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Active network management

Distribution networks traditionally operated according to the fit
and forget doctrine.

Fit and forget.

Network planning is made with respect to a set of critical scenarios
to ensure that sufficient operational margins are always garanteed
(i.e., no over/under voltage problems, overloads) without any
control over the loads or the generation sources.

Shortcomings.

With rapid growth of distributed generation resources, maintaining
such conservative margins comes at continuously increasing
network reinforcement costs.
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The buzzwords for avoiding prohibitively reinforcement costs:
active network management.

Active network management.

Smart modulation of generation sources, loads and storages so as
to safely operate the electrical network without having to rely on
significant investments in infrastructure.
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A first example: How to maximize the PV production within a
low voltage feeder without suffering over-voltages?

What is currently done:

The active power produced by PV panels is 100% curtailed as soon
as over-voltage is observed. The curtailment is done automatically
by the inverter.

Objective:

Why not investige better control schemes for minimizing the
curtailment?
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The low-voltage feeder example:

target the objective given by the retailer. Observe that this number may evolve over time. Consequently, one
has:

8t 2 {0, . . . , T � 1}, nt  N.

We also denote by Mt 2 {0, 1}N a time varying vector that specifies, at every time-step t, whether the j-th
house has joined the community between t and t + 1.

8t 2 {0, . . . , T � 1}, Mt(j) =

⇢
1 if house j is a member of the community,

0 otherelse.

1 0

1

1

2

2

3

3

4

4

5

5

Figure 2.1: Graphic representation of the test network.

2.1.3 Description of each house

We assume that each house j 2 {1, . . . , N} is provided with:

• A quarter-hourly electricity production using PV panels ; such a production is modeled using two
time series, corresponding to the active and reactive power that are injected into the network at time
t 2 {0, . . . , T � 1}. We denote by PPV

j,t and QPV
j,t the active and reactive power that are injected by

the PV panels at time t. We assume that these different values are bounded. One has:

8j 2 {1, . . . , N}, 8t 2 {0, T � 1}, 0  PPV
j,t  PPV,max

j,t

8j 2 {1, . . . , N}, 8t 2 {0, T � 1},
��QPV

j,t

��  QPV,max
j,t

Note that, by convention, we assume that the active power injected into the network needs to be greater
than 0, i.e.:

8j 2 {1, . . . , N}, 8t 2 {0, T � 1}, PPV
j,t � 0.

Also, note that QPV,max
j,t is a function of PPV,max

j,t .
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Figure 2.2: Electrical model of the network.

2. The active power injected into the network needs to be smaller than the maximum amount of power
that can be generated by the PV installation. Let PPV,max

j,t denote this maximum amount of power.
Note that in this work PPV,max

j,t is assumed to depend only on sunshine. This may be a quite limitative
assumption since once it starts delivering active power, a PV installation may take a few instants to
reach its maximum power output.

3. Since the current outputted by the PV inverter is limited for technical reasons, we consider a limit
on the apparent power delivered by the PV installation j. It has to stay below SPV,max

j,t . The appar-
ent power SPV

j,t outputted by installation j can be computed from active and reactive power in the
following way:

8j 2 {1, . . . , N}, 8t 2 {0, . . . , T � 1}, SPV
j,t =

q�
PPV

j,t

�2
+
�
QPV

j,t

�2
. (2.1)

Other assumptions related to the network. For every test network that may be considered in the follow-
ing of this document, we assume that:

1. The electrical distances between two neighboring houses are the same and all electrical cables have
the same electric properties, i.e.:

Yi,i+1 = Yj,j+1, 8i, j 2 {0, 3, . . . , N � 1}

2. The nominal voltage of the network is 400 V,

3. The value of the impedance of the Thévenin equivalent YTh is equal to 0.0059 + j0.0094 ⌦,

4. The value of Thévenin voltage is equal to 420 V.

As a consequence, for having a fully defined energy-based prosumer community, we just need to define the
four following quantities:

• The number of houses N and the number of houses belonging to the community at every time-step
nt,

8
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Control actions:
At every time-step, for such a problem, various decisions can
typically be taken regarding the feeder:

I Curtailing the PV active power / activating reactive power

I Charging or discharging batteries

I Managing the demand
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Modeling the load (SLP) and PV production (from Belgian data)
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The current (and basic) approach

Principle:

As soon as an over-voltage is observed at a bus, the corresponding
inverter disconnects the PV panels from the feeder during a
pre-determined period of time.

∀j ∈ {1, . . . ,N}, ∀t ∈ {0, . . . ,T − 1},PPV
j ,t =

{
0 if Vj ,t > Vmax ,

PPV ,max
j ,t otherwise.

This control scheme, which is currently the one that is applied in
practice, will be considered as the reference strategy.
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Effects of the current (and basic) control scheme on the load and
the PV production
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The centralized optimization approach

Principle:
Solve an optimization problem over the set of all inverters:

(
PPV∗

1,t ,QPV∗
1,t , . . . ,PPV∗

N,t ,Q
PV∗
N,t

)
∈ arg min

PPV
1,t ,Q

PV
1,t ,...,P

PV
N,t ,Q

PV
N,t

N∑

j=1

PPV ,max
j,t −PPV

j,t

subject to

h(PPV
1,t ,Q

PV
1,t , . . . ,P

PV
N,t ,Q

PV
N,t ,V1,t , . . . ,VN,t , θ1,t , . . . , θN,t) = 0

V min ≤ |Vj,t | ≤ V max, j = 1, . . . ,N

0 ≤ PPV
j,t ≤ PPV ,max

j,t , j = 1, . . . ,N

|QPV
j,t | ≤ g(PPV

j,t ), j = 1, . . . ,N
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Effects of the centralized optimization approach on the load and
the PV production

Potential gain in this example:

Curtailed energy with the basic approach: 31.63 kWh
Curtailed energy with the centralized approach: 21.38 kWh
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Towards decentralized approaches

Principle:

We are investigating control schemes that would only need local
information. These control schemes work by measuring the
sensitivity of the voltage (measured locally by the inverter) with
respect to the injections of active and reactive power.
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State transition diagram of the distributed control scheme:

Mode A
Pset = PMPP

Qset = Qf

Mode B
Pset = PMPP

Qset → −Qmax

until t = tDQ

Mode C
Pset → 0

Qset = −Qmax

until t = tDP

Mode D
Pset → PMPP

Qset = −Qmax

until t = tRP

Mode E
Pset = PMPP

Qset → Qf

until t = tRQ

Signal received

t > tDQ and signal persists:
Qset = −Qmax reached

No more signal for Treset

Signal received

No more signal for Treset

Signal received

t > tRP :
Pset = PMPP reached

t > tRQ :
Qset = Qf (Vtm,Pset) reached

D. Ernst 14/81



I The red dotted lines are the emergency control transitions
while blue dashed lines are the restoring ones.

I tDQ (resp. tDP) is the time needed in Mode B (resp.
Mode C) to use all available reactive (resp. active) controls.

I Treset is the elapsed time without emergency signal for the
controller to start restoring active/reactive power.

I tRP (resp. tRQ) is the time needed in Mode D (resp. Mode E)
to restore active (resp. reactive) power to the set point values
of Mode A.

I Pset and Qset are the active and reactive power set points of
the controller.

I PMPP is the maximum available active power of the PV
module and depends on the solar irradiation.

I Qmax is the maximum available reactive power; it varies
according to the capability curve as a function of the active
power output.
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Maximum PV active power that could be produced
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Reactive power produced by the PV
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The GREDOR project.

Redesigning in an integrated way the whole decision chain that is
used for managing distribution networks in order to perform active
network management optimally (i.e., maximisation of social
welfare).
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Decision chain

The four stages of the decision chain for managing distribution
networks:

1. Interaction models

2. Investments

3. Operational planning

4. Real-time control
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1. Interaction models
An interaction model defines the flows of information, services and
money between the different actors. Defined (at least partially) in
the regulation.

Example: The Distribution System Operator (DSO) may curtail a
wind farm at a regulated activation cost.

2. Investments
Planning of the investments needed to upgrade the network.

Examples: Decisions to build new cables, investing in
telemeasurements, etc.
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3. Operational planning

Decisions taken a few minutes to a few days before real-time.
Decisions that may interfere with energy markets.

Example: Decision to buy the day-ahead load flexibility to solve
overload problems.

4. Real-time control
Virtually real-time decisions. In the normal mode (no emergency
situation caused by an “unfortunate event”), these decisions
should not modify production/consumption over a market period.

Examples: modifying the reactive power injected by wind farms
into the network, changing the tap setting of transformers.
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GREDOR as an optimization problem

M : Set of possible models of interaction
I : Set of possible investment strategies
O : Set of possible operational planning strategies
R : Set of possible real-time control strategies

Solve:

arg max
(m,i ,o,r)∈M×I×O×R

social welfare(m, i , o, r)
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A simple example

M: Reduced to one single element.

Interaction model mainly defined by these two components:

1. The DSO can buy the day-ahead load flexibility service.

2. Between the beginning of every market period, it can decide
to curtail generation for the next market period or activate
the load flexibility service. Curtailment decisions have a cost.

0h00 24h00
Time

Intra-dayDay-ahead

Stage 0 ...

Period 1 2 T...

...

...

...

Control actions
u0

u1 uT

Uncertain variables !1 !T

System state x1 x2 xTxT-1

1 2 T

x0
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I: Made of two elements. Either to invest in an asset A or not to
invest in it.

O: The set of operational strategies is the set of all algorithms
that:

(i) In the day-ahead process information available to the DSO to
decide which flexible loads to buy

(ii) Process before every market period this information to decide
I how to modulate the flexible loads
I how to curtail generation.

R: Empty set. No real-time control implemented.

social welfare(m, i , o, r): The (expected) costs for the DSO.
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The optimal operational strategy

Let o∗ be an optimal operational strategy. Such a strategy has the
following characteristics:

1. For every market period, it leads to a safe operating point of
the network (no overloads, no voltage problems).

2. There are no strategies in O leading to a safe operating point
and having a lower (expected) total cost than o∗. This cost is
defined as the cost of buying flexiblity plus the costs for
curtailing generation.

It can be shown that the optimal operation strategy can be written
as a stochastic sequential optimization problem.

Solving this problem is challenging. Getting even a good
suboptimal solution may be particularly difficult for large
distribution networks and/or when there is strong uncertainty on
the power injected/withdrawn day-ahead.
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Illustrative problem
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Solar
aggregated

Wind

Residential
aggregated Industrial

When Distributed Generation (DG)
sources produce a lot of power:

I overvoltage problem at Bus 4,

I congestion problem on the MV/HV
transformer.

Two flexible loads; only three market periods; possibility to curtail
the two DG sources before every market period (at a cost).
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Information available to the DSO on the day-ahead

The flexible loads offer:
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6

increase the dimensions of the problem. In the following
sections, we describe results obtained on a small test system,
with a short time horizon and a moderate number of scenarios.
In the concluding section, we discuss pitfalls and avenues for
solving realistic scale instances.

Case Study

We analyze issues arising at the MV level in some Belgian
distribution systems (Figure 5). Often, wind-farms are directly
connected to the HV/MV transformer, as modeled in our test
system by the generator connected to bus 2. Power off-takes
and injections induced by residential consumers are aggregated
at bus 4 by a load and a generator representing the total
production of PV panels. Finally, the load connected to bus 5
represents an industrial consumer.

HV

MV       Bus 1

Bus 3

Bus 2 Bus 4 Bus 5

Solar
aggregated

Wind

Residential
aggregated Industrial

Fig. 5: Model of distribution network used for the case study.

The cumulative capacity of DG units exceeds the capacity
of the HV/MV transformer. This leads to congestion issues
when, within the distribution network, high generation and
low consumption arise simultaneously. Voltage rises can also
be induced in the downstream nodes because the power flow
is mainly directed towards the transformer. On the other hand,
when the local generation level is low and loads consumption
is high, the power flow is inverted, and this can lead to
undervoltage problems.

The optimization horizon covers three periods. The procure-
ment of load flexibility occurs before the first period. The
stochastic process associated with this time horizon relates to
the uncertainty on the production of renewable generators. It is
modeled through two random variables W and S which define
the efficiency factors of wind and PV generators, respectively
(cf. Figure 6a). The actual output level of a DG unit is
thus its maximum capacity scaled by the associated efficiency
factor. Figure 6a shows the scenario tree used for this case
study, comprising eight possible scenarios. As both random
variables model natural phenomena (wind level and sunshine),
we expect uncertainty to increase as we move away from
real-time. This is modeled by an increase in the standard
deviation associated with the random process, as shown on
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(a) Scenario tree used for the case study. The nodes show the values of
the random variables and the label on the edges define the transition
probabilities between nodes.

●

●

●

1 2 3

2
4

6
8

10
12

14

Period

To
ta

l g
en

er
at

io
n 

of
 D

G
 u

ni
ts

 in
 M

W

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

(b) Cumulative level of power injected by the DG vs. time. Dotted lines
represent scenarios and the solid line corresponds to the mean scenario.

Fig. 6: Representation of uncertainty.

Figure 6b. Unlike renewable generators, the two loads have
peak consumption during the first two periods. However,
both can provide flexibility. The baseline demand profile and
the upward and downward modulation limits are shown in
Figure 7. We define the flexibility price, pf , such that the
flexibility fees at buses 4 (aggregated residential load) and
5 (industrial load) equal pf and 1.5pf , respectively.

We compare two sequential decision-making policies:

• the mean scenario approach (MSA): the procurement of
flexibility is first determined by optimizing over the mean
scenario. The mean scenario is updated at each recourse
stage, and we solve an optimization problem for each stage
while following the nodes defining the scenario in the tree
and fixing the variables related to former periods (i.e.,
ancestor nodes). This method is evaluated for each scenario
of the case study.

• the scenario tree approach (STA): this policy solves the
problem by optimizing over the whole scenario tree, as
described in formulation (15)–(20). Load flexibility is also
evaluated using this stochastic formulation.

W = Wind; S = Sun.

Additional information: a load-flow model of the network; the price
(per MWh) for curtailing generation.
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Decisions output by o∗

The day-ahead: To buy flexibility offer from the residential
aggregated load.

Before every market period: We report results when generation
follows this scenario.
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Fig. 7: Flexible loads, with P , P and P represented respec-
tively by dashed, continuous and dotted lines.
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Fig. 8: Selected scenario

Scenario analysis

Interest of the stochastic model

The first thing to notice from the results presented in Table ??
is that the cost of operation achieved by STA is smaller than
the one achieved with MSA. In addition to reaching a better
objective value, STA also ensures less variables costs over the
set of scenarios.

E{cost} max cost min cost std. dev.
MSA 73$ 770$ 0$ 174$
STA 46$ 379$ 30$ 72$

TABLE I: Results for both optimization techniques over all
the scenarios. The best value of each column is in bold.

If MSA is able to reach a cost of zero for (at least) one
scenario, it is to the expense of a subset of the possible
scenarios. The sub-optimality of MSA can quite easily be
understood :

• The decision of buying DSM offers in day-ahead is not
made as a compromise given the credible futures but only
determined through a fixed scenario.

• Similarly, the modulation of the loads is not spread over
all the periods by taking into account the set of possible
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Fig. 9: Flexibility cost analysis.

scenarios.

In the considered case study, the mean scenario technique
make the decision not to buy flexibility while the tree-based
approach only buy the flexibility of the residential load.

Interest of loads’ flexibility

Highlight ability to detect whether DSM is interesting as
function of bid prices vs. issues in the system.

cf. Figure ?? !! To update with new case study !!

Implementation and algorithmic details

It is not easy to find a solver that can manage this MINLP, even
on such a small test system. We made several experiments with
SCIP [?] (with and without IPOPT to solve node relaxations),
IPOPT [?] and Knitro [?]. Finally, we decided to implement a
custom branch-and-bound algorithm that can use both IPOPT
and Knitro to solve the NLP node relaxations. We observed
that solutions of the optimization programs were insensitive
to the choice of the NLP solver.

Conclusion and Future Work

This paper proposes a novel formulation of the ANM problem
as a problem of optimal sequential decision-making under
uncertainty. We showed on a small case study that our formu-
lation is capable of efficiently tackling the problem in question
by explicitly accounting for uncertainty and allowing for the
utilization of the demand-side operational flexibility. As the
scope of this paper is to serve as a proof-of-concept, the next
step of this research is to enable the application of this proposal
on realistic systems.

The major obstacles to this are the lack of information
available on the demand side, the lack of legal and technical

Results:
Generation never curtailed.
Load modulated as follows:
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On the importance of managing uncertainty well

E{cost} max cost min cost std dev .

o∗ 46$ 379$ 30$ 72$

MSA 73$ 770$ 0$ 174$

where MSA stands for Mean Scenario Strategy.

Observations:
Managing uncertainty well leads to lower expected costs than
working along a mean scenario.

More results in:
Q. Gemine, E. Karangelos, D. Ernst and B. Cornélusse. “Active network

management: planning under uncertainty for exploiting load modulation”.
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The optimal investment strategy

Remember that we had to choose between making investment A or
not. Let AP be the recovery period and cost A the cost of
investment A. The optimal investment strategy can be defined as
follows:

1. Simulate using operational strategy o∗ the distribution
network with element A several times over a period of AP
years. Extract from the simulations the expected cost of using
o∗ during AP years. Let cost o∗ with A be this cost.

2. Simulate using operational strategy o∗ the distribution
network without element A several times over a period of AP
years. Extract from the simulations the expected cost of using
o∗ during AP years. Let cost o∗ without A be this cost.

3. If cost A + cost o∗ with A ≤ cost o∗ without A, do
investment A. Otherwise, not.
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Solving the GREDOR optimization problem

Solving the complete optimization problem

arg max
(m,i ,o,r)∈M×I×O×R

social welfare(m, i , o, r)

in a single step is too challenging. Therefore, the problem has been
decomposed in 4 subproblems:

1. Finding m∗, the optimal interaction model,

2. Finding i∗, the optimal investment strategy,

3. Finding o∗, the optimal operation strategy,

4. Finding r∗, the optimal real-time control strategy.
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Finding m∗

The set M of interaction models is only limited by our
imagination. In the GREDOR project, we have selected four
interaction models to study in more detail.

These interaction models are defined by:

1. The type of access contract between the users of the grid and
the DSO,

2. The financial compensation of flexibility services.

For simplicity, we focus only on the access contract feature of the
interaction models in this presentation.

More information
S. Mathieu, Q. Louveaux, D. Ernst, and B. Cornélusse, “DSIMA: A
testbed for the quantitative analysis of interaction models within
distribution networks”.
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Access agreement

The interaction models are based on access contracts.

I The grid user requests access to a given bus.

I The DSO grants a full access range and a flexible
access range.

I The width of these ranges depends on the interaction
model.
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Flow of interactions
One method to obtain social welfare(m, i , o, r) is to simulate the
distribution system with all its actors and compute the surpluses
and costs of each of them. This simulation requires us to:

1. Define all decision stages as function of m,

2. Simulate the reaction of each actor to m.

Time

Producers
& Retailers

TSO

DSO

Flexibility
platform

Global
baseline

Local
baselines

Flexibility
needs

Flexibility
offers

Flexibility
contracts

Flexibility
activation

requests

Settlement
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One day in the life of a producer selling flexibility services
A producer performs the following actions:

1. Sends its baseline to the TSO at the high-voltage level.
I will produce 15MWh in distribution network 42 between 8am

and 9am.

2. Sends its baseline to the DSO at the medium-voltage level.
I will produce 5MWh in bus 20 between 8am and 9am.

3. Obtains flexibility needs of the flexibility services users.
The DSO needs 3MWh downward in bus 20 between 8am and

9am.

4. Proposes flexibility offers.
I can curtail my production by 2MWh in bus 20 between 8am and

9am.

5. Receives activation requests for the contracted services.
Curtail production by 1MWh in bus 20 between 8am and 9am.

6. Decides the final realizations.
Produce 4MWh, or 5MWh if more profitable, in bus 20 between

8am and 9am.
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Parameters of the interaction models
The implementation of the models are based on 3 access contracts:

I “Unrestricted” access: Allow the grid users access to the
network without restriction.

I “Restricted” access: Restrict the grid users so that no
problems can occur.

I “Flexible” access: Allow the users to produce/consume as
they wish but if they are in the flexible range, they are
obliged to propose flexibility services to the DSO.

In this presentation, we assume that these flexibility services
are paid by the DSO at a cost which compensates the
imbalance created by the activation of the service.
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Effects of the access range on the baseline of an actor
The access restriction of the DSO is shown by the red dotted line.

Time

Power

Figure : Unrestricted access
Time

Power

Figure : Restricted access

Time

Power

Full access range

Flexible access range

Figure : Flexible access - The filled areas represents the energy curtailed
by the DSO by the activation of mandatory flexibility services.
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Back to our optimization problem

These models are studied for a given investment, operation
planning and real-time control strategy, i.e. one strategy (i , o, r).

arg max
(m,i ,o,r)∈M×I×O×R

social welfare(m, i , o, r)

Consider the simplified subset of interaction models
M = {“unrestricted”, “restricted”, “flexible”}.
social welfare(m, i , o, r): the sum of the surpluses minus the
costs of all actors and a cost given by the protection scheme of the
real-time control strategy.
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Open-source testbed
The testbed evaluating interaction models is available as an open
source code at the address

http://www.montefiore.ulg.ac.be/~dsima/.

It is based on an agent-based model where every agent solves an
optimization problem for each decision stage.

Figure : Screenshot of the user interface: daily results.
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Comparison of the interaction models
Simulation of a 75 bus system in an expected 2025 year with 3
producers and 3 retailers owning assets connected to the DN.

Interaction model Unrestricted Restricted Flexible

Welfare 29077 27411 39868 e
Protections cost 12071 0 914 e
TSO surplus 2878 2879 2873 e
DSO costs 0 0 444 e
Producers surplus 37743 24005 37825 e
Retailers surplus 527 527 528 e

Table : Mean daily welfare and its distribution between the actors.

Key messages

Unrestricted: Too much renewable production leading to high
protections cost. Who would pay this cost?
Restricted: Little allowed renewable generation but a secure
network.
Flexible: Large amount of renewable generation but still requiring
a few sheddings due to coordination problems.
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Coordination problem

The model “flexible” suffers from the lack of coordination
between the DSO and the TSO.

Assume that the flow exceeds the capacity of line 3 by 1MW. To
solve this issue, the DSO curtails a windmill by 1MW. In the same
time, assume that the TSO asks a storage unit to inject 0.4MW.
These activations leads to a remaining congestion of 0.4MW.
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Finding i∗

The investment strategy i∗ is divided in two parts:

1. Announcing the capacity of renewables that may be connected
to the network: Global Capacity ANnouncement.

2. Determining the target optimal network: Investment
planning tool.
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GCAN: Global Capacity ANnouncement

GCAN is a tool that determines the maximum hosting capacity of
a medium voltage distribution network.

Features of GCAN:

I Determines the capacity of each bus.

I Accounts for the future of the system.

I Relies on the tools that are routinely used by DSOs (repeated
power flows).

I Results may be published in appropriate form (tabular, map,
through the regulator, etc.).

GCAN is not meant to be a replacement for more detailed
computations for generation connection projects.
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GCAN procedure

The procedure is implemented in a rolling horizon manner.
The results are refreshed at each step of the planning horizon.

More information:
B. Cornélusse, D. Vangulick, M. Glavic, D. Ernst: “Global capacity
announcement of electrical distribution systems: A pragmatic
approach”.
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GCAN results

Subst. Feeder Voltage Gener. Gener.
name name (kV) (MW) type
99 FN1 10.0 0.75 PV
2064 FN1 10.0 0.30 PV
... ... ... ... ...

Black squares in one-line diagram indicate generation substations.
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Investment planning tool

Main software tools
Smart Sizing – determines the main features of the ideal network.

Rating of cables, number of substations, etc.

Smart Planning – development of grid expansion plans.
Change cable between bus 16 and 17 in 2020.

Supporting software tools

Smart Operation – mimics the grid operation. Proxy of o∗.
Smart Sampling – provides exogenous data such as load profiles.

Smart	Sizing

Smart	
Operation

Smart	
Sampling

Smart	
Planning output
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Smart sampling
Smart Sampling creates calibrated time series models able to
generate synthetic load and generation profiles mimicking the
statistical properties of real measurements.

Advantages

I Compactness: as they are represented by mathematical
formula with a few parameters.

I Information reduction: computational burden can be
reduced by working on a reduced statistically relevant data set.

Figure : A large set of profiles is reduced to 3 profiles.
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Smart Sizing
A tool for long-term planning to find “least cost features of the
distribution network”, taking into account CAPEX/OPEX while
meeting voltage constraint given targets of load and DG
penetration.

Smart sizing evaluates the “traditional aspects” just like any
traditional planning tool (number of transformer, infrastructure
cost, cost due to losses, etc.), the benefits of flexibility and the
impact of distributed generation on grid costs.

D. Ernst 49/81



Smart Planning

The multistage investment planning problem is hard to tackle as
planning decisions are subject to uncertainty.

The smart planning tool schedules optimal investment plans
from today to target architecture (with smart planning) integrating
the optimal future system operation (with smart operation). It
decides:

I The type of grid investment and optimal year of investment,
Install a cable between node A and B in 2016.

I The optimal use of available flexibility,
Load shifting, PV curtailment.

I Reactive power support.
From PV/storage.
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Smart Planning - Overview
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Finding o∗ - Goal

Given an electrical distribution system, described by:

I N and L, the network infrastructure;

I D, the electrical devices connected to the network;

I C, a set of operational limits;

I T , the set of time periods in the planning horizon.

We want the best strategy o∗ which defines the set of power
injections of the devices

{(Pd ,Qd) | d ∈ D}

to be such that the operational constraints

{gc(·) ≥ 0 | c ∈ C}

are respected for all t ∈ T .
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Control actions - curtailment
A curtailment instruction, i.e. an upper limit on the production
level of a generator, can be imposed for some distributed
generators.

Curtailment instruction

The DSO has to compensate for the energy that could not be
produced because of its curtailment instructions, at a price that is
proportional to the amount of curtailed energy.
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Control actions - load modulation

The consumption of the flexible loads can be modulated, as
described by a modulation signal over a certain time period.

Load modulation instruction Load modulation signal

The activation of a flexible load is acquired in exchange for a
fee that is defined by the flexibility provider.
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Decisional Framework

We rely on a Markov Decision Process framework for modeling
and decision-making purposes. At each time-step t, the system is
described by its state st and the control decisions of the DSO are
gathered in at .

The evolution of the system is governed by:

st+1 ∼ p(·|st , at) ,

which models that the next state of the system follows a probabil-
ity distribution that is conditional on the current state and on the
actions taken at the corresponding time step.
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Decisional Framework

A cost function evaluates the efficiency of control actions for a
given transition of the system:

cost(st , at , st+1) = curtailment costs +

flex. activation costs +

penalties for violated op. constraints.

Finally, we associate the operational planning problem with the min-
imization of the expected sum of the costs that are accumulated
over a T -long trajectory of the system:

min
a1,...,aT

E
s1,...,sT

(
T−1∑

t=1

cost(st , at , st+1)

)
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Computational Challenge

Finding an optimal sequence of control actions is challenging
because of many computational obstacles. The figures illustrate a
simple lookahead policy on an ANM simulator.

This simulator and a 77-buses test system are available at

http://www.montefiore.ulg.ac.be/~anm/.

More information
Q. Gemine, D. Ernst, B. Cornélusse. “Active network management
for electrical distribution systems: problem formulation,
benchmark, and approximate solution”.
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Centralized real-time controller
The role of the real-time controller is to handle limit violations
observed or predicted close to real-time.

Over/under-voltage, thermal overload.

To bring the system to a safe state, the controller controls the
DG units outputs and adjusts the transformers’ tap positions.
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Multistep optimization problem
Consider a set of control horizon periods T . For each time step k we solve the
following problem:

min
Pg ,Qg

∑
i∈T

πP ‖Pg (k + i)− Pref (k + i)‖2 +
∑
i∈T

πC ‖Qg (k + i)− Qref (k + i)‖2

where πP and πC are coefficients prioritizing active over reactive control.

Linearized system evolution
For all i ∈ T ,

V (k + i | k) = V (k + i − 1 | k) + SV [u(k + i − 1)− u(k + i − 2)]

I (k + i | k) = I (k + i − 1 | k) + SI [u(k + i − 1)− u(k + i − 2)]

where SV and SI are sensitivities matrices of voltages and currents with respect
to control changes.

Operational constraints
For all i ∈ T ,

V low (k + i) ≤ V (k + i | k) ≤ V up(k + i)

I (k + i | k) ≤ I up(k + i)

For all i ∈ T ,
umin ≤ u(k + i | k) ≤ umax

∆umin ≤ u(k + i | k)− u(k + i − 1 | k) ≤ ∆umax

D. Ernst 59/81



Network behavior without real-time corrective control
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Network behaviour with real-time corrective control

Figure : Active power Figure : Reactive power

Figure : Voltages
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Four main challenges of the GREDOR project

Data:
Difficulties for DSOs to gather the right data for building the
decision models (especially for real-time control).

Computational challenges:

Many of the optimization problems in GREDOR are out of reach of
state-of-the-art techniques.

Definition of social welfare(·, ·, ·, ·) function:

Difficulties to reach a consensus on what is social welfare,
especially given that actors in the electrical sector have conflicting
interests.

Human factor:
Engineers from distribution companies have to break away from
their traditional practices. They need incentives to change their
working habits.

D. Ernst 62/81



Acknowledgements

1. To all the partners of the GREDOR project:

2. To the Public Service of Wallonia - Department of Energy and
Sustainable Building for funding this research.

D. Ernst 63/81



GREDOR project website

More information, as well as the list of all our published scientific
papers are available at the address:

https://www.gredor.be
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Outline

Active network management

Rethinking the whole decision chain - the GREDOR project
GREDOR as an optimization problem
Finding m∗, the optimal interaction model
Finding i∗, the optimal investment strategy
Finding o∗, the optimal operation strategy
Finding r∗, the optimal real-time control strategy
Conclusion

Microgrid: an essential element for integrating renewable energy
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Microgrid
A microgrid is an electrical system that includes multiple loads and
distributed energy resources that can be operated in parallel with
the broader utility grid or as an electrical island. Essential objects
for integrating large amount of renewable energy into distribution
networks.
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Microgrids and storage
Many authors claim that microgrids should come with two types of
storage device:

I A short-term storage capacity (typically batteries),
I A long-term storage capacity (e.g., hydrogen).

Here we study the sizing and the operation of a microgrid powered
by PV panels and having batteries and a long-term storage device
working with hydrogen.
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Formalization and problem statement: exogenous variables

Et = (ct , it ,µt , e
PV
t , eBt , e

H2
t ) ∈ E , ∀t ∈ T

and with E = R+2 × I × EPV × EB × EH2 ,

where:

I ct [W ] ∈ R+ is the electricity demand within the microgrid;

I it [W /m or W /Wp] ∈ R+ denotes the solar irradiance
incident to the PV panels;

I µt ∈ I represents the model of interaction;

I ePVt ∈ EPV models the photovoltaic technology;

I eBt ∈ EB models the battery technology;

I eH2
t ∈ EH2 models the hydrogen storage technology;

I T = {1, 2, . . . ,T} represents the discrete time steps.
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Formalization and problem statement: state space

Let st ∈ S denotes a time varying vector characterizing the
microgrid’s state at time t ∈ T :

st = (s
(i)
t , s

(o)
t ) ∈ S, ∀t ∈ T and with S = S(i) × S(o) ,

where s
(i)
t ∈ S(i) and s

(o)
t ∈ S(o) represent the state information

related to the infrastructure and to the operation of the microgrid,
respectively.

s
(i)
t = (xPV

t , xB
t , x

H2
t , LPV

t , LB
t , L

H2
t ,DB

t ,P
B
t ,R

H2
t , ηPVt , ηBt , η

H2
t , ζBt , ζ

H2
t , rBt , r

H2
t ) ∈ S(i) ∀t ∈ T and with S(i) = R+9× ]0, 1]7 ,

s
(o)
t = (sBt , s

H2
t ) ∈ S(o), ∀t ∈ T and with S(o) = R+2
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Formalization and problem statement: action space

As for the state space, each component of the action vector
at ∈ A can be related to either notion of the sizing or control, the
former affecting the infrastructure of the microgrid, while the latter
affects its operation. We define the action vector as:

at = (a
(i)
t , a

(o)
t ) ∈ At , ∀t ∈ T and with At = A(i) ×A(o)

t ,

where a
(i)
t ∈ A(i) relates to sizing actions and a

(o)
t ∈ A(o)

t to
control actions.
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A microgrid featuring PV, battery and storage using H2 has two
control variables that correspond to the power exchanges between
the battery, the hydrogen storage, and the rest of the system:

a
(o)
t = (pB

t , p
H2
t ) ∈ A(o)

t ,∀t ∈ T ,

where pB
t [W ] is the power provided to the battery and with pH2

t

[W ] the power provided to the hydrogen storage device. We have,
∀t ∈ T :

A(o)
t =

(
[−ζBt sBt ,

xBt −sBt
ηBt

] ∩ [−PB
t ,P

B
t ]
)
×
(

[−ζH2
t sH2

t ,
R

H2
t −s

H2
t

η
H2
t

] ∩ [−xH2
t , xH2

t ]

)
,

which expresses that the bounds on the power flows of the storing
devices are, at each time step t ∈ T , the most constraining among
the ones induced by the charge levels and the power limits.
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Robust sizing of a microgrid
Let C be a function defined over the triplet
(state, action, environment) such that C (st , at ,Et) is the sum of
investment costs and operating costs related to the microgrid over
the period t till t + 1.
Let

E = {(E 1
t )t=1...T , ..., (EN

t )t=1...T}
with E i

t ∈ E ,∀t ∈ T , i ∈ {1, . . . ,N} be a set of plausible scenarios
for the exogeneous variables.
We define the robust optimization of the sizing of a microgrid
where investments can only be made at t = 1 by:

max
i∈{1,...,N}

min
ai,t∈Ai,t ,si,t∈S,

∀t∈T

∑

t∈T
C (si ,t , ai ,t ,E

i
t )

s.t. si ,t = f (si ,t−1, ai ,t−1) , ∀t ∈ T \{1}
s.t. a

(i)
i ,t = 0 , ∀t ∈ T \{1}

s.t. a
(i)
j ,1 = a

(i)
k,1 , ∀j , k ∈ {1, ...,N}, s

(o)
i ,1 = 0
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Levelized Energy Cost (LEC)

Given a microgrid trajectory (st , at , st+1)t∈T and an environment
trajectory (Et)t∈T , the LECr is computed as follows:

LECr =

∑n
y=1

Iy−My

(1+r)y
+ I0∑n

y=1
εy

(1+r)y

where

I n = Life of the system (years)

I Iy = Investment expenditures in the year y

I My = Operational revenues in the year y

I εy = Electricity consumption in the year y

I r = Discount rate which may refer to the interest rate or
discounted cash flow

The LECr represents the price at which electricity must be
generated to break even over the lifetime of the project.
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Investment costs

The overall investment cost Iy can be written as the sum of the
investments in the PV panels, the battery and the hydrogen:

Iy = IPVy + IBy + IH2
y
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Operational costs
We will now associate to each time step a reward function ρt that
is a function of the net demand for electricity and the actions:

ρt : (at , dt)→ R

From the reward function ρt , we obtain the operational revenues
over year y defined as:

My =
∑

t∈τy
ρt

where τy is the set of time steps belonging to year y. We now
introduce two variables:

I φt [W ] ∈ R+ as the local production of electricity that refers
to the photovoltaic production given by:

φt = xPV it

I dt [W ] ∈ R as the net demand for electricity that is the
difference between the consumption and the production:

dt = ct − φt
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Operational costs

In the case where the microgrid is fully off-grid, we consider that
the microgrid has no possibility to generate any income. The
reward function is therefore equal to the penalty induced by the
energy that was not supplied to follow the demand:

ρt =

{
k E l

t , E l
t < 0

0, otherwise

where E l
t < 0 is the quantity of energy not supplied at time t and

k is the cost endured per kWh. The quantity of energy that the
microgrid alone lacks to cover the consumption is given by:

E l
t = −

∑

R∈{B,H2}
pR
t − dt , ∀t ∈ T
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Linear programming

In the fully off-grid case, the overall optimization problem can be
written as:

Minimize LEC =

∑T−1
t=0

−k Ft
(1+r)y + I0∑n

y=1
εy

(1+r)y
with y = ceil(

t

365
)

With 0 ≤ sBt ≤ xB , ∀t ∈ [0,T ]

0 ≤ pB,+
t ≤ PB , ∀t ∈ [0,T − 1]

− PB
t ≤ pB,−

t ≤ 0, ∀t ∈ [0,T − 1]

0 ≤ sH2
t ≤ RH2 , ∀t ∈ [0,T ]

0 ≤ pH2,+
t ≤ xH2 , ∀t ∈ [0,T − 1]

− xH2 ≤ pH2,−
t ≤ 0, ∀t ∈ [0,T − 1]

sBt = sBt−1 + ηBt pB,+
t−1 +

pB,−
t−1

ζBt−1

, ∀t ∈ [1,T ]

sH2
t = sH2

t−1 + ηBt pH2,+
t−1 +

pH2,−
t−1

ζH2
t−1

, ∀t ∈ [1,T ]

Ft ≤ −dt − pB,+
t − pB,−

t − pH2,+
t − pH2,−

t , ∀t ∈ [1,T ]

Ft ≤ 0, ∀t ∈ [1,T ]
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Results - Belgium

Figure : LEC in Belgium over 20 years for different investment strategies
as a function of the cost endured per kWh.
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Results - Belgium

Figure : LEC in Belgium over 20 years for a value of loss load of
2e/kWh as a function of a unique price drop for all the constitutive
elements of the microgrid.

D. Ernst 79/81



Results - Spain

Figure : LEC (r = 2%) in Spain over 20 years for different investment
strategies as a function of the cost endured per kWh not supplied within
the microgrid.
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