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Outline

Active network management




Active network management

Distribution networks traditionally operated according to the fit
and forget doctrine.

Fit and forget.

Network planning is made with respect to a set of critical scenarios
to ensure that sufficient operational margins are always garanteed
(i.e., no over/under voltage problems, overloads) without any
control over the loads or the generation sources.

Shortcomings.

With rapid growth of distributed generation resources, maintaining
such conservative margins comes at continuously increasing
network reinforcement costs.




The buzzwords for avoiding prohibitively reinforcement costs:
active network management.

Active network management.

Smart modulation of generation sources, loads and storages so as
to safely operate the electrical network without having to rely on
significant investments in infrastructure.




A first example: How to maximize the PV production within a
low voltage feeder without suffering over-voltages?

What is currently done:

The active power produced by PV panels is 100% curtailed as soon
as over-voltage is observed. The curtailment is done automatically
by the inverter.

Objective:

Why not investige better control schemes for minimizing the
curtailment?




The low-voltage feeder example:
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Control actions:
At every time-step, for such a problem, various decisions can
typically be taken regarding the feeder:

» Curtailing the PV active power / activating reactive power
» Charging or discharging batteries
» Managing the demand




Modeling the load (SLP) and PV production (from Belgian data)
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The current (and basic) approach

Principle:
As soon as an over-voltage is observed at a bus, the corresponding

inverter disconnects the PV panels from the feeder during a
pre-determined period of time.

0if V¢ > Viax,

. _ PV _
Vj € {1,...,N},Vt S {0,..., T 1}7'Dj,t {F)};\/’max otherwise.

This control scheme, which is currently the one that is applied in
practice, will be considered as the reference strategy.




Effects of the current (and basic) control scheme on the load and
the PV production
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The centralized optimization approach

Principle:
Solve an optimization problem over the set of all inverters:

N

PV ~APVx pPVx PVx - PV ,max 2%
(P1 £, Ql,t oo Pt Q ) arg min E 'Dj,t —Pjy
PEY.QEY - PRYLQRY =1
subject to
PV
( 1tant7" Nt7QNt7V1t7"‘7VN,tael,tw-'aeN,t):O
VIR < Vil SV =1 N
PV PV ,max P
0< Py S'Dj,t , j=1...,N

|QJ!,DtV‘§g(PJ!,DtV)7 j=1...,N




Effects of the centralized optimization approach on the load and
the PV production

PV acive power producion (i)
Voltage (p.u)

T A R | 1 T 1) B T T T T T T 1]
Tine e

Potential gain in this example:

Curtailed energy with the basic approach: 31.63 kWh
Curtailed energy with the centralized approach: 21.38 kWh




Towards decentralized approaches

Principle:

We are investigating control schemes that would only need local
information. These control schemes work by measuring the
sensitivity of the voltage (measured locally by the inverter) with
respect to the injections of active and reactive power.




State transition diagram of the distributed control scheme:
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The red dotted lines are the emergency control transitions
while blue dashed lines are the restoring ones.

tpQ (resp. tpp) is the time needed in Mode B (resp.
Mode C) to use all available reactive (resp. active) controls.

T reset is the elapsed time without emergency signal for the
controller to start restoring active/reactive power.

trp (resp. trq) is the time needed in Mode D (resp. Mode E)

to restore active (resp. reactive) power to the set point values
of Mode A.

Pser and Qe+ are the active and reactive power set points of
the controller.

Pypp is the maximum available active power of the PV
module and depends on the solar irradiation.

Qmax is the maximum available reactive power; it varies
according to the capability curve as a function of the active
power output.

| -



Maximum PV active power that could be produced
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Reactive power produced by the PV
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Outline

Rethinking the whole decision chain - the GREDOR project
GREDOR as an optimization problem
Finding m*, the optimal interaction model
Finding i*, the optimal investment strategy
Finding o*, the optimal operation strategy
Finding r*, the optimal real-time control strategy
Conclusion




The GREDOR project.

Redesigning in an integrated way the whole decision chain that is
used for managing distribution networks in order to perform active

network management optimally (i.e., maximisation of social
welfare).
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Decision chain

The four stages of the decision chain for managing distribution
networks:

Interaction models
Investments

Operational planning

e

Real-time control




1. Interaction models

An interaction model defines the flows of information, services and
money between the different actors. Defined (at least partially) in
the regulation.

Example: The Distribution System Operator (DSO) may curtail a
wind farm at a regulated activation cost.

2. Investments
Planning of the investments needed to upgrade the network.

Examples: Decisions to build new cables, investing in
telemeasurements, etc.




3. Operational planning

Decisions taken a few minutes to a few days before real-time.
Decisions that may interfere with energy markets.

Example: Decision to buy the day-ahead load flexibility to solve
overload problems.

4. Real-time control

Virtually real-time decisions. In the normal mode (no emergency
situation caused by an “unfortunate event”), these decisions
should not modify production/consumption over a market period.

Examples: modifying the reactive power injected by wind farms
into the network, changing the tap setting of transformers.




GREDOR as an optimization problem

M Set of possible models of interaction

z Set of possible investment strategies

@ Set of possible operational planning strategies

R Set of possible real-time control strategies
Solve:

arg max social _welfare(m, i, o,r)
(m,i,0,r)EMXIXOXR




A simple example

M: Reduced to one single element.

Interaction model mainly defined by these two components:
1. The DSO can buy the day-ahead load flexibility service.

2. Between the beginning of every market period, it can decide
to curtail generation for the next market period or activate
the load flexibility service. Curtailment decisions have a cost.

Time

0h00 24h00
Period 1 2 T
Stage 0 1 2 T
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7: Made of two elements. Either to invest in an asset A or not to
invest in it.

(: The set of operational strategies is the set of all algorithms
that:

(i) In the day-ahead process information available to the DSO to
decide which flexible loads to buy

(i) Process before every market period this information to decide
» how to modulate the flexible loads
» how to curtail generation.

R: Empty set. No real-time control implemented.

social _welfare(m, i, 0, r): The (expected) costs for the DSO.




The optimal operational strategy

Let o* be an optimal operational strategy. Such a strategy has the
following characteristics:

1. For every market period, it leads to a safe operating point of
the network (no overloads, no voltage problems).

2. There are no strategies in O leading to a safe operating point
and having a lower (expected) total cost than o*. This cost is
defined as the cost of buying flexiblity plus the costs for
curtailing generation.

It can be shown that the optimal operation strategy can be written
as a stochastic sequential optimization problem.

Solving this problem is challenging. Getting even a good
suboptimal solution may be particularly difficult for large
distribution networks and/or when there is strong uncertainty on

the power injected /withdrawn day-ahead.
—




lllustrative problem

S When Distributed Generation (DG)
sources produce a lot of power:

Bus 3

» overvoltage problem at Bus 4,

» congestion problem on the MV/HV
transformer.

Bus 5

Bus 4
-
'

-
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aggregated

Industrial
Wind Solar
aggregated

Two flexible loads; only three market periods; possibility to curtail
the two DG sources before every market period (at a cost).




Information available to the DSO on the day-ahead

Scenario tree for representing
The flexible loads offer: yncertainty:

Load in MW
Load in MW

[N R R R

00 15 30 45 60 75

5 O A A

00 15 30 45 60 75

()

Residential aggregated (left) and
industrial (right).

W = Wind; S = Sun.

Additional information: a load-flow model of the network; the price

(per MWh) for curtailing generation. l




Decisions output by o*

The day-ahead: To buy flexibility offer from the residential
aggregated load.

Before every market period: We report results when generation
follows this scenario.

Results:
Generation never curtailed.
Load modulated as follows:
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On the importance of managing uncertainty well

E{cost} max_cost min_cost std_dev.
o* 46% 379% 30% 72%
MSA 73% 770% 0% 174%

where MSA stands for Mean Scenario Strategy.

Observations:

Managing uncertainty well leads to lower expected costs than
working along a mean scenario.

More results in:
Q. Gemine, E. Karangelos, D. Ernst and B. Cornélusse. “Active network

management: planning under uncertainty for exploiting load modulation”.
B



The optimal investment strategy

Remember that we had to choose between making investment A or
not. Let AP be the recovery period and cost_A the cost of
investment A. The optimal investment strategy can be defined as
follows:

1. Simulate using operational strategy o* the distribution
network with element A several times over a period of AP
years. Extract from the simulations the expected cost of using
0" during AP years. Let cost_o*_with_A be this cost.

2. Simulate using operational strategy o™ the distribution
network without element A several times over a period of AP
years. Extract from the simulations the expected cost of using
0" during AP years. Let cost_o*_without_A be this cost.

3. If cost_A + cost_o*_with_A < cost_o*_without_A, do
investment A. Otherwise, not.




Solving the GREDOR optimization problem

Solving the complete optimization problem

arg max social _welfare(m, i,0,r)
(m,i,o,r)EMXIXxOXR

in a single step is too challenging. Therefore, the problem has been
decomposed in 4 subproblems:

1. Finding m™*, the optimal interaction model,
2. Finding i*, the optimal investment strategy,
3. Finding o*, the optimal operation strategy,
4

. Finding r*, the optimal real-time control strategy.




Finding m*

The set M of interaction models is only limited by our
imagination. In the GREDOR project, we have selected four
interaction models to study in more detail.

These interaction models are defined by:

1. The type of access contract between the users of the grid and
the DSO,

2. The financial compensation of flexibility services.
For simplicity, we focus only on the access contract feature of the

interaction models in this presentation.

More information
S. Mathieu, Q. Louveaux, D. Ernst, and B. Cornélusse, “DSIMA: A
testbed for the quantitative analysis of interaction models within

distribution networks”. l




Access agreement

The interaction models are based on access contracts.

» The grid user requests access to a given bus.

» The DSO grants a full access range and a flexible
access range.

I Full access range
] [ ] Flexible range

>

0 Power

» The width of these ranges depends on the interaction
model.
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Flow of interactions
One method to obtain social_welfare(m, i, o, r) is to simulate the
distribution system with all its actors and compute the surpluses
and costs of each of them. This simulation requires us to:
1. Define all decision stages as function of m,
2. Simulate the reaction of each actor to m.

Producers
& Retailers

Global Flexibility
baseline contracts

TSO

Local

baselines Settlement

DSO

Flexibility

activation
requests Flexibility

platform

Flexibility
needs

Time
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One day in the life of a producer selling flexibility services
A producer performs the following actions:

1.

D. Ernst

Sends its baseline to the TSO at the high-voltage level.
I will produce 15MWh in distribution network 42 between 8am
and 9am.

. Sends its baseline to the DSO at the medium-voltage level.

| will produce 5MWHh in bus 20 between 8am and 9am.
Obtains flexibility needs of the flexibility services users.

The DSO needs 3MWh downward in bus 20 between 8am and
9am.
Proposes flexibility offers.

I can curtail my production by 2MWh in bus 20 between 8am and
9am.
Receives activation requests for the contracted services.

Curtail production by 1MWh in bus 20 between 8am and 9am.
Decides the final realizations.

Produce 4MWh, or 5MWh if more profitable, in bus 20 between
8am and 9am. .

36/81



Parameters of the interaction models
The implementation of the models are based on 3 access contracts:
» “Unrestricted” access: Allow the grid users access to the

network without restriction.
I Full access range

Flexible range

0 Power

» “Restricted” access: Restrict the grid users so that no

problems can occur.
] Full access range

Flexible range

0 Power

» “Flexible” access: Allow the users to produce/consume as
they wish but if they are in the flexible range, they are

obliged to propose flexibility services to the DSO.

[ Full access range
[ | ) [ | Flexible range

0 Power
In this presentation, we assume that these flexibility services l
are paid by the DSO at a cost which compensates the .-
imbalance created by the activation of the service. .

D. Ernst



Effects of the access range on the baseline of an actor

The access restriction of the DSO is shown by the red dotted line.

Power
Power

Ti
'me Time

Figure : Unrestricted access ) .
Figure : Restricted access
Power

Flexible access range

Full access range

Time

Figure : Flexible access - The filled areas represents the energy curtailed
by the DSO by the activation of mandatory flexibility services. —

D. Ernst




Back to our optimization problem

These models are studied for a given investment, operation
planning and real-time control strategy, i.e. one strategy (/,0,r).

arg max social _welfare(m, i, o0,r)
(m,i,0,r)EMXIXxOXR

Consider the simplified subset of interaction models
M = {"unrestricted”, “restricted”, “flexible” }.

social _welfare(m, i, 0, r): the sum of the surpluses minus the
costs of all actors and a cost given by the protection scheme of the
real-time control strategy.




Open-source testbed

The testbed evaluating interaction models is available as an open
source code at the address

http://wuw.montefiore.ulg.ac.be/~dsima/.

It is based on an agent-based model where every agent solves an
optimization problem for each decision stage.

Bus 56 B:
Data
Shed in period(s) 4, 5, 8
Flexibility used in period(s) 1,2, 3, 4,5,6,7,8
Downward access request bound 0.00
Upward access request bound 2.7
Safe downward access bound 0.00
Safe upward access bound 1.77
Time graphs
3
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http://www.montefiore.ulg.ac.be/~dsima/

Comparison of the interaction models

Simulation of a 75 bus system in an expected 2025 year with 3

producers and 3 retailers owning assets connected to the DN.

Interaction model | Unrestricted Restricted  Flexible |

Welfare
Protections cost
TSO surplus
DSO costs
Producers surplus
Retailers surplus

29077
12071
2878
0
37743
527

27411
0
2879
0
24005
527

39868
914
2873
444
37825
528

ONONORONONO!

Table : Mean daily welfare and its distribution between the actors.

Key messages

Unrestricted: Too much renewable production leading to high

protections cost. Who would pay this cost?

Restricted: Little allowed renewable generation but a secure

network.

Flexible: Large amount of renewable generation but still requiring

a few sheddings due to coordination problems.




Coordination problem

The model “flexible” suffers from the lack of coordination
between the DSO and the TSO.

Assume that the flow exceeds the capacity of line 3 by IMW. To
solve this issue, the DSO curtails a windmill by IMW. In the same
time, assume that the TSO asks a storage unit to inject 0.4MW.
These activations leads to a remaining congestion of 0.4MW.

TSO activates DSO activates Congestion
+0.4MW -1MW of 0.4 MW




Finding i*

The investment strategy i* is divided in two parts:

1. Announcing the capacity of renewables that may be connected
to the network: Global Capacity ANnouncement.

2. Determining the target optimal network: Investment
planning tool.




GCAN: Global Capacity ANnouncement

GCAN is a tool that determines the maximum hosting capacity of
a medium voltage distribution network.

Features of GCAN:
» Determines the capacity of each bus.
» Accounts for the future of the system.

» Relies on the tools that are routinely used by DSOs (repeated
power flows).

» Results may be published in appropriate form (tabular, map,
through the regulator, etc.).

GCAN is not meant to be a replacement for more detailed
computations for generation connection projects.




GCAN procedure
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The procedure is implemented in a rolling horizon manner.
The results are refreshed at each step of the planning horizon.

More information:

B. Cornélusse, D. Vangulick, M. Glavic, D. Ernst: “Global capacity
announcement of electrical distribution systems: A pragmatic
approach”.




GCAN results

Subst. Feeder | Voltage | Gener. | Gener.
name name (kV) (MW) | type
99 FN1 10.0 0.75 PV
2064 FN1 10.0 0.30 PV

Black squares in one-line diagram indicate generation substations.




Investment planning tool

Main software tools

Smart Sizing — determines the main features of the ideal network.
Rating of cables, number of substations, etc.

Smart Planning — development of grid expansion plans.
Change cable between bus 16 and 17 in 2020.

Supporting software tools

Smart Operation — mimics the grid operation. Proxy of o*.
Smart Sampling — provides exogenous data such as load profiles.

Smart

sampling Smart Sizing

Smart Smart
Operation Planning
| -




Smart sampling

Smart Sampling creates calibrated time series models able to
generate synthetic load and generation profiles mimicking the
statistical properties of real measurements.

Advantages

» Compactness: as they are represented by mathematical
formula with a few parameters.

» Information reduction: computational burden can be
reduced by working on a reduced statistically relevant data set.

Blbabn,

Figure : A large set of profiles is reduced to 3 profiles.




Smart Sizing

A tool for long-term planning to find “least cost features of the
distribution network”, taking into account CAPEX/OPEX while
meeting voltage constraint given targets of load and DG
penetration.

Optimum TOTEX

Cost

Size/number of cables and transformers

Smart sizing evaluates the “traditional aspects” just like any
traditional planning tool (number of transformer, infrastructure
cost, cost due to losses, etc.), the benefits of flexibility and the
impact of distributed generation on grid costs. =

D. Ernst 49/81




Smart Planning

The multistage investment planning problem is hard to tackle as
planning decisions are subject to uncertainty.

The smart planning tool schedules optimal investment plans
from today to target architecture (with smart planning) integrating
the optimal future system operation (with smart operation). It
decides:

» The type of grid investment and optimal year of investment,
Install a cable between node A and B in 2016.

» The optimal use of available flexibility,
Load shifting, PV curtailment.

» Reactive power support.
From PV/storage.




Smart Planning - Overview
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Finding o* - Goal
Given an electrical distribution system, described by:

» N and L, the network infrastructure;

v

D, the electrical devices connected to the network;

v

C, a set of operational limits;

» T, the set of time periods in the planning horizon.

We want the best strategy o* which defines the set of power
injections of the devices

{(P4, Qq) | d € D}
to be such that the operational constraints

{g()=0|cec}

are respected for all t € T.




Control actions - curtailment

A curtailment instruction, i.e. an upper limit on the production
level of a generator, can be imposed for some distributed
generators.

Potential prod.
— Modulated prod.

P [MW]
=

Time

Curtailment instruction

The DSO has to compensate for the energy that could not be

produced because of its curtailment instructions, at a price that is
proportional to the amount of curtailed energy. B—




Control actions - load modulation

The consumption of the flexible loads can be modulated, as
described by a modulation signal over a certain time period.

Bascline cons.
s — Modulated cons 12
1
7 0.8
- 0.6
E 0.4 AE,
= 5 Z 02
2
= - 0
=y -
= 502
3 —0.4 AE.
N ~0.6
- 0.8
1 —1
0 2 T T e S G B S S
* Time ot Ty ° t— to (time) tol
Load modulation instruction Load modulation signal

The activation of a flexible load is acquired in exchange for a
fee that is defined by the flexibility provider.




Decisional Framework

We rely on a Markov Decision Process framework for modeling
and decision-making purposes. At each time-step t, the system is
described by its state s; and the control decisions of the DSO are
gathered in a;.

The evolution of the system is governed by:

St4+1 ~ p('|st7 at) )

which models that the next state of the system follows a probabil-
ity distribution that is conditional on the current state and on the
actions taken at the corresponding time step.




Decisional Framework

A cost function evaluates the efficiency of control actions for a
given transition of the system:

cost(s¢,a¢,St41) = curtailment costs +
flex. activation costs +

penalties for violated op. constraints.

Finally, we associate the operational planning problem with the min-
imization of the expected sum of the costs that are accumulated
over a T-long trajectory of the system:

T-1
min E E COSt(St,at,St+1)
ai,...,a7 S1,...,ST

t=1




Computational Challenge

Finding an optimal sequence of control actions is challenging
because of many computational obstacles. The figures illustrate a
simple lookahead policy on an ANM simulator.

Operational costs [€]

20 Power injections [MW]

20 Curtailed production /O
10

3 scenarios in
lookahead model
0t s i o i 3 o T ]

Stochasticity makes it very hard
to always ensure that operational
constraints are met.

10

20

This simulator and a 77-buses test system are available at
http://www.montefiore.ulg.ac.be/~anm/.

More information

Q. Gemine, D. Ernst, B. Cornélusse. “Active network management
for electrical distribution systems: problem formulation,
benchmark, and approximate solution" .
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Centralized real-time controller
The role of the real-time controller is to handle limit violations
observed or predicted close to real-time.
Over/under-voltage, thermal overload.

To bring the system to a safe state, the controller controls the
DG units outputs and adjusts the transformers’ tap positions.
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Multistep optimization problem

Consider a set of control horizon periods 7. For each time step k we solve the
following problem:

min > 7" |[Pg(k+ i) = Prer(k+ D)+ > 7 [|Qe(k + i) = Quer(k +1)°
e iF i€T
where 77 and 7€ are coefficients prioritizing active over reactive control.
Linearized system evolution
Forallie T,

Vik+i|lk)y=V(k+i—1|k)+Sv[ulk+i—1)—u(k+i—2)]
Ik+i|k)=Ik+i—1|k)+S[uk+i—1)—ulk+i—2)]

where Sy and S are sensitivities matrices of voltages and currents with respect

to control changes.

Operational constraints
Forallie T,
VP¥(k+ 1) < V(k4+i| k)< V*(k+i)
I(k+1i]k)<I"(k+1)
Forallie T, _
ymin S U(k+l | k) S umax
Au™ < u(k 40| k) —u(k+i—1]k)<Au™




Network behavior without real-time corrective control
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Network behaviour with real-time corrective control
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Four main challenges of the GREDOR project

Data:
Difficulties for DSOs to gather the right data for building the
decision models (especially for real-time control).

Computational challenges:

Many of the optimization problems in GREDOR are out of reach of
state-of-the-art techniques.

Definition of social_welfare(-, -, -, ) function:

Difficulties to reach a consensus on what is social welfare,
especially given that actors in the electrical sector have conflicting
interests.

Human factor:

Engineers from distribution companies have to break away from
their traditional practices. They need incentives to change their l
working habits. ..
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Microgrid: an essential element for integrating renewable energy




Microgrid
A microgrid is an electrical system that includes multiple loads and
distributed energy resources that can be operated in parallel with
the broader utility grid or as an electrical island. Essential objects
for integrating large amount of renewable energy into distribution

networks.
Micro-grid
Solar arrays Power nglagement Load
Storage




Microgrids and storage

Many authors claim that microgrids should come with two types of
storage device:

» A short-term storage capacity (typically batteries),
» A long-term storage capacity (e.g., hydrogen).

Time scales

Weeks Hydrogen
- Cost is mainly a
function of the power
available

- High storage capacity
available

Days

Batteries
- High working
power available
- Cost is mainly a
function of the

maximum storage
capacity

Hours

Maximum capacity
Output power
Here we study the sizing and the operation of a microgrid powered

by PV panels and having batteries and a long-term storage device l
working with hydrogen. =




Formalization and problem statement: exogenous variables

. PV _B _H.
E: = (ct,it, pyy€p 60, 62)€E, VtET

and with € = RT> x T x EPV x €B x gM

where:
» ¢; [W] € RT is the electricity demand within the microgrid;

> iy [W/mor W/W,] € RT denotes the solar irradiance
incident to the PV panels;

» 1, € T represents the model of interaction;

» ef'V ¢ £PY models the photovoltaic technology;

» eB c £B models the battery technology;

> etH2 € £M2 models the hydrogen storage technology;

» T ={1,2,..., T} represents the discrete time steps.
B




Formalization and problem statement: state space

Let s; € S denotes a time varying vector characterizing the
microgrid's state at time t € T

o= (0,0

)€ S, Vte T and with S = S() x §)
where sgi) e 8 and sfo) € S(©) represent the state information

related to the infrastructure and to the operation of the microgrid,
respectively.

s = (FV xB {2 LBV LB, LR, DB PE RIE iV nft, (B, (L, 1B, rf?) € SOt € T and with SO = R**x Jo,1]7 ,

s§°) = (sB,st?) € 80, vt € T and with §(°) = R*2




Formalization and problem statement: action space

As for the state space, each component of the action vector

a; € A can be related to either notion of the sizing or control, the
former affecting the infrastructure of the microgrid, while the latter
affects its operation. We define the action vector as:

a; = (3, al) € A, Vt € T and with 4, = A0 x A

where a,(fi) e AU relates to sizing actions and a,(fo) € A(to) to

control actions.




A microgrid featuring PV, battery and storage using H> has two
control variables that correspond to the power exchanges between
the battery, the hydrogen storage, and the rest of the system:

al® = (p8,pt2y e A9 vireT,

where pB [W] is the power provided to the battery and with pfb
[W] the power provided to the hydrogen storage device. We have,
VteT:

E—s, Hy _ g2
ALY = (1-cBsB, ) N [-PE, PE]) ([ Cisft, B ]m[—xt”?,xt”?]> :

which expresses that the bounds on the power flows of the storing
devices are, at each time step t € 7, the most constraining among
the ones induced by the charge levels and the power limits.




Robust sizing of a microgrid

Let C be a function defined over the triplet
(state, action, environment) such that C(s;, at, E¢) is the sum of
investment costs and operating costs related to the microgrid over
the period t till t + 1.
Let

E={(ED)e=r.T s (B )e=1.7}
with E/ € £Vt € T,i € {1,..., N} be a set of plausible scenarios
for the exogeneous variables.
We define the robust optimization of the sizing of a microgrid
where investments can only be made at t = 1 by:

,e{nf,a N} 3 e €A;, t'r; (€S, Z Clsieraie. E2)
vteT teT
s.t. sy = f(S, t—1,dit— 1) vt e T\{l}
.t ,(’t) =0, VteT\{1}
s.t. aJ(:% = ag)l, vja k € {17“-7 N}a si(,‘]).) il




Levelized Energy Cost (LEC)

Given a microgrid trajectory (5t73t75t+1)te7' and an environment
trajectory (E;),cs. the LEC, is computed as follows:

n =M,
Zy:l 1+r)y + IO

LEC, = =X 0+
Ly=1 Ty

where
» n = Life of the system (years)
» |, = Investment expenditures in the year y
» M, = Operational revenues in the yeary
» ¢, = Electricity consumption in the year y
» r = Discount rate which may refer to the interest rate or
discounted cash flow

The LEC, represents the price at which electricity must be
generated to break even over the lifetime of the project.




Investment costs

The overall investment cost /, can be written as the sum of the
investments in the PV panels, the battery and the hydrogen:

Iy =17V + 17+ 1j?




Operational costs
We will now associate to each time step a reward function p; that
is a function of the net demand for electricity and the actions:
Pt - (at, dt) —-R
From the reward function p;, we obtain the operational revenues
over year y defined as:
My =D pe

teTy

where 7, is the set of time steps belonging to year y. We now
introduce two variables:
» ¢¢ [W] € RT as the local production of electricity that refers
to the photovoltaic production given by:
PV -
Gr=x"" It

» d; [W] € R as the net demand for electricity that is the
difference between the consumption and the production:

de = ¢t — ¢t




Operational costs

In the case where the microgrid is fully off-grid, we consider that
the microgrid has no possibility to generate any income. The
reward function is therefore equal to the penalty induced by the
energy that was not supplied to follow the demand:

_|kEl, El<o0
pr= 0, otherwise

where Et/ < 0 is the quantity of energy not supplied at time t and
k is the cost endured per kWh. The quantity of energy that the
microgrid alone lacks to cover the consumption is given by:

El = — Z pR—d,, vteT
Re{B,H,»}




Linear programming

In the fully off-grid case, the overall optimization problem can be

written as:
Stk gy
Minimize LEC = =0 @V 70 yioh y — ceif( 1)
e 365
With 0<sP <xB, vte[o,T]
0<pft < PEB veelo,T—1]
-PE<pP <o, vtelo, T-1]
0< st <R, vtelo,T]
0<prtt < xt, vte[o, T-1]
—xt < pfh— <, vee[o, T —1]
-
of =Py +ulpfy + Bt veelLT]
G
sz.*
st = sty nPelty 4 SRk veelt Tl
t—1
Fe<—de—ptt —pt = pitt =, vee 1, 7]

F <0, vte[1, 7]




Results - Belgium

e—e Robust sizing with only battery
e—e Robust sizing with battery and H2 storage
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Figure : LEC in Belgium over 20 years for different investment strategies
as a function of the cost endured per kWh.




Results - Belgium
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Figure : LEC in Belgium over 20 years for a value of loss load of
2€/kWh as a function of a unique price drop for all the constitutive
elements of the microgrid.




Results - Spain

LEC (euro/kWh)

035

0.30

0.25

0.20

0.15

0.10

0.05

e - Non Robust sizing with only battery

e—e Robust sizing with only battery

e -e Non Robust sizing with battery and H2 storage
®—e Robust sizing with battery and H2 storage

Retail price of:electricity

4
k (euro/kWh)

Figure : LEC (r = 2%) in Spain over 20 years for different investment
strategies as a function of the cost endured per kWh not supplied within

the microgrid.
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