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Abstract We report a data-set of monthly vertical profiles

obtained from January 2012 to October 2013, from the

surface to 70 m depth of nitrous oxide (N2O) and dissolved

methane (CH4) in Lake Kivu, a large and deep meromictic

tropical lake (East Africa). Vertical variations of N2O were

modest, with ranges of 6–9 and 0–16 nmol L-1 in surface

and bottom waters, respectively, and occasionally peaks of

N2O (up to 58 nmol L-1) were observed at the oxic-anoxic

interface. On the contrary, steep vertical gradients of CH4

were observed with values changing several orders of

magnitude from surface (19–103 nmol L-1) to 70 m

(*113,000–520,000 nmol L-1). Seasonal variations of

CH4 were caused by annual cycles of mixing and stratifi-

cation, during the dry and rainy seasons, respectively. This

mixing allowed the establishment of a thick oxic layer

(maximum 65 m deep), leading to decreased CH4 con-

centrations (minimum of 8 nmol L-1), presumably due to

bacterial CH4 oxidation. During the stratification period,

the oxic mixed layer was thinner (minimum 25 m deep),

and an increase of CH4 concentrations in surface waters

was observed (maximum of 103 nmol L-1), probably due

to a lower integrated CH4 oxidation on the water column.

Lake Kivu seasonally alternated between a source and a

sink for atmospheric N2O, but on an annual scale was a

small source of N2O to the atmosphere (on average

0.43 lmol m-2 day-1), while it was a small source of CH4

to the atmosphere throughout the year (on average

86 lmol m-2 day-1). Vertical and seasonal variations of

N2O are discussed in terms of nitrification and denitrifi-

cation, although from the present data-set it is not possible

to unambiguously identify the main drivers of N2O

production.
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Introduction

Methane (CH4) and nitrous oxide (N2O) are two important

greenhouse gases whose global warming potential are

respectively 34 and 298 times higher on a 100-year time

frame than carbon dioxide (CO2) (IPCC 2013). Addition-

ally, N2O depletes stratospheric ozone. The concentrations

of CH4 and N2O in the atmosphere have significantly

increased during the 20th century due to human activities,

agriculture in particular.

N2O in aquatic systems is mainly produced by nitrifi-

cation and denitrification with optimal temperature esti-

mated to be in the 25–30 �C range (Saad and Conrad

1993). Hence, an increase of these processes can be

expected with increasing temperatures, but N2O emissions

are also strongly linked to nitrogen and oxygen availability.

In this sense, the highest N2O emissions from inland waters

are reported from systems enriched by fertilizer use in

catchment areas or wastewaters (Zhang et al. 2010; Baulch

et al. 2011). Indeed, African rivers have been recently

shown to be lower N2O emitters compared to their tem-

perate counterparts, presumably due to the different
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agricultural practices (i.e., traditional versus fertilizer-in-

tensive) (Borges et al. 2015a).

CH4 in aquatic systems is mostly produced in the anoxic

layers of sediments and is transported to the surface by

diffusion, mixing, and ebullition. Aerobic and anaerobic

CH4 oxidation can take place during the transport, and the

fraction that is not oxidized is emitted to the atmosphere.

Natural wetlands are known to be the major natural source

of CH4 for the atmosphere (175–217 Tg CH4 year-1), as

well as inland waters (lakes and rivers), since the latter were

estimated to emit between 40 Tg CH4 year-1 (Kirschke

et al. 2013) and 103 Tg CH4 year
-1 (Bastviken et al. 2011).

Furthermore, higher emissions of CH4 are expected in

tropical inland waters than in temperate and boreal coun-

terparts, in accordance with recent reports (Sawakuchi et al.

2014; Borges et al. 2015a), due to the strong dependence of

CH4 production on temperature (Marotta et al. 2014; Yvon-

Durocher et al. 2014). Within the tropical aquatic envi-

ronments, the Amazon wetlands are the best studied in

terms of CH4 dynamics and fluxes (Bartlett et al. 1990;

Devol et al. 1990; Engle and Melack 2000; Melack et al.

2004; Bastviken et al. 2010; Borges et al. 2015b). These

wetlands consist of flooded forest, floating macrophytes and

permanent or temporary floodplain lakes that emit large

amounts of CH4 to the atmosphere. Comparatively, tropical

upland lakes are much less studied for CH4 and N2O

dynamics. In addition, data are particularly scarce in large

lakes (Holgerson and Raymond 2016). Furthermore, sea-

sonal variations of CH4 and N2O fluxes have seldom been

described in lakes, and mostly in boreal systems (e.g.

Kankaala et al. 2013; Miettinen et al. 2015). Eddy-covari-

ance allows the direct measurement of CH4 and N2O fluxes

to the atmosphere in lakes (e.g. Podgrajsek et al. 2014; Xiao

et al. 2014), although fluxes are usually computed from

dissolved concentrations in surface waters using estimates

of the gas transfer velocity (e.g. Schubert et al. 2010;

Kankaala et al. 2013; Miettinen et al. 2015).

In this study, we report a 2-year time series of monthly

measurements of CH4, N2O and nitrate (NO3
-) concentra-

tions in a large tropical lake (Lake Kivu, East Africa). Lake

Kivu is a deep (maximum 485 m) meromictic lake char-

acterized by anoxic deep waters rich in dissolved CH4 and

nutrients (Degens et al. 1973; Schmid et al. 2005; Tassi

et al. 2009). Surface waters are oligotrophic and are char-

acterized by relatively low primary production ranging

between 143 and 278 g C m-2 year-1 (Darchambeau et al.

2014, Morana et al. 2014), and have been shown to be net

autotrophic (Morana et al. 2014), yet they emit carbon

dioxide (CO2) to the atmosphere due to geogenic CO2

inputs from deep waters (Borges et al. 2014). A first study of

CH4 dynamics in Lake Kivu showed very low CH4 con-

centrations in surface waters (Borges et al. 2011), presum-

ably due to intense CH4 oxidation as CH4 is transported

upwards (Borges et al. 2011; Pasche et al. 2011; Morana

et al. 2015a). The first study of CH4 in surface waters

(Borges et al. 2011) was based on a coarse seasonal cov-

erage (only four cruises), focused on surface waters and did

not describe the vertical variability of CH4 in the top 100 m.

While most previous studies have focused on carbon

cycling in Lake Kivu, nitrogen cycling has received much

less attention. The aim of this study is to describe seasonal

variations of CH4 and N2O in the epilimnion of a tropical

lake and attempt to unravel the underlying processes.

Moreover, as a large scale industrial extraction of CH4 from

the deep layers of Lake Kivu is planned (Nayar 2009), it is

important to establish the baseline of ecological and bio-

geochemical settings to monitor, understand and quantify

the consequences of this industrial extraction of CH4.

Information on the temporal variability of the vertical

structure in the top 100 m is required to achieve a com-

prehensive description of base-line conditions of CH4 in

Lake Kivu prior to industrial extraction.

The present study focuses on one station in the Southern

Basin of the lake (Ishungu station), and thus provides

temporally resolved data compared to previous reports of

CH4 concentrations focusing on spatial variations in sur-

face waters by Borges et al. (2011). The present paper also

complements the work of Morana et al. (2015b) based on

the same two-year sampling at Ishungu, which mainly

focused on the biogeochemistry of organic matter.

Materials and methods

Study site

Lake Kivu is located at the border between Rwanda and

Democratic Republic of the Congo (DRC) [2.50�S 1.59�S
29.37�E 28.83�E]. Sampling was carried out every month

from late January 2012 to October 2013, at one station in

the Southern Basin of the Lake (Ishungu station;

-2.3374�N, 28.9775�E; Fig. 1).

Physico-chemical parameters and sampling

Vertical profiles of temperature, conductivity and oxygen

(O2) were obtained with a Hydrolab DS4 multiparameter

probe. Water was collected with a vertical 7L Niskin bottle

(Hydro-Bios) every 5 m from the surface to 70 m.

Water column chemical analyses

Samples for N2O and CH4 concentrations were collected in

50 mL glass serum bottles from the Niskin bottle through a

silicon tube connected to the outlet, left to overflow, poi-

soned with 100 lL of saturated HgCl2 and immediately
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sealed with butyl stoppers and aluminium caps. CH4 and

N2O concentrations were determined via the headspace

equilibration technique (20 mL N2 headspace in 50 mL

serum bottles) and measured by gas chromatography (GC)

(Weiss 1981) with electron capture detection (ECD) for

N2O and with flame ionization detection (FID) for CH4.

The SRI 8610C GC-ECD-FID was calibrated with certified

CH4:CO2:N2O:N2 mixtures (Air Liquide, Belgium) of 1,

10, 30 and 509 ppm CH4 and of 0.2, 2.0 and 6.0 ppm N2O.

Concentrations were computed using the solubility coeffi-

cients of Yamamoto et al. (1976) and Weiss and Price

(1980), for CH4 and N2O, respectively. The precision of

measurements was ±3.9 and ±3.2 % for CH4 and N2O,

respectively.

When preparing the headspaces, excess water was col-

lected to quantify NO3
- and NH4

? concentrations by

spectrophotometry. NO3
- were determined after vanadium

reduction to nitrite (NO2
-) and quantified under this form

with a Multiskan Ascent Thermo Scientific multi-plates

reader (APHA 1998; Miranda et al. 2001). NH4
? were

quantified according to the dichloroisocyanurate-salicylate-

nitroprussiate colorimetric method (Westwood 1981),

using a 5-cm light path on a spectrophotometer Thermo

Spectronic Genesys 10vis. The detection limits for these

methods were 0.15 and 0.3 lmol L-1 for NO3
- and NH4

?,

respectively.

CH4 and N2O flux calculations

CH4 and N2O fluxes with respect to the atmosphere were

calculated based on temperature, CH4 and N2O concen-

trations, and the gas transfer velocity computed from wind

speed according to the Cole and Caraco (1998) relation-

ship. By convention, a positive flux value corresponds to a

gas transfer from the water to the atmosphere, and, con-

versely, a negative flux corresponds to a gas transfer from

the atmosphere to the water. Wind speeds were obtained

from the National Centers for Environmental Prediction

(NCEP) gridded daily product (grid point -0.952�N,
30.000�E). These values were adjusted to fit field mea-

surements from a meteorological station of the Institut

Supérieur Pédagogique (ISP) of Bukavu. The ISP wind

values were adjusted by the addition of 2 m s-1 to account

for differences in wind speed between lake and inland

where the station is located as suggested by Thiery et al.

(2014).

Schmidt Stability Index calculations

Schmidt Stability Index (SSI) defines the thermal stability

of the water column over a certain depth and expresses the

amount of energy needed for its full mixing over that depth

(Schmidt 1928). SSI from the surface to 65 m was calcu-

lated from density vertical gradients according to Schmidt

(1928), and density was computed from temperature and

salinity derived from conductivity according to Schmid and

Wüest (2012).

Results

For both years, SSI (Fig. 2a) and temperature variability

(Fig. 2b) showed one mixing period, from July to October

(dry season), with a maximum mixing in September, while

the water column was stratified the rest of the year (rainy

season). Mixing periods did not co-occur with higher wind

speeds (Fig. 2a), which were observed a few weeks before

the mixing. The location of the oxycline (Fig. 2c) followed

the seasonal cycling of mixing and stratification, and ran-

ged from 35 to 70 m depth during the rainy and dry sea-

sons, respectively. Deep waters (from 70 m) remained

anoxic throughout the year, while surface waters (at 5 m)

were well oxygenated (oxygen concentrations range

122–243 lmol L-1). N2O profiles showed on various

occasions higher concentration peaks (maximum peak of

52 nmol L-1) in the oxycline, while concentrations

remained relatively low in surface waters (from 6.6 to

9.3 nmol L-1, at 5 m) and at 70 m (from 0.1 to 16.4 nmol

L-1) (Fig. 2d). The maximum peaks of N2O were usually

observed below the maximum peaks of NO3
-

Fig. 1 Map of Lake Kivu, showing sampling site in the Southern

Basin
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Fig. 2 Seasonal profiles of

(a) wind speed (m s-1) and

Schmidt Stability Index (SSI; J),

and seasonal and vertical depth

profiles of b temperature (�C),
c O2 (lmol L-1), d N2O (nmol

L-1), e NO3
- (lmol L-1),

f NH4
? (lmol L-1) and g log

CH4 (nmol L-1) from late

January 2012 to October 2013,

and g NH4
? (lmol L-1) from

late October 2012 to October

2013. White dotted line is the

oxic-anoxic transition zone
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concentrations (Fig. 2e), and sometimes with a time delay.

Three NO3
- accumulation zones (nitraclines) were

observed: from late January to June 2012, from late August

to late December 2012, and from late August to September

2013. Maximum NO3
- concentrations associated to these

nitraclines ranged between 7 and 10 lmol L-1. NH4
?

concentrations tended to be higher in anoxic waters, with

concentrations up to 110 lmol L-1 at 70 m depth (Fig. 2f).

In oxic surface waters (at 5 m), CH4 concentrations

(Fig. 2g) remained low throughout the year and ranged

between 19 and 103 nmol L-1. At 70 m, CH4 concentra-

tions were higher and ranged from *113,000 to

520,000 nmol L-1.

N2O concentrations at 5 m depth showed no correlation

to SSI (Fig. 3a). The seasonal variations of NO3
- con-

centrations and SSI were linked (Fig. 3b): when vertical

mixing occurred (low SSI; August and September 2012 and

2013), NO3
- concentrations began to increase to reach

their maximum 1–2 months later. Contrary to N2O, CH4

concentrations in surface waters followed the pattern of the

SSI (Fig. 3c) and were significantly correlated (R2 = 0.23,

p\ 0.01, n = 29); minima of CH4 concentrations co-oc-

curred with SSI minima.

N2O fluxes (Fig. 3d) showed large fluctuations during

the studied period. Negative fluxes were observed in Jan-

uary 2012, July–August 2012, November 2012–January

2013 and June–August 2013 (ranging between -2.2 and

-0.001 lmol m-2 day-1). The rest of the year, N2O fluxes

were positive, with a maximum flux of 3.5 lmol m-2

day-1 in February 2013. The average N2O flux for both

years of sampling was 0.4 lmol m-2 day-1. The highest

CH4 flux to the atmosphere was in June 2013

(222 lmol m-2 day-1) and the lowest was in August 2013

(24 lmol m-2 day-1) (Fig. 3e). The average CH4 flux for

the 2 years of sampling was 85 lmol m-2 d-1. The sea-

sonal differences in CH4 fluxes were very low (rainy sea-

son mean flux of 96 lmol m-2 day-1 and dry season mean

flux of 64 lmol m-2 d-1).

Discussion

The alternation between stratification of the water column

in rainy season and mixing events in dry season is a typical

behavior for Lake Kivu (Schmid and Wüest 2012). Mixing

periods did not co-occur with higher wind speeds, which

were observed a few weeks before the mixing. This

strongly suggests that wind stress is not the main factor for

the mixing of the water column in Lake Kivu contrary to

what is reported for the nearby Lake Tanganyika (Thiery

et al. 2014). Indeed, increased heat fluxes due to evapo-

ration related to changes in solar radiation and air humidity

is the main driver of mixing during the dry season in Lake

Kivu (Thiery et al. 2014).

N2O fluxes fluctuated widely during the two-year sam-

pling, and we observed both positive and negative fluxes,

indicating that Lake Kivu acted as a sink and a source for

atmospheric N2O. N2O fluxes are driven by
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nitrification/denitrification processes in the water column.

Nitrification is considered as an important source of N2O,

while denitrification, by consuming N2O to produce N2, is

often considered as a sink. However, in the oxic-anoxic

transition zone, when O2 level is low (below 6 lmol L-1),

the last step of denitrification, i.e. N2O reduction to N2, can

be inhibited while the NO3
- reduction to N2O step can still

occur leading to a net N2O production (Seitzinger et al.

2006). A few factors allow us to suggest the occurrence of

these two processes in the water column of Lake Kivu.

N2O profiles, showed on some occasions concentrations

peaks in the oxycline, a common feature for meromictic

lakes (Mengis et al. 1997). Nitrification was evidenced by

the presence of NO3
- accumulation zones (nitraclines)

during the rainy season, which in turn can sustain denitri-

fication in the anoxic water column. Nitraclines are the

result of vertical mixing of superficial waters occurring

during the dry season. During this vertical mixing event,

oxygen penetrated deep in the water column, down to the

bottom of the mixolimnion, where reduced species such as

NH4
? are abundant. NH4

? thus became available for

phytoplankton and nitrifying bacteria and archaea growth.

Accordingly, nitrification led to the establishment of a

nitracline that appeared with some delay after the initial

mixing event that brought NH4
? in contact with oxic

waters. The fact that maximums of NO3
- concentrations

were observed 1–2 months after the mixing event (re-

flected by SSI) can be explained by the time required for

the nitrifier community to develop and for NO3
- to accu-

mulate in the water column.

In late January 2012, high N2O values were observed in

oxic waters (e.g., 47.5 m) corresponding to maximum

NO3
- values. The presence of higher abundances of a

NO2
--oxidizing bacteria (Nitrospira) (İnceoğlu et al.

2015a) at those depths strongly suggests the occurrence of

nitrification. Nitrification rates in Lake Kivu have never

been directly quantified, but the study of Llirós et al. (2010)

showed the presence of a nitrifying archaeal community in

the oxycline, suggesting a potentially important role of

archaeal nitrification. In late January 2012, a diversified

archaeal community was also observed (İnceoğlu et al.

2015a). The Marine Group I (Thaumarcheota), which are

ammonia oxidizing archaea (AOA), was well represented

in the superficial oxic waters, where they represented the

whole archaeal community at some depths. AOA are

thought to be dominant over ammonia oxidizing bacteria

(AOB) in most environments (Stieglmeier et al. 2014), and

they seem to be predominant in oligotrophic environments

(Stahl and De La Torre 2012), such as the oxic waters of

Lake Kivu (Llirós et al. 2010, İnceoğlu et al. 2015a).

However, some N2O peaks were clearly located in anoxic

waters, as in late January 2012 which suggest the

involvement of other processes in N2O production, such as

denitrification. Pyrosequencing data obtained by İnceoğlu

et al. (2015a) showed the presence of Betaproteobacteria,

which were highly abundant at the oxic-anoxic interface.

This class includes in particular two well-known denitri-

fiers, Denitratisoma sp. and Thiobacillus sp., which can

potentially be responsible for denitrification in Lake Kivu,

and some bacterial nitrifiers, such as Nitrosomonas sp. As

nitrification, denitrification has never been quantified in

Lake Kivu, but conditions for the occurrence of this pro-

cess are present in rainy season, since non-negligible NO3
-

concentrations are often observed at the oxic-anoxic

interface.

Deep isoclines of CH4 concentrations followed the

bottom of the oxycline, strongly suggesting the occurrence

of CH4 oxidation in the water column of Lake Kivu, as

recently evidenced by mass balance (Borges et al. 2011;

Pasche et al. 2011) or stable isotopic signature and pro-

cesses measurement studies (Morana et al. 2015a, b).

İnceoğlu et al. (2015a) observed the presence of an

important community of aerobic and anaerobic methan-

otrophs (mainly Methylomonas-related operational taxo-

nomic units and anaerobic methanotrophic archaea

(ANME), respectively) in the Southern Basin (Ishungu

Basin) of Lake Kivu, giving support to the occurrence of

intense CH4 oxidation in the water column. They also

observed archaeal methanogens which suggested that

methanogenesis could occur in the water column, whereas

previous research on CH4 dynamics assumed that sedi-

ments were the only source of CH4 in Lake Kivu (Pasche

et al. 2011). In aquatic environments, CH4 is mainly pro-

duced in sediments but some studies also reported CH4

production in anoxic waters (e.g. Winfrey and Zeikus

1979; Iversen et al. 1987; Borrel et al. 2011; Crowe et al.

2011).

During our study, CH4 concentrations at 5 m were sig-

nificantly correlated with SSI and were higher during the

rainy season (high SSI) than during the dry season (low

SSI). During the rainy season, the oxic layer became

thinner and anoxic waters rich in CH4 were closest to the

surface, limiting CH4 losses by aerobic oxidation. On the

contrary, during the dry season the oxic layer deepened and

integrated aerobic CH4 oxidation on the oxic water column

might be higher leading to lower CH4 concentrations in

surface waters. In general, the seasonal amplitude of CH4

concentrations in surface waters was low (84 nmol L-1)

compared to higher latitude lakes (range

100–65,000 nmol L-1; Supplemental Table 1). This might

be explained by the large CH4 accumulation during winter

below the frozen lake surface and by more frequent lake

overturn which mixes deep and surface waters, a typical

process in holomictic lakes unlike Lake Kivu which is

permanently stratified. Seasonal changes in oxic and anoxic

conditions also contribute to seasonal amplitudes, as anoxia

F. A. E. Roland et al.
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can develop through the water column below frozen lake

surface leading to very high CH4 concentrations. Seasonal

variations of oxic layer thickness was highlighted in the

present case of Lake Kivu as the driver of seasonal

variations.

The importance of CH4 oxidation in the water column of

Lake Kivu may explain low CH4 fluxes observed. Only

diffusive CH4 fluxes are reported here, since ebullitive

fluxes are supposed to be negligible due to the deepness of

Lake Kivu and absence of extensive shallow zones (Borges

et al. 2011), that according to Natchimuthu et al. (2015)

contribute to strong spatial heterogeneity in CH4 emissions

from small shallow lakes. It should be noted that the

parameterization used in the present work (Cole and Car-

aco 1998) might underestimate the computations of gas

transfer velocities due to the large size (Read et al. 2012;

Schilder et al. 2013) and diurnal temperature variations

(Polsenaere et al. 2013; Podgrajsek et al. 2014) in Lake

Kivu which have been reported to be large (Borges et al.

2012). Anyway, the Southern Basin of Lake Kivu was a

source of CH4 for the atmosphere throughout the year, but

was a very small source of CH4 for the atmosphere com-

pared to other lakes globally, by an order of magnitude.

The overall CH4 emission for lakes is 3281 lmol m-2

day-1 globally, and 7779 lmol m-2 day-1 for tropical

systems according to Bastviken et al. (2011), whereas the

value for Lake Kivu was 85 lmol m-2 day-1. Besides CH4

oxidation, the low CH4 emission can also be linked to the

morphometric characteristics of Lake Kivu: large, deep and

meromictic. Indeed, despite the fact that deep waters of

Lake Kivu are extremely rich in CH4 (60 km3 of CH4 are

dissolved in deep waters; Schmid et al. 2005), the stratifi-

cation of the water column (especially the main chemocline

located at 250 m; Pasche et al. 2009) prevents the upward

rise of this CH4 towards surface waters. CH4 from the

upper part of the monimolimnion can only rise to surface

waters by slow diffusion throughout the year, and by sea-

sonal mixing of the epilimnion, which erodes the upper

part of the monimolimnion (Borges et al. 2011; Pasche

et al. 2011). Thus, due to this water column structure and

an important bacterial CH4 oxidation, surface waters of

Lake Kivu have extremely low CH4 concentrations when

compared with bottom waters, which limits the CH4

emissions to the atmosphere. Accordingly, the seasonal

variations of CH4 fluxes were estimated to be very low

(rainy season mean flux of 96 lmol m-2 day-1 and dry

season mean flux of 64 lmol m-2 day-1).

This study focused on one station in the Southern Basin

of Lake Kivu. However, due to the large size of Lake Kivu,

some spatial heterogeneity can be observed. Numerous

studies underline the importance of spatial variations of

CH4 emissions (e.g. Bastviken et al. 2004; Hofmann 2013;

Schilder et al. 2013; Natchimuthu et al. 2015). During our

study, 5 profiles were collected in the Northern Basin of the

lake, which has a larger surface and is more exposed to

wind. Available data (Supplemental Fig. 1) suggest that the

station of Ishungu, in the Southern Basin, is not represen-

tative of the whole lake, since large differences in strati-

fications can be observed. Indeed, the Northern Basin

showed deeper mixings and more pronounced gradients,

which clearly influence vertical profiles of CH4 and N2O.

The differences between the depths of the oxyclines

impacted CH4 concentrations in deep waters, and N2O

profiles were also quite different. Stratification clearly

influences bacterial and archaeal communities; for exam-

ple, İnceoğlu et al. (2015a) estimated that the relative

abundances of Betaproteobacteria were 28 % and 46 % for

the Northern and Southern Basins, respectively. Moreover,

due to the large size of the lake, we cannot expect that wind

velocities in the Northern Basin are the same as those in the

Southern Basin.

However, CH4 concentrations in surface waters (at 5 m)

were quite similar in both stations (R2 = 0.625), andmeans of

N2O concentrations in surface waters were 7 and 8 nmol L-1

in the Northern and Southern Basins, respectively. This sug-

gests that CH4 and N2O fluxes in the Northern Basin are

probably of the same order of magnitude as in the Southern

Basin.Also, basedonO2 and temperature vertical profiles data

obtained fromMarch 2007 toApril 2009 at nine stations in the

lake (Borges et al. 2011), we can assume that the station of

Ishungu iswell representative of the SouthernBasin, and even

of theWestern Basin and of the south part of the EasternBasin

(Supplemental Fig. 2 and Supplemental Table 2).

This study is, to our knowledge, the first one to report

detailed data and long time-series of CH4 and N2O in a

large tropical lake. Our data confirms that Lake Kivu has a

very low CH4 emission to the atmosphere despite having

extremely large quantities of CH4 in the bottom waters.

Yet, CH4 in surface waters showed seasonal variations that

relate mixing events and deepening of the mixolimnion.

The emissions of N2O to the atmosphere were also modest

although vertical profiles of N2O show dynamic patterns

with marked sources and sinks of N2O in the water column.

We were not able to determine from vertical profiles of

N2O concentrations if nitrification or denitrification or a

combination of both was the process leading to N2O

accumulation in the water column that occurred at the oxic-

anoxic interface. This suggests that process orientated

studies quantifying denitrification and nitrification are

required to further unravel C and N dynamics in this large

meromictic tropical lake, as well as additional data on

bacterial diversity and activity that are limited to two

samplings (İnceoğlu et al. 2015a, b). The present data-set is

the first to give a detailed description of the seasonal

variations of the vertical distribution of CH4 and N2O in

upper Lake Kivu (\100 m). Any deviation from the

Nitrous oxide and methane seasonal variability in the epilimnion of a large tropical…
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reported patterns will be indicative of changes in CH4 and

N2O cycling and potential emission to the atmosphere

related to the CH4 extraction (Nayar 2009). Once the CH4

is extracted in surface plants, the water is re-injected above

the extraction point (to avoid diluting the resource). This

re-injection could lead to the enrichment in NH4
? and

changes in N cycling which could enhance N2O emissions

to the atmosphere. The water re-injection might lead to

changes in water column stratification that as we have

shown allows an effective removal of upward diffusing

CH4 by bacterial CH4 oxidation. A decrease in this water

column CH4 sink would lead to enhanced CH4 emissions to

the atmosphere.
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