last specialization prebably
oceurred independently on at least two occasions, these three orders being
derived independently from the panorpoid line. '

In the matter of osmotic regulation, insects are not able to contrel
the concentration of inorganic lons in their hemolymph when placed in
a more diluted or concentrated medium. However, osmmoregulation takes
place to some extent through the modification of the aminoacidemia.
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This is the case for dragonfly larvae and for Dytiscus marginalis adults
{Schoffeniels, 1960). Osmotic and ionic regulation in inseets are discussed
thoroughly in another chapter (see Shaw and Stobbart, Chapter 4, See-
tion IT,C, this volume).

IV, INORGANIC CATIONS

A coneept commonly current among biochemists is that the Inorganic
gomposition of the medium of the cells has to comply with definite relative
propertions of Na, K, Ca, and Mg if they are fo be capable of main-
taining these cells in life. Baldwin, in his book “An Introduction to
Comparative Biochemistry” (3rd ed., 1948) devotes 8 pages to this con-
cept and writes “. . . instead of being surprised that the bloods of
different animals resemble each other so closely, we must realize that it
could not have been otherwise. The composition of the blood has re-
mained the same beeause the conditions under which life is possible
have remained the same.” In his recent hook, “The Nature of Biochemis-
try” (1962) Baldwin underlines this concept again: “Even the cells and
organs of anmimals whose ancestors, like our own, became independent
of the sea many millions of years ago, cannot tolerate for long any
appreciable departure from the normal, sea-water-like composition of
the blood as far as Nat, Kt and Cat+ are concerned. This necessary
internal constancy 1s something that has to be maintained.” Insect
hemolymph contradicts this statement in many cases, as shown by the
data presented in Table I.

Table I is an exhaustive recapitulation of the numerous data obtained
by different authors. The results arc expressed in milliequivalents per
liter, and in per cent of the sum of the cations (“indices”). For each
order, the data concerning larval, pupal, and adull stages are presented
separately. It may be seen that the indices vary ag follows: Na: from
44 to 90; K: from 1 to 53.4; Ca: from 2 to 37.6 and Mg: from 0.3 to 75.
The significance of the different types of cationic patterns may be dis-
cussed from several points of view.

A. Ontogenic Modifications of Cationic Pattern

It must be emphasized that a definite picture of the hemolymph
cationic patterns is still difficult to present for each order, owing to the
lack of representative data for the different developmental stages. With
the exception of a few species, data have been accumulated for only one
stage in cach order. Table T shows, for instance, that the cationic hemo-
lymph composition of Homoptera and Heteroptera is only known for
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adults, whereas that of Trichoptera and Lepidoptera is practically
known only for larvae or pupae. This fact seems to have heen neglected
by many authors, who discussed the systematic or phylogenetic signifi-
cance of the hemolymph cationie composition by comparing animals of
different ontogenic positions.

The assumption, made by the authors, that the cationle composition
of the hemolymph does not vary significantly during metamorphosis, is
basced in a few cascs, mainly exopterygotes, in which the hemolymphs
of both larval and imaginal stages have approximately the same com-
position (see Table I: Odonata: Aeschna cyonea and Agrion virgo;
Dictyoptera: Periplaneta americana; Orthoptera: Locusta migratoria).
This seems also to be true in the case of two endopterygotes: Bombyx
mort and Dytiscus sp.

However, a reexamination of the situation among Hymenoptera
(Florkin and Jeuniaux, 1963; see algo Table I) led to the conclusion
that the cationic composition of the hemolymph 18 greatly altered during
metamorphosis, in this order. In the larval and pupal hemolymph of
bees and wasps, the Na index is indeed only 10 to 20, while that of
K ranges from 38 to 53, and that of Mg from 16.7 to 30. In the adults,
these proportions are reversed, the Na indices being consistently higher
(50 to 86), and those of K and Mg considerably lower (K: 12 to 29; Mg:
0.31022).

Tt is elear that one must be eareful before gencralizing on the different
developmental stages of one insect order with the scparate results ob-
tained with representatives of only one or two stages.

B. Hemolymph Cationic Patterns of the Different Orders

From the data in Table I, it may be proposed to recognize somce char-
acteristic patterns, bearing in mind that the sampling is obviously secat-
tered, and that ontogenic variations are often ignored.

1. Apterygotes: the only important cation is Na.

2. Exopterygotes Paleoptera: in Ephemeroptera and Odonata, Na
is the most important cation (103 to 179 meq/liter), the other cations
heing of a very low concentration (less than 30 meq/liter) . This seems
to ba true for larvac as well as for adults.

3. Exopterygotes Polyneoptera: with the exception of Clarausius, Na
is also the most important ion, but K, Ca, and especially Mg tend to
hecome more concentrated than in Palcoptera. In some cases (Steno-
bothrus stigmaticus and Tettigonia virdissima), the K concentration is
similar to that of Na. The situation seems to be the game in larvae and
adults.
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Cheleutoptera are characterized by a completely different pattern, in
which Mg replaces Na almost entirely.

4. Exopterygotes—Paraneoptera: the hemolymph of larvae has not
been studied. In adults, the situation is not very different from that
found in other exopterygotes, with the exception of Oncopeltus fasciatus
(Mg: 52.1 meq/liter) and of Palomena prasing, in which the X con-
centration is twice that of Na.

5. In the Oligoneoptera, Megaloptera, Neuroptera, Mecoptera, Tri-
choptera, and Diptera, Na iz also the main cation (indices: from 53 to
79). There seems to be no fundamental difference beiween the ontogenic
stages.

6. Coleoptera: the available data are particularly diverse. It may
tentatively be proposed to consider the existence of three groups. In
the first group, Adephaga, both larval and adult hemolymphs contain
a high proportion of Na (110 to 165 meq/liter) and a low proportion
of K, Ca, and Mg, a pattern similar to that found in Polyneoptera. In
a second group, corresponding presumably to the Phytophaga, and in
which only Chrysomelidae have been studicd, the hemolymph of both
stages contain a very low amount of Na, while K, Ca, and especially
Mg arc at high concentration. This pattern is similar to that found
in Lepidoptera. Finally, a third group may be presumed, in whieh the
adult hemolymph contains more Na and less K and Mg than the larval
hemolymph (for instance: Searabaeidae).

7. Lepidoptera; as far as larval and pupal hemolymphs are con-
sidered, Lepidoptera are characterized by a low proportion of Na (from
traces to 30 meq/liter: indices 2 to 23), higher proportions of K, of Ca
(generally from 10 to 60 meq/liter) and chiefly of Mg (30 to 100 mec/
liter: indices from 30 to 50). The spectrum of Na concentration is situ-
ated below the lowest limit of the wvalues recorded for animals outside
the class of insects (with one exception: Anodonta). The spectrum of
Mg concentration can be superimposed on the spectrum found In sea
animals, but is situated above the highest values recorded for iresh
water or terrcstrial invertebrates and for vertebrates. This is also the
“ease for potassium. The hemolymph of larval and pupal stages of
Lepidoptera thus appears with a very specialized cationic pattern differ-
enf, from that of other animal phyla.

The cationic pattern of adult hemolymph is only known in the case
of two species: Bombyx mori and Telea polyphemus. These data seem
to indicate that adult hemolymph does not differ {rom that of the larvae
or pupae.

8. Hymenoptera: in larvae and pupac of Symphyta and Aculeata,
the most important cations are X and Mg. The situation is very different,
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in the adult Aculeata, in which the cationic pattern shows a high Na
index (50 to 80), less K (index: 12 to 30) and only minute amounts of
Ca and Mg,

C. Ion Binding

In order to account for the nmormally functioning excitable tissues in
such nsects with a hemolymph rich in K and poor in Na, several authors
postulated that an important proportion of the cations do not exist as
free iong, in the hemolymph, but in a combined form {Barsa, 1954;
Bishop et al., 1925; Buck, 1953; Clark and Craigh, 1953). However, this
is not the case for Antherea polyphemus, in the hemolymph of which no
evidence was detected for any binding of K, while 15-20 per cent of
the Ca and Mg were bound te macromolecules (Carrington and Tenney,
1959).

D. Dietetic Relationships

For Boné (1944) as for Tobias (1948), the explanation of the different
types of cationie pattern is dietetic. In their opinion, zoophagous insects
would tend to have high Na, and phytophagous insccts high K and Mg
in their hemolymph. This rclationship appears clearly in most cases, but
some insects {grasshoppers, Tipula larvae, Hydrophilus adults, Geo-
trupes, ete.) contradict this statement, as Boné himsclf pointed out.

Inscets, being mainly terrestrial and therefore unable to absorb
cations from a fluid habitat, can only rely on food fo insure the steady
state of the concentration of eations in their hemolymph, which is the
result of the equilibrium between ingestion and excretion, It is therefore
indicated to compare the concentrations of these eations, per 1000 gm
of fresh food, or per 1000 ml of hemolymph. Table IT shows that when
the insects considered arc phytophagous, the specialized pattern of
cations in hemolymph is always due to the dilution of potassium and
ealeium, and to the concentration of magnesium. With respect to sodium,
we ean see that either concentration, dilution or concentration tales
place. The nonphytophagous insects with the specialized pattern which
appear in Table 11 are the bee larva, eating honey, the larva Cossus
cossus which eats wood, and Galleria mellonelle which feeds on the
wax comb in the beehive. The table shows that the bee larva concen-
trates all the cations of honey, while Cossus and Gallera dilute the
potassium, the magnesium and the calelum of their feed and concentrate
its sodium.

From this survey, it ¢an be seen that the concept according to which
some insects have a high potassium and a low sodium content as a con-
scquence of eating foliar food and otherg have a high sodium and a low
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TABLE 1I

COMPARISON BETW
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Ca

Na
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potassium content because they do not consume this kind of food, is
not acceptable.

E. Phylogenetic Relationships

Duchéteau et al. (1953) proposed a hypothesis involving both phy-
Jogenetic and dictetic considerations in order to explain the diversity of
cationic patterns. According to the elassic views of insect taxonomy, the
cationic pattern of Palaeoptera (high sodium type) is considered as a
primitive pattern among inscets, not dissimilar from that of other animal
taxa and of apterygotes, if we consider the “indices” of cach cation (see
Table 1),

The pattern found in other insect orders, especially in Lepidoptera,
is strikingly different from the type defined above, and appears as a
special cvolutionary development, found also in other advanced groups,
guch as certain Coleoptera and in the larval stages of Hymenoptera.
Thig specialized type appears as a systematic characteristic, linked to
the genotype controlling the synthesis of the enzymes playing a role
in the regulation. We can take into consideration the notion of the
evolution of Lepidoptera, Coleoptera, and Hymenoptera parallel to the
evolution of the angiosperms, and suggest that the speciation along this
phylogenic line has been accompanied by a kind of regulation of the
steady state of the cationic concentrations in the hemolymph, leading
to & low sodium, a high potassium and a high magnesium pattern.

When the insects of these specialized proups adapt themselves second-
arily to another form of food, as for example in the casc of the wasp
and bee larvae, of Cossus and of Glalleria, this ecological change supposes
the acquisition of new regulatory processes, maintaining the specialized
pattern.

O1i the other hand, it is true that insects belonging to the orders which
have not acquired the specialized type can very well adopt phytophagous
habits without acquiring the pattern of cationic concentrations which
is found in Lepidoptera and Hymenoptera, Clearly, this pattern is not
a question of food, it is a question of taxonomy.

F. Adaptive Significance of the Specialized Cationic Pattern

The muscles of Carausius morosus and of Lepidoptera larvae function
well and show action potentials in salines of a composition reproducing
the cationic pattern of their hemolymph. This points to the fact that
the mechanism of neuromuscular transmission must be of such a nature
as to allow the muscle function to take place in media containing a
high ' concentration of potassium, an extremely high concentration of
magnesium, and almost no sodium. Hoyle (1954) suggests that mecha-
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nisms similar to those of Crustacea could be adapted to function in
such media while the vertebrate mechanism could not be adapted.
Hoyle also suggests that the type of cationic pattern of the “specialized”
insects may be a way of reducing spontaneous activity and speed of
movement, For instance, the level of potassium in phytophagous insects
is reduced by fasting and it has been suggested by Hoyle that effects
of this kind may be at work in building up the hypertensive exeited
state of migratory locusts (Ellis and Hoyle, 1954; Hoyle, 1954).

It appears that insects have on several occasions developed a regula-
tion of the inorganic constituents of hemolymph in which the eationie
pattern is not compatible with the function oi the nerves and muscles
of species belonging to other categories of insects or other animals.

This speecialization appears, as already pointed out, as being linked
with speciation parallel with the development of angiosperms. The
ecalogical interest of the acquisition of the specialized hemolymph type
may perhaps be linked with a bchavioral aspect of relative inactivity,
maintaining the larval stages in the midst of abundant food, as is the
cage for caterpillars.

From this point of view, it is particularly interesting to note the
striking modification of the ratio Na/K during the metamorphosis of
bees and wasps, leading from the resting larvae, with the specialized
type of cationic pattern, to the well-known active adults, with a hemo-
lymph containing large amounts of Na.

It secms, therefore, that the adaptations to an eatirely vegetable dict,
and to a sedentary life in the midst of food, has been developed inde-
pendently in different orders, and generally as a particular feature of
larval stages. The adult stages generally retain the basic and primitive
cationic pattern. According to their phylogenetic position and to the
specialized pattern of both larval and adult hemolymphs, the Coleoptera
of the family Chrysomelidac, and probably also the Lepidoptera, are,
among the insecta, the most fully adapted to phytophagous habits.

V. INORGANIC ANIONS AND ION BALANCE

The participation of the different organic anions in the equilibration
of cations is illustrated in Table III. The concentration of Cl—,
H,PO,—, and HCO;~ are given in meq/liter, and also expressed by
their “mndices,” that is in per cent of the sum of the four inorganic
cations.

With respect to the concentration of the Cl— anions, we may recog-
nize two categories; in exopterygotes, the Cl— concentration is always
high (about 100 meq/liter or more) and neutralizes 50-82% of the total

TABLE III
. - & a 7 o Rpg 0
Ivoreanic Tox CONCENTRATION OF THE DEMOLYMPH AND Carton-IoN BALANCE 1x S0ME REPRESENTATIVE SrRCIE

Anions “indices”

Anions, meq/liter

Sum of

pations
meq/liter

Retferences

}IQP();JKA H CO34

HgPOA_ HCOs_ -

Cl-

Stage

Species

Exopterygotcs

Suteliffe (1962)

8.8

15 2.3

110
144

169

Larvae

Odonata: Aeschne grandis

Van Asperen and Esch

174.2

Dictyoptera: Periplaneta americana Aduits

(1954)
Duchéteau ef al. (1953)

Hoyle (1954)
eDuchateau ef al. (1953)

"May (1935)

823

97.6

118.6

Adults

Qrthoptera: Locusta migratoria

20.2

7

93¢ 40¢

107.4¢

Adulis

Chelentoptera: Carausius morosus

l

cRamsay (1955a)
Wood (1957)

104

180 101 16
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inorganic cation equivalents. In endopterygotes, on the contrary, the
Cl— concentration is generally less than 40 meq/liter, and its index
varies from 5.6 to 36, with the excepilon of the bee larvae. In the
latter case, however, the conccntration is not higher than in other en-
dopterygotes, the high index resulting from the very low coneentration
of inorganie cations.

The part played by the morganic phosphates (calculated in Table I1I
ag H,PO,~, a value probably somewhat inferior to the reality) and
the bicarbonate ions is of only minor importance in cation binding,
with the exception of Carausins morosus {Table 111}, in which the
phosphates seem to contribute largely to the ion balance, and of the
ericket Anabrus simplex, in which the phosphates concentration appears
sufficient to balance almost entirely the sum of the cations (Pepper et al.,
1941).

In conclusion, the sum of the anions Cl—, H,PO,~ and HCOy— bal-
ances approximatcly the sum of the cations in the hemolymph of exop-
terygotes. The deficit of anion- cation balance in the hemolymph of most
endopterygotes reveals the part played by inorganic molecules in the
neutralization of the cations. This role secms to be mainly assumed by
organic acids, the free amino acids making rather a nct contribution to
the cationic than to the anionic phase of the hemolymph, according to.
the pH and the nature of the amino acid concerned (Wyatt, 1961).

VI. ORGANIC ACIDS

During recent years, new information has been brought to the knowl-
edge of organic acids in insect hemolymph, a question almost entirely
ignored since the former work of Tsuji (1909). ,

The main organic acids found in the insect hemolymph belong to
ihe substrates of the tricarboxylic acids cycle enzymes: citrate, a-keto-
glutarate, succinate, fumarate, malate, etc. It appcars from the data
so far available, that these organic acids arc generally more con-
centrated in the larval hemolymph of endopterygotes than in the adult
hemolymph and in the exopterygotoes.

Citrate has been detected by Levenhook and Hollis (1961) in 15

species. In the 13 species of endopterygotes studied {Coleoptera, Hy-
menoptera, Diptera, and Lepidoptera), citrate is more concentrated 1n
larvae than in adult hemolymph (for nsiance: Phormia regina: 125
mM in larvae, with 0.44 and 0.33 mM in adults; Sarcophaga bullata:
10.3 mM in larvae, with 2.6 mM in adults; Prodenia eridania: 20.5 mM
in larvae, with 4.7 in adults). Data obtained for exopterygotes are of
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0.73 mM (Periplanele americana larvae: Levenbook et al, 1961), 1.6
mM (Leptocoris trivittatus: Levenbook ef al, 1961) and 2.3 mM
{ Rhodnius prolizus. Patterson, 1956).

Among the other acids of the tricarboxylic acids cyele, a-ketoglutaratc,
malate, fumarate, succinate, and oxaloacctate have been observed in
the larval hemolymph of Gasterophilus intestinalis (Levenbook and
Wang, 1948; Levenbook, 1950; Nossal, 1952}, Bombyx mort (Fukuda
and IHayaghi, 1953, 1958} and Hyalophora cecropia (Sayigh and Wyatt,
in Wyatt, 1961). The prescnee of pyruvate iz not clearly established
in the hemolymph of Bombyzx mori, but large amounts have been found
in Antherea pernyi (23-31 mM : Burova, 1953), as well as in Hyalophora
cecropre (Wyatt, 1961). Other organic acids are probably also present:
glyvoxylic and aceto-acetic acids have been detected in B. mor larvae
(Fukuda and Hayashi, 1958).

.'These organic acids play an mmportant role in the cationic balance,
at least in the endopterygote larvae. In Gasterophilus intestinalis, the
sum of 6 organie acids so far identified amounts to 123 meq/liter, and
aceounts for 46.5% of the sum of the inorganic cations. In Hyalophora
cecropia, the total of the different organic acids of the hemolymph
amounts to 25-35 meq/liter. In Bombyz more larvae, citrate alone,
amounting to 32.1 M (Levenbook and Hollis, 1961) assumes about
34% of the cation binding,

According to Levenbook and Hollis (1961), the large amount of or-
ganic acids in endopterygote larvae is not directly related to alimentary
habits. The hemolymph citrate of Prodenia eridania is not affected by
a change of dict, but is doubled after injection of fluoroacetate, as a
restlt -of the inhibition of aconitase. Citrate and other organic acids
arc "undoubtedly “endogenous” in origin, The existence of all the en-
gymes of the tricarboxylic acids cycle in larval tissues leads to the
condlusion that the accumulation of organic aecids in the hemolymph
appears as the conscquence of a disproportional rate between acid pro-
duction and acid oxidation and/or utilization (Levenbook, 1961).

VII. ORGANIC PHOSPHATES

‘Acoording to Wyatt (1961), one of the most interesting peculiarities
of insects is the high concentration of phosphates in their hemolymph,
These phosphates are essentially orgamic in nature, and acid-soluble.
Amextensive study of organie phosphates has been carried out in the
case of Hyalophora cecropic hemolymph (Wyatt, 1958; Wyatt and
Kalf;, 1957; Wyatt, Meyer and Kropf, 1958), by ion-exchange chroma-
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tography. In diapausing pupae, a-glycerophosphate, phosphoethanola-
mine and phosphocholine are the main eomponents, with the respective
concentrations of 8.5 and 9 mM. Their presence in the hemolymph
is not the result of histolysis, but of a biosynthesis, as shown by in-
corporation of P32 In Bombyz mori, a-glyccrophosphate does not oceur,
but sorbitol-6-phosphate and glucose-6-phosphate have been detected
in relatively large amounts (Kondo and Watanabe, 1957).

VIII. CARBOHYDRATES
AND RELATED SUBSTANCES

It has becn known for a long time that insect hemolymph generally
contains little amounts of fermentable sugars, almost no saccharose, and
little if any glycogen. The redueing power of the hemolymph is some-
times relatively high, but the greater part of this reducing power 1s
due to substances nonsaccharidie in nature, such as ascorbic acid,
a-ketonic acids, uric acid, tyrosine, and other phencls, and doubtless
also many other unknown substances.

The explanation of such an unusually low concentration of ferment-
able sugars in an internal medium arose from the discovery, by Wyatt
and Kalf (1956, 1957) of the existence in the hemolymph of a non-
reducing dimer of e-glucose, trehalose, in high concentration. Hemolymph
trehalose appears to be a form of carbohydrate transport peculiar to
the class of Insecta.

A. Fermentable Sugars

The data concerning the amount of substances fermentable by yeast
arc presented in Table IV, The nature of these substances has been
determined in only a few instances (Table IV). In the adult bee, the
fermentable substances are fructose (30 to 40%) and glucose (60-80%)
(Von Czarnovsky, 1954). Fruetose is also present in rather large amounts
in the hemolymph of Gasterophilus intestinalis {Levenbook, 1947, 1950)
and glucose in that of Phormic regina, in which its concentration 1in-
creases in the adult stage (Evans and Dethier, 1957). The high levels
of fructose and glucose appear however to be exceptional in the hemo-
lymyph of insects.

B. Trehalose

The concentration of trehalose in a number of representative insects
is shown in Table IV. Trehalosc is gencrally present in large amounts
in the hemolymph of all the inscets studied so far, with the remarkable
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TABLE

CoNCENTRATIGN OF ToTalL FrurMENTABLE
Mc/100 ML), oF GLUCOSE, FRUCTOSE, ANI
oF lnszEcrs {MG

Termentab
sugars (as
Species Stage gluecose)
Dictyoptera
Periplaneto americana!® ? 30
Leucophaea maderge? ? 85
Orthopiera
Schistocereg greguria Larvae —
(Coleoptera
Hydrophalus picews Adults 5-318
Popillia jepordca Larvae gy
Chalcophora mariana Larvae —
Ergotes faber Larvas —
Hymenoptera
Diprion hercymiae!! Larvae —
Ampis mellifica Adults 1000-400
Lepidoptera
Phalera bucephala Larvae 408
Pradenia eridania Larvae 11
Bombyz mort Larvae 9284
Pupae 18-504
Adults 1645
Deilephila euphorbiae Larvac Traces’
Deilephila elpenor Pupae —
Galleria mellonella Larvae —
Hyalophora cecropiatt © Larvae —
Hyalophora cecropia Pupae —
Adults —
Telea polyphemus!® Larvae —
Dipiera
Gastrophilus
intestinalis® 10 Larvae 95
Colliphora
erythrocephale® Larvae —
Phormia reging? Larvae —
Adults —

1 Babers, 1938: 2 Duchiteau and Florkin, 1959
5 Tlorkin, 1937; ® Hemmingsen, 1924; 7 Heller a
1956; ® Levenbook, 1847, 1° Levenbook, 1950; 1
U Wyatt and Kalf, 1957; Wratt, Loughheed

exception of the larvae of Phormia
The presence of trehalose in the her
characteristic of the elass of insects.
In vertebrates the cells generally
the circulatory form of the carbohy
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ynthesis, ag shown by in- or Inspers {MG/100 ML)
phosphate does not occur,
shate have been detected Fermentable
. sugars (as True
ta'nabe’ 1957)' Species Stage glucose) glurose Fruciose Trehalose
Dictyoptera
‘A T ES Periplanete americanal? ? 30 — — —
T A N G E S Leucophaea maderael? ? 65 — — 580-780
Orthoptera
Sehistocerca gregaria Larvuae — — Traces? {00-15008
sect hemolymph generally Coleoptera = , _
! t har Hydrophilus piceus Adults 5318 —_— — 500-7002
almost no sace 3‘1_050) and Popillia japonica Larvae 601 — — —
' the hemolymph 18 some- Chalcophera mariong Larvae — — — 4700-5200?
of this reducing power is Brgates faber Lervae - - - 32002
. . Hymenoptera
2, such as ascorbic aeid, Diprion hereyniae! Larvae — 28 — 036
er phenols, and doubtless Apis mellifica Adults  1000-4000%  00-3200"  200-1600% 8001200
Lepidoptera
, Phalera bucephala Larvae 409 — — —
concentration of ferment- Prodensa eridania T.arvas 11t _ — —
1 the discovery, by \j‘?’yatt Bombyz wmort T.arvac 92545 1-315 1-215 400-50018
Pupac 185048 3-5' 1-2% 2021
he hcmolymph of a non- Adults 161 i -
concentration. Hemolymph Deilephila suphorbiae Larvae Traces! — — —
rate transport peculiar to Deilephila elpenor Pupae — — — 800-19002
Galleria mellonella Larvae — 21 — 1700™
Hyalophora cecropie ~ Larvae — — — 1200
Hyalophora cecropic. Pupae — 0-% — 400-600
Adults —_ — — 650-1150
. Telea polyphemausld Larvae — — — 1306
nces fermentable by yeast Diptera
hese substances has bheen Guastrophilus
V) In the adult bee. the intestinalys® 10 Larvae 93 10 184-204 —_
. , .
Calliphora
70) _a'nd glucose (60—80%) erythrocephaiu? Larvae — — Traces —
nt in rather large amounts Phormia regina® Larvae — 70-125 — Absent
Adults — up to GO0 —_ 508

s {Levenbook, 1947, 1950)
hich its concentration in-
er, 1957). The high levels
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y far, with the remarkable

1t Babers, 1838; ? Duchiteau and Florkin, 1959;* Evans and Dethier, 1957, * Florkin, 1965b;
6 Florkin, 1937; ¢ Hemmingsen, 1924; 7 Heller and Moklowska, 1930; ¥ Howden and Kilby,
1956; ¢ Levenbook, 1947; I Levenhook, 1950; 1 Ludwig, 1861; 2 Todd, 1957; 1 Todd, 1958;
1 Wyatt and Kalf, 1957; ¥ Wyatt, Loughheed and Wyatt, 1956; 18 Von Czarnowsky, 1954.

exception of the larvae of Phormia regina (Evans and Dethier, 1957).
The presence of trehalose in the hemolymph appears as a biochemical
characteristic of the class of insects.

Tn vertebrates the cells generally contain little glucose; glucose is
the eirculatory form of the earbohydrate cellular food; it is mainly of
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endogenous origin, the product of a gluconeogenesis principally per-
formed by the liver, and which has its final point in the blood. Glucose
enters the cells by crossing the membrane as hexosc-6-phosphate. Insects,
on the other hand have in their hemolymph trehalosc as the cireulating
form of the saccharidic cellular food. The cells of most inscet tissues use
glucose, the liberation of which is carried out inside the cells by the
action of the enzyme trchalase. _

During the intermolte, trehalose is stable in the internal medium,
the trehalasc of the hemolymph being inhibited (Friedman, 1961). The
cells of most tissues (with the exception of epidermis) contain an active
trehalase (Kalf and Rieder, 1958; Howden and Kilby, 1956; Zcbe and
MeShan, 1959; Duchfteau-Bosson ef al, 1963) and may thus utilize
trehalose for their metabolism. This has been unequivoeally demon-
strated in the case of muscle activity (Evans and Dethier, 1957; Clegg
and FEvans, 1961; Biicher and Klinkenberg, 1958). At the breaking of
diapause, the trehalose contents of the pupae of Deilephila elpenor are
also greatly reduced (Duchéteau and Florkin, 1959).

On the other hand, the trehalose concentration of the hemolymph falls
rapidly during molting in Schistocerca gregaria (Howden and Kilby,
1956). According to Candy and Kilby (1961, 1962), the hemolymph
trehalosc is used not only for metabolic purposes, but also for providing
carbohydrate material during chitin synthesis by the epidermis at each
melt. However, epidermal cells appear to lack trehalase (Zebe and
MeShan, 1959; Duchiteau et al, 1963). They use glucose, liberated
by the enzymic hydrolysis of trehalose, a hydrolysis performed not in-
side the cells, but outside in the hemolymph. The supply of glucose
from the trehalose of the hemolympl has been investigated by Duchf-
teau et al. (1963); this mechanism is llustrated by Fig. 3, showing
the variations of trehalose concentration and of trehalase activity in
the hemolymph of Bombyxr mort during the end of larval and. the
beginning of pupal life.

The amount of blood trehalose sharply decreases at each molt, and also
during the fasting period corresponding to spinning. The fall of blood
trehalose during the molts corresponds to the increase of glucose (Flor-
kin, 1936) observed at the same period. It iz related to the release,
probably of hormonal nature, of the inhibition of the trehalase present
in an inactive state in the hemolymph. In the fat-body, an inverse rela-
tionship exists between glycogen and trehalose, the former disappearing
almost completely at each molt, while the amount of trehalose tends
to remain at nearly comstant level (Duchiteau el al., 1963). On the
other hand, the bulk of fat-body is consumed to a large extent, during
the periods of chitin synthesiz. These observations suggest that the
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trehalose level of the hemolymph is supplied at the expense of the
glycogen of the fat-body. This conclusion is supported also by the recent
experiments of Steele (1963) who demonstrated the cffects of a hyper-
glycemic hormone on the glycogen and trehalose contents of the fat-
body and the hemolymph of Periplaneta americana.

C. Glycogen

There are only small amounts of glycogen in the insect hemolymph;
according to Wyatt (1961), the substances estimated as glyeogen by
the classic methods are, as far as insect hemolymph is concerned, prob-
ably of a different chemical nature, such as other polysaccharides or
glycoproteins.

D. Amino Sugars

There are only a few studies bearing on amino sugars in the insect
hemolymph. Substances related to hexosamines or acetylhexosamines
have been detected, sometimes in large amounts, in the hemolymph of
Tenebrio molitor (Marcuzzi, 1955}, of Hyalophora cecropia (Carey and
Wyatt, 1960) and of Bombyz mori larvae (Wyatt, Longhead and Wyatt,
1956). The concentration of acetylhexosamines in the hemolymph of
the silkworm B. mori varies at each molting period, increasing from 2
to 40 mg/100 ml (Jeuniaux, unpublished). These variaticns are un-
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doubtedly related to the resorption by the epidermis of cuticular hreak-
down products (Jeuniaux, 1963).

E. Glycerol

The existence of high amounts of glyecrol in the hemolymph as well
as in the tissues of several insects may be considered as an adaptation
to cold-hardiness, In Hyalophora cecropia, Wyatt and Meyer (1959)
have shown that glycerol is not present in the larval hemolymph, but
accumulates gradually during diapause to reach a level of about 300 mM;
then it disappears rapidly when diapause i3 broken. The production of
glycerol appears as resulting from a modified glycolytic pathway. Glye-
erol is not a permanent constituent of insect hemolymph, and some
species related to II. cecropia possess only little if any glycerol in
their hemolymph. An exhaustive review of cold-hardiness in insects has
been presented by Salt (1861).

IX. NITROGENOUS CONSTITUENTS

The insect hemolymph does not markedly differ from that of verte-
brates with respect to its protein-nitrogen, but its very high aminoaci-
demia seems to be onc of its most exceptional peculiarities. Therewith,
the hemolymph storcs sometimes relatively high amounts of the end-
products of the nitrogen metabolism: uric acid, allantoin, allantoic acid,
urea, and ammonia. Uric acid is often very concentrated, sometimes
near saturation, and crystals arve commonly found in the hemolymph.
According to the absenee of allantoicase in insect tissues, urea docs
not derive from allantoic acid, but probably from arginine, under the
action of arginase (Garcia et al, 1956; Kilby and Neville, 1957). Am-
monia i mainly found In aquatic species.

The similarity between the amino acid composition of both hy-
drolyzed and nonhydrolyzed plasma after deproteinization (with the
exception of the dicarboxylic acids which arc partly in the form of their
amides in the hemolymph) indicates that the peptide content is gencrally
low (Florkin, 1959). Peptides, however, seem to be more abundant in
the hemolymph of Drosophile (Hadorn and Mitchell, 1951).

X. FREE AMINO ACIDS

During the last 10 years, considerable information has been obtained
concerning the nature and the concentration of free amino acids n
the hemolymph, thanks to the improvement of quantitative techniques
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such as mierobiological method and the ion-exchange chromatography
of Moore and Stein. In the ease of the former technique, it is more
convenient to consider the resulls as reflecting the “apparent” concen-
trations of amino acids, owing to the faet that the chromatographic
method often gives results slightly but significantly lower.

It is not possible to summarize briefly the numerous data available,
and systematization appears to be impossible. However, it can be seen
from Table V, which gives some of the more complete analysis now
available,! that, in spite of a very wide vartability, the following con-
clusions may be drawn.

A. Total Concentration

A high aminoacidemia is a characteristic of the class of insects. How-
ever, this character is clearly more accentuated in endopterygotes than
in exopterygotes. In the threc cxopterygotes studied so far (Table V),
the sum of the 15 amino acids ranges only from 293 to 636 mg/100 ml,
values gencraily much lower than those found in endopterygotes (with
the exception of Gasterophilus larva).

The increasing importance of free amino acids as hemolymph constit-
uents appears, as already pointed out, as an evolutionary tendency de-
veloped in the most evolved groups, such as Lepidoptera, Hymenoptera,
and Colcoptera. In these insects, contrary to what obtains in verte-
brates and other invertebrates, the composition of the internal medinm
18 thus similar to that of the cells. This pattern is quite fitted for an
internal medium which is rapidly tapped upon for the construction of
new cells, at the time of molting and metamorphosis.

B. Relative Concentration of the Different Amino Acids

As it appears from the comparison between hydrolyzed and non-
hydrolyzed dialyzed plasma, aspartic and glutamic acids exist mainly
in the form of their amides: asparagine and glutamine (Florkin, 1959).
Arginine is essentially derived from its phosphagen, arginine-phosphoric
acid. Iixopterygote and endopterygote insects differ by the relative
proportions of the hemolymph amino acids. In exopterygotes, the con-
centrations of the different amino acids are of the same order (from

*Other data may be found for the following orders: CGdonate: Raper and Shaw
(1948) ; Orthoptera: Benassi ef al. (1959) ; Benassi ef al. (1961): Dictyoptera: Auclair
and Dubreuil (1953); Auclair (1959); Prati (1950} ; Hemiptera: Pratt (1950);
Lepidoptera: Auclair and Dubreuil (1953); Chen and Hadorn (1954): Wvatt ef al.
(1856) ; Irreverre and Levenbook (1960); Coleoptera: Auclair and Dubreuil (1953} ;
Pochediey (1956, 1958) ; Diptera: Chen and Hadorn (1954) ; Hackman (1956} ; Pratt
(1950},
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101-120
1575-1769

22-105
515-1819

34-127
1124-1689

83
700

20-49
8§70-1144

15

94-150
1723-21462

11-20 -
445-721

58-59
1239.0

48
636.0
48

22-25

293424

23-29
399.0

Valine

4659

Total

22-35

24

Serine

o The values have been rounded to the unity. From Duchateau and Florkin (1959) and Shotwell ef al. (1963).

b Other species studied: Leptinoiarse decemlineaie.

1 Amathes zanthographa (1027 mg/100 ml), Triphaena pronuba. (1.352 mg/100 ml),

 Other species studied: larvae of Cessus cossus (sum of the 15 amino acids: 938 mg/100 ml}

I'mbrasia macrothyris (497 mg/100 ml) and Pseudobunaea seydeli (709 mg/100 wl).

4]

4 Other pupae studied: Lasiocamps quercus (sum of 15 amino acids: 2317 to 2430

mg/100 ml).

ma/100 ml), Buprociia chryserrhoea (1066 mg/100 ml) and Smerinthus ocellatus (164

«15 species belonging to the genus Citherondia, Eacles, Saturnie, Antheraca, Actias, Hyelophora, Philesemia.

7 8pecies studied: Deilephila elpenor, Sphing ligusird, Celerio ¢uphorbiae, Laothoe populi, L. ausionti, and L. populi X austanti.

¢ Without alanine.

h Bhotwell et al, (1963).
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10-60 ml/100 ml); “total” glutamic acid and glycine are somewhat
wore concentrated in Locusta hemolymph (see Table V).

In endopterygotes, on the contrary, the different amino acids may
be present at very different concentrations:

(1) “Total” aspartic acid and phenylalanine, and also leucine and
isoleucine, always oceupy a minor place in the amino acid pool of the
ingect hemolymph.

(2) “Total” glutamic acid and proline (the latter with only a few
exceptions) generally take the most important quantitative place in
the amino acid pool.

(3) The other amino acids may be present at more or less high con-
centrations, according to the species considered.

C. Modifications of the Amino Acid Pattern

It appears, from a general survey, that a characteristic amino acid
pattern cannot be ascribed to any kind of taxonomiec group as a bio-
chemical character, according to the very high variations observed be-
tween the different genus of a given family, or even between the differ-
ent speeies of a given genus (see for instance, the extensive study of
Saturniiddae and Sphyngidae by Duchfteau and Florkin, 1958). More-
over, every species shows great modifications of its aminoacidemia dur-
ing itz development, especially during metamorphosis. The pattern of
amino acid concentration is more constant in the case of diapausing
pupae of Lepidoptera, as a rcsult of a steady state easily maintained
at lowered metabolism, mainly controlled by internal factors in a non-
feeding, nonmetamorphosing individual (Duchiteau and Florkin, 1958).
The amincacidemia of an insect species may thereforc be defined as
being & succession of steady states expressed by a succession of patterns
specific to the different instars of this species and to partieular ceological
or physiological events. An example of the metabolie alteration of the
aminoacidemia is given by the silkworm Bombyz mori, which has becn
the most intensively studied from this point of view.

D. Effects of Molting, Diet, Histolysis, Silk Secretion, and
Pupation on the Aminoacidemia of the Silkworm

The origin and the fate of the different amino acids has been studied
by following the effects of the removal of silk glands, coupled or not
with starvation experiments, by the study of the incorporation into
the silk of radioactive amino acids, and so on. The results may be sum-
marized ag follows (Fig. 4).

1. The silk gland utilizes only a few kinds of free amino acids from
the hemolymph in order to synthetize the fibroin: these are glycine,
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Tia. 4, Variation of the concenirations of three “sericigenous’ amino acids, of
histidine and of methicnine in the hemolymph of the silkworm Bombyz mort during
ihe fifth larval stage, the spinning and the metamorphoses. (Jeuniaun et al, 1961)

aspartic, and glutamic acids (mainly in the form of their amides), serine,
threonine, .and proline, but mo significant amounts of alanine nor of
phenylalanine. The removal of silk glands produces indeed a congider-
able accumulation of these “sericigenous’” amino acids m the hemolymph,
at the end of the fifth larval stage (Duchfteau et al., 1959; Bricteux-
Grégoire et al., 1959a; Bricteux-Grégoire et al., 1959h; Duchéteau-Bosson
et al., 1960; Duchftcau-Bosson et al., 1961a). After injection of radio-
active glyeine or threonine, the isotopic carbon is incorporated into
the fibroin not only as glycine, but also to a lesser extent as alanine
and serine (Brieteux-Crégoire et al., 1959). As shown also by radioactive
experiments, glutamic and aspartic acids are mainly used by the silk
gland for the biosynthesis of the alanine of fibrein (Bricteux-Grégoire
et al., 1960). :
2. The “sericigenous’ amino acids of the hemolymph are mainly of
dietary origin, During the first 5 or 6 days of the fifth larval stage,
that is, during the half of the feeding period of the last larval intermolt,
some of these smino acids, especially glycine, are stored in tissucs, and

—ﬁ

2. HemoLymrs:

their concentration in the hemolympl
During the second part of the feedin
maintain a steady state, the utilization
of the hemolymph by the silk glands |
supplies (Fig. 4}.

3. The period of spinning, which ¢
taneous starvation, is characterized b
amino acid pattern. The concentration
acids, threonine, serine, and proline £
state 1s established, reflecting the bal;
tion by the silk gland and the supply
has been clearly demonstrated, by rad
of dietary origin, “stored” in the tis
5th instar, is laid down at the time ¢
the fibroin at the end of the silk threa

4. When the secretory activity of the
amino acids liberated by histolysis a
hemolymph by the silk gland; their c
generally attains the initial values obse

5. Histidine concentrations vary i
accumulates in the hemolymph durin
tration remaing at it higher level (x
gpinning period, when the other am
After spinning, the concentration o
the increase of the sericigenous amin
The variations of histidine, and to a
becn interpreted as being a compe
some way the osmotic pressure of |
mains relatively constant (Jeuniaux

6. The other amino acids {alanine
and phenylalaninc), are not utilized
silk gland, as shown by experiments
gland. Their concentrations decreas
period as a result of the spontancou
centration during the pupal molt is 1
steady state is generally maintained

(Duchiteau-Bosson et al., 1961b).

7. The concentration of tyrosine
during the whole life course. Accun
days preceding each molt (up to 8
a sharp and sudden decrease followl




JEUNIAUX
__.l_
’ = Ty
] T,

v ——r
5 10 Eclosion
days days

1spartate + aspargine)
lutamate + glutamine)

“sericigenous” amino acids, of
silkworm Bombyx mori during
phoses. (Jeuniaun et al, 1961.)

rm of their amides}, serine,
mounts of alaninc nor of
roduces indeed a consider-
no acids in the hemolymph,
eau et al, 1959; Bricteux-
, 19590 ; Duchéteau-Bosson
). After injection of radio-
irbon is incorporated into
a lesser extent as alanine
s shown also by radioactive
= mainly used by the silk
fibroin (Bricteux-Grégoire

hemolymph are mainly of
i of the fifth larval stage,
of the last larval intermolt,

, are stored in tissues, and

2. HemoLymMPH: CoOMPOSITION 143

their concentration in the hemolymph remaln more or less constant,
During the second part of the feeding period, there is a tendeney to
maintain a steady state, the utilization of the “sericigenous” amino acids
of the hemolymph by the silk glands being balanced by the alimentary
supplies (Fig. 4).

3. The period of spinning, which corresponds to a period of spon-
taneous starvation, is characterized by a marked modification of the
amino acid pattern. The concentration of glycine, glutamic and aspartic
acids, threonine, serine, and proline falls to low values. A new steady
state 1s established, reflecting the balance between amino acid utiliza-
tion by the silk gland and the supply from the lysis of the tissues. It
has been clearly demonstrated, by radioactive experiments, that glycine
of dietary origin, “stored” in the tissues during the beginning of the
5th instar, is laid down af the time of spinning and incorporated into
the fibroin at the end of the silk thread (Fukuda and Florkin, 1959).

4. When the secretory activity of the silk glands stops, the sericigenous
amine acids liberated by histolysis are no longer withdrawn from the
hemolymph by the sille gland; their concentration increases rapidly and
generally atiains the initial values observed before silk secretion (Fig. 4).

5. Histidine concentrations vary in an opposite direction: histidine
accummulates in the hemolymph during the fifth instar, and its eoncen-
tration remaing at its higher level (up to 300 mg/100 ml) during the
spinning period, when the other amino acids are depleted (Fig. 4).
After spinning, the concentration of histidine deereases, parallel to
the inerease of the sericigenous amine acids (Duechdteau et al., 1960).
The variations of higtidine, and to a lesser extent, of methionine, have
been interpreted as being a compensatory mechanism regulating in
some way the osmotie pressure of the hemolymph, which indecd re-
mains relatively constant {Jeuniaux et al., 1961).

6. The other amino acids (alanine, lysine, leucine, isecleucine, valine,
and phenylalanine), are not utilized to any appreciable degrec by the
silk gland, as shown by experiments involving the removal of the silk
gland. Their concentrations decrease somewhat during the spinning
period as a result of the spontancouns starvation. Their increasing con-
centration during the pupal moelt is a consequence of histolysis. A new
steady state is generally maintained during the rest of the pupal stage
{Duchiicau-Bosson et al., 1961b).

7. The concentration of tyrosine in the hemolymph varies widely
during the whole life course. Aecumulation takes place within the few
days preceding each molt (up to 80 mg/100 ml}, and is followed by
& sharp and sudden decrease following each molt. These variations are
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related to the utilization of tyrosine in the protein-tanning and melaniza-
tion of the mew cuticle (Duchateau-Bosson ef al, 1962). Similar ob-
servations have been noted in the case of the puparium formation of
Sarcophaga (Fracnkel and Rudall, 1947).

E. p and I Forms of Amino Acids

The free amino acids of the hemolymph are usually of the L con-
figuration. A few exceptions are known: for instance, in Oncopeltus
fasciatus, the hemolymph contains large amounts of the » isomer of
alanine, & substance that does not exist in the food of this insect
(Auclair and Patton, 1950). Free p-serinc has becn detceted in the
nemolymph of larvae, pupae, and adults of different Lepidoptera (Bom-
byz mori, Hyalophora cecropia and Antheraea pernyi) ; the p-isomer is
more abundant in the pupae, in which it may account for up to 709
of the total free serime of the hemolymph (Srinivasan, Corrigan and
Meister, 1962). p-alanine has not been found in these Lepidoptera, while
p-serine does not occur in Oncopeltus hemolymph.

XI. PROTEINS

The protein concentration in insect hemolymph is similar to that of
the blood of man and other vertebrates, and generally higher than
that of the internal fluids of other invertebrates. The average protein
constant is of & gm/100 ml in Hymenoptera, 3—4 gm/100 ml in Cole-
optera, 2 gm/100 ml in Lepidoptera and 1 gm/100 ml in Orthoptera
{Florkin, 1936a).

In recent years, considerable attention has been paid to the character-
ization of hemolymph proteins, using electrophoresis on paper or in
agar and starch gels, ultracentrifugation, immunoelcctrophoresis, ete.
The already numerous data have been summarized by Wyatt (1961)
and by Gilbert and Schneiderman (1961). The characterization of the
different fractions ag albumins, o~ and A-globulins, and so on, on the
hasis of their electrophoretic mobility has been criticized by Dénucé
(1958). These studies are in full development, and there is now little
to say about the physicochemical properties of the hemolymph proteins.

The electrophoretic pattern of hemolymph proteing ig used by some
authors for taxonomic purposes, these patterns being, in a given family,
more similar for the specics of the same genus than for speeics belonging
to different genus (sce, for instance, Benoit and Van Sande, 1959; Brez-
ner and Enns, 1958; Van Sande and Karcher, 1960; Stephen, 19565
Martin and Cotner, 1934). Hemolymph proteins show also some differ-
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ences, according to the sex of the individuals (Stephen and Steinhaucer,
1957).

The protein pool of the hemolymph is said to function as a reserve,
gsource of the profein synthesis of the adult stage during pupal life
(Heller, 1932). In the Lepidoptera, indeed, the level of hemolymph pro-
teing generally inerveases during the larval life, and then decreases at
the end of the pupal instar. The protein pool is also said to be the
gsource of the free amino acids of the hemolymph, especially during
starvation (Beadle and Shaw, 1950), the amino acid concentration re-
malning approximately constant.

It 1z not clear whether or not antibodies proteinic in nature are formed
in the inseet hemolymph. Barlicr reports of Steinhaus (1949) and other
workers have not been confirmed recently. A phenomenon of immuniza-
tion does however occur in some Lepidoptera {Briggs, 1958; Stephens,
1959), but the naturc of this immunity secms rather different from that
known in vertebrates.

The only wecll-defined proteins of the insect hemolymph are those
cxhibiting enzymic properties. The number of different enzymes or
isocnzymes in the hemolymph is surprisingly high. Although we do not
possess any quantitative estimate of the relative concentration of these
proteins engymic in nature, it appears that they represent an important
portion of the hemolymph proteins (Laufer, 1960). Somc of the en-
zymic activities are nearly as high as those of the tissues, so that the
presence of these cnzymes in the hemolymph cannot be considered as
necessarily resulting from a leakage from the tissues, as it occurs in
mammals. The exact role of these enzymes in the hemolymph requires,
however, further demonstration. Laufer (1961), in the case of proteolytic
enzymcs, and Jeuniaux (1961), in that of chitinolytic systems, both
suggested that these enzymes may function in the histolysis which occurs
at the time of molting and metamorphoses.

A. Hydrolases

The roughly qualitative studies of Arvy and Gabe (1946a,b) and the
more accurate studies of Laufer (1960a,b) indicate the existence of
different hydrolytie activities in the hemolymph of Odonata, Cheleutop-
tera, Dermaptera, Orthoptera, Coleoptera, and Lepidoptera. It is clear
that amylases, esterases (lipascs) and one or more proteolytic enzymes
do penerally occur in the inseet hemolymph. Glucosidases able to
hydrolyze suerose and maltose are found in the hemolymph of Bombyz
mort (Yamafuji, 1934a) in addition to amylase (Yamafuji, 1934a, 1935),
the activity of which 1s a biochemieal characteristic of the different
raccs. In B. mort, the amylases of the hemolymph and of the gut are
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two very different isocnzymes, according to their different properties
(optimum pH, activation and inhibition, cte.; Ito et al., 1962).

The enzymes of the chitinolytic system also oceur in the insect hemo-
lymph. Chitobiase is present in high concentrations during the whole
life course of B. mori, while chitinases can be detected at the beginning
of the pupal life (Jeuniaux, 1961). Chitinases have also been identified
in the hemolymph of Periplaneta americana adults, in which they reach
concentrations higher than that in saliva, digestive juices and gut tissues
(Waterhouse and McKellar, 1961}, Their role in the hemolymph remains
obscure,

The presence and the role of trehalase in the hemolymph have been
discussed above (see Trehalose).

B. Phosphatases

Organic phosphates are broken down rather rapidly in the hemolymph
plasma of Gasterophilus (Levenbook, 1950) and of H. cecropia (Wyatt,
1958). In B. mori larvae, the hemolymph contains a hexose-1-phos-
phatase {Faulkner, 1955) and an alkaline phosphatase (Ltabashi, Koide
and Shimura, 1913). A number of phosphatases have been detected in
the hemolymph of H. cecropic and Philosamia cynthic (Laufer, 1960).

C. Transaminases

Agpartic-e-ketoglutaric transaminase 0COUYS in the hemolymph of
Celerio euphorbiae and of Bombyx mort, but ity activity is many times
lower than that of fat body or museles (Belzecka et al., 1959; Bheemen-
var and Sreenivasaya, 1952).

D. Enzymes of Carbohydrate Metabolism

According to Faulkner (1955), the hemolymph is a likely site of the
metabolism of carbohydrates, the activity of hexose-1-phosphatase,
“malic” enzyme (TPN linked dehydrogenase) and polyoldehydrogenase
being intermediate between those of fat-body and gut tissue. Malic de-
hydrogenase and isocitric dehydrogenase, both TPN dependent, have
been found in high concentration in the larval and adult hemolymphs
of Tenebrio molitor; glutamic, a-glyeerophosphate, glucose, and lactic
dehydrogenases seem to be lacking in the larval but present in the
adult hemolymph of this species (Prota, 1961). The presence of multiple
forms of malie dehydrogenase, lactic dehydrogenase and e-glycerophos-
phate dehydrogenase has been observed in Hyalophora cecropia and
Samia cynthia hemolymph; the variations of the relative importance of
the different isoenzymes have been followed during the pupal life and
the development of the adult {Laufer, 1961).
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E. Oxidases

Phenoloxidases (or tyrosinases) are uniformly present in the hemo-
lymph of insects, and are responsible for the rapid darkening of the
hemolymph when exposed to air. The presence of inhibitors has bcen
diseussed by Ito (1953). In Diptera as well as in Bombyz mori, hemo-
lymph tyrosinase seem to be present in the form of a proenzyme, “pro-
activated by a proteic activator (Onishi, 1959). In Calle-
phora erythrocephala, the metamorphosing hormone ecdysone controls
the biosynthesis of the proteic activator of the prophenoloxydase (Karl-
son and Schweigger, 1961), whereas this hormone has no effect on the
secretion of the proenzyme or on the activity of the enzyme itseli
{Karlson and Schmid, 1955).

Xanthine-oxidase has been found in the larval and adult hemolymphs
of Tenebrio molitor (Prota, 1961)

F. Other Enzymes

Catalase is present in B. mori hemolymph, and more active in males
than females (Matsumura, 1935).

The function and properties of hemoglobing in Chironemid larvae
which attracted considerable attention in the last decade, hag been
thoroughly discussed by Buck (1953).

Among the numerous pigments which give to the hemolymph its
specific color, only a few have been identified, viz., «-carotene, ribo-
flavine and flavine nucleotides in Hyalophora cecropia (Chefurka and
Williams, 1952), flavones, flavines, fluorescyanine, and folic acid in
B. mort (Drilhon, 1951; Drilhon and Busnel, 1951). The presence of
chlorophyll as the pigment of green hemolymphs & doubtful. In the
hemolymphs of larvae of Pieris rapae, Cacoecia australane and Am-
phipyra sanguinipuncta (Lepidoptera), the green color iz due to the
presence ‘of a yellow chromoprotein, the prosgthetic groups of which
are B-carotene and lutein, and of a blue chromoprotein, the prosthetic
group of which seems to be mesobiliverdin (Hackman, 1952). A similar
composition has been ohserved in the case of the green hemolymph of
the solitary phases of Locusta migratorie and Schistocerca gregaria
{(Goodwin and Srisukh, 1951). But the green color of the hemelymph
of the bug Nezara viridula is due to a S-carotene-protein complex and
a blue pigment resembling anthocyanine (Hackman, 1952).

XII. PIGMENTS
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XIII. CONCLUSION

Considered from the ecological point of view, inseets are the only
invertebrates able to live in dry environments and able to fly. The
hemolymph is their only extracellular fluid. They have given up the
physiological assoclation between the respiratory and the clrculatory
systems, the tracheal system ensuring the arrival of oxygen to all cells.
Insectg are thercfore not bound to the maintenance of a definite blood
volume and they can rely on blood water to insure their survival in dry
media, They ean, in spite of the variations of blood volume, regulate
the osmotic pressure n the hemolymph by changing the amino acid
concentration. The aminoacidemia is high and the nonprotein nitrogenous
components of hemolymph are mainly made up of the components of
the amino acid pool. The proteins of insect hemolymph prebably lack
the oncosmotic and nutritive components in Mammalian plasma: they
are mainly made up of enzymes. The hemolymph of insects appears
thercfore with the characteristics of a fluid tissue, with its own metabo-
lism, revealing & composition more similar to that of the intracellular
fluid than to that of the blood of vertebrates. Tnorganic catioms and
anions are, espeeially in the most specialized endopterygote orders, re-
placed by amino acids and organic acids.

By its nature as a container of a number of reserve or transport
materials, the most peculiar of which being trehalose, in constant ex-
change relations with the fat body, hemolymph fits the life of organisms
in which feeding is interrupted during certain life phases or during
diapause, in relation to factors of the environment or to ecological adap-
tations corresponding to different periods of development.
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