
University of Liège
Faculty of Applied Sciences

Department of Electrical Engineering and Computer Science
Montefiore Institute

An Efficient and Flexible
Software Tool

for
Genome-Wide Association

Interaction Studies-

Academic year
2015-2016

PhD thesis by
Van Lishout François

Promotor
Prof. Dr. Dr. Van Steen Kristel

Jury members

Boigelot Bernard (president) Professor, University of Liège (Montefiore Institute)
Van Steen Kristel (promotor) Professor, University of Liège (GIGA-R)
Wehenkel Louis Professor, University of Liège (Montefiore Institute)
Farnir Frédéric Professor, University of Liège (Faculty of Veterinary Medicine)
König Inke Professor, University of Lübeck (Med. Biometrie & Stat. Inst.)
Van der Spek Peter Professor, Erasmus MC Rotterdam (Bioinformatics Department)

Liège, 2016

Thesis submitted in fulfilment of the requirements for the degree of Doctor in Electrical
Engineering and Computer Science

i

Acknowledgements

First of all, I would like to express my deepest gratitude to my promotor, professor
Kristel Van Steen. She gave me the chance to work in a good multi-cultural environ-
ment on a very interesting subject, both from a theoretical and a practical point of
view. With her, I learned many important aspects of conducting a research project
successfully to its end. In the earlier days of this thesis, few people believed that the
MB-MDR methodology could one day allow genome-wide association interaction stud-
ies. However, Kristel Van Steen did and gave me the opportunity to help her proving
it. Despite the fact that this task seemed almost impossible to me, I trusted her and
worked over the years in speeding up the methodology, to finally prove her right.

Second, I would like to thank Louis Wehenkel. He is truly the one who discovered
my research skills, at a time when I was still master student and did not see them myself.
After having worked as a software developer in industry for some years, my way came
across his again and he offered me a position at the GIGA. Then, he introduced me to
Kristel Van Steen and she made this PhD project possible. I would also like to thank
Louis Wehenkel for the long and instructive discussions that we had over the years,
about and around my PhD thesis. Finally, let me mention that working as a teaching
assistant for him was always a real pleasure to me.

I am very grateful to the staff of the Electrical Engineering and Computer Science
Department of the University of Liège, for all the help given. A special thanks to my col-
leagues Jestinah Mahachie John, Elena Gusareva, Kirill Bessonov, Francesco Gadaleta
and Tom Cattaert who contributed heavily to my work and published with me. In ad-
dition, I would also like to mention Bärbel Maus, Ramouna Fouladi, Benjamin Dizier,
Raphael Liégeois, Alejandro Marcos Alvarez, Cyril Soldani, Pierre Geurts, Damien
Ernst, Guillaume Drion, Samuel Hiard, Julien Becker and many more with whom I
had very interesting research talks that helped me to conceptualize my ideas.

My gratitude goes to my jury members, for taking the time to read and evaluate my
thesis. I would also like to thank all the international collaborators that I interacted
with in the course of my PhD: Jason Moore, Damian Gola, Malu Calle, Viktor Urea,
Duan Quingling, Kelan Tantishira, Isabelle Cleynen, Céline Vens, Lars Wienbrandt
and many more.

My most affectionate thanks go to my family. My mother Myriam Kremers, who
was always there to listen to me in the moments of doubts. In the memory of my father
Pierre Van Lishout, who taught me how to give my best in everything I do. My girl
Célia Van Lishout, who is truly my sunshine. I went to some difficult moments in the
last two years and she was really the one who gave me the energy to go through them.

François Van Lishout
Liège, April 2016

ii

Abstract

Humans are made up of approximately 3.2 billion base pairs, out of which about
62 million can vary from one individual to another. These particular base pairs are
called single nucleotide polymorphisms (SNPs). It is well known that some particular
combination of SNP values increase dramatically the risk of contracting certain type
of disease, like Crohn’s disease, Alzheimer, diabetes and cancer, just to name a few.
However, there are still a lot of new discoveries to make and specialized software is
required for this task.

It has been shown that individual SNPs cannot account for much of the heritabil-
ity on their own. Therefore, this PhD thesis is dedicated to interaction studies, the
purpose of which is to identify pairs of SNPs and/or environmental factors that might
regulate the susceptibility to the disease under investigation. Model-Based Multifac-
tor Dimensionality Reduction (MB-MDR) is a powerful and flexible methodology to
perform interaction analysis, while minimizing the amount of false discoveries.

Before this thesis, the only available implementation was an R-package taking days
to analyze a dataset composed of just hundred of SNPs. However, a typical dataset
contains hundreds of thousands or millions of SNPs, even after data cleaning and
quality control. The aim of this thesis is to write a software able to analyze such
datasets within a few days with the MB-MDR methodology. In other words, the goal
is to get 108 times faster than the R-package, while still remaining powerful, flexible
and keeping the amount of false discoveries low.

Several contributions were needed to reach this goal and are presented in this thesis.
First, a new software was written from scratch in C++, in order to be able to optimize
every single computation, instead of relying on too generic functions as was the case
for the R-package. Second, the methodology itself was improved, irrespective of the
programming language. Indeed, MB-MDR is based on the maxT algorithm (introduced
byWestfall&Young in 1993) to assess significance of the results and it can be customized
for interaction analysis. A first major contribution of this PhD work, called Van
Lishout’s implementation of maxT, was introduced in 2011. The parallel version of this
algorithm enables to analyze a dataset composed of hundred thousands of SNPs within
a few days. The most important contribution of this thesis, called the gammaMAXT
algorithm, was introduced in 2014. The parallel version enables to analyze a dataset
composed of one million SNPs within one day.

In this thesis, we also propose a new viewpoint to handle population stratification
and correct for covariates. Many simulated and real-life data analysis are provided, to
highlight the flexibility of the software and its ability to find interesting results from a
biological point of view. The latest version, called mbmdr-4.4.1.out, can be downloaded
freely at http://www.statgen.ulg.ac.be with the corresponding documentation.

iii

Résumé

L’homme est composé d’approximativement 3,2 milliards de paires de bases, dont plus
ou moins 62 millions peuvent varier d’un individu à l’autre. Ces paires de bases variant
d’un individu à l’autre sont appelées des SNPs (polymorphisme d’un seul nucléotide). Il
est un fait avéré que certaines combinaisons de valeurs de SNPs augmentent fortement
les chances de contracter certaines maladies comme la maladie de Crohn, Alzheimer,
le diabète et le cancer pour n’en citer que quelques unes. Par contre, il reste encore
beaucoup de découvertes à faire et le développement de software spécialisé est nécessaire
pour y parvenir.

Il a été montré qu’un SNP ne peut à lui seul apporter beaucoup d’information
sur l’héritabilité d’une maladie. Par conséquent, ce doctorat est consacré aux études
d’interactions, dont l’objet est d’identifier des paires de SNPs et/ou de facteurs en-
vironnementaux pouvant réguler la susceptibilité à contracter la maladie étudiée. La
méthodologie MB-MDR (Model-Based Multifactor Dimensionality Reduction) est une
technique puissante et flexible permettant d’effectuer des études d’interactions, tout en
minimisant le nombre de fausses découvertes.

Avant cette thèse de doctorat, la seule implémentation disponible de cette méthodolo-
gie était un package écrit en R, prenant des jours pour analyser un des données con-
tenant à peine quelques centaines de SNPs. Or, un jeu de données typique est à l’heure
actuelle composé de centaines de milliers voir de millions de SNPs et ce même après
avoir épuré les données et réalisé différents contrôles de qualité. L’objectif de ce doc-
torat est d’écrire un logiciel capable d’analyser ce genre de données en quelques jours
à l’aide de la méthodologie MB-MDR. En d’autres mots, il s’agit de devenir 108 fois
plus rapide que le package écrit en R, tout en restant au moins aussi puissant et rapide
qu’avant et en maintenant un nombre minimum de fausses découvertes.

Plusieurs contributions furent nécessaires pour y arriver. Premièrement, un nou-
veau logiciel a été développé en C++ en partant de zéro et ceci afin d’optimiser toutes
les opérations effectuées plutôt que de se baser sur des fonctions trop génériques comme
c’était le cas dans le package R. Deuxièmement, la méthodologie elle-même a dû être
améliorée et ce indépendamment du choix du langage de programmation. En effet,
MB-MDR est basé sur l’algorithme maxT (Westfall & Young 1993) pour estimer la
pertinence des résultats et cet algorithme a du être customisé pour le cas partic-
ulier des études d’interactions. Ainsi, la première contribution majeure de cette thèse,
l’implémentation Van Lishout de maxT, a été proposée en 2011. La version parallèle
permet d’analyser un jeu de données composé de cent mille SNPs en quelques jours.
La contribution principale de ce doctorat est l’algorithme gammaMAXT, introduit en
2014. La version parallèle permet d’analyser un dataset composé d’un million de SNPs
en un seul jour.

iv

v

Cette thèse présente également un nouveau point de vue pour tenir compte de la
stratification de la population et corriger les covariables. De nombreuses analyses de
données (simulées ou réelles) sont également décrites dans ce manuscrit, pour mettre en
évidence la flexibilité du software et sa capacité à découvrir des résultats intéressants
d’un point de vue biologique. La version la plus récente du logiciel, mbmdr-4.4.1.out,
peut être téléchargée gratuitement sur le site http://www.statgen.ulg.ac.be, avec
la documentation correspondante.

Contents

1 General introduction 1

2 Epistasis detection 6
2.1 Outline . 6
2.2 Binary traits . 8

2.2.1 Without correction for main effects 8
2.2.2 With correction for main effects 14
2.2.3 Main effect screening . 20
2.2.4 High-dimensional interaction screening 21

2.3 Continuous traits . 24
2.3.1 Without correction for main effects 24
2.3.2 With correction for main effects 29
2.3.3 Main effect screening . 34
2.3.4 High-dimensional interaction screening 36

2.4 Censored traits . 38
2.4.1 Without correction for main effects 39
2.4.2 With correction for main effects 44

2.5 Discussion . 51

3 Multiple-Testing correction 56
3.1 Outline . 56
3.2 Bonferroni correction . 58

3.2.1 Classical implementation . 59
3.2.2 mbmdr-4.4.1.out’s implementation 60

3.3 MaxT . 62
3.3.1 Classical implementation . 64
3.3.2 Van Lishout’s implementation 66
3.3.3 Parallel version of Van Lishout’s implementation 71

3.4 GammaMAXT . 75
3.4.1 Distributational assumptions . 76
3.4.2 Implementation . 83
3.4.3 Parallel version . 85
3.4.4 FWER and power analysis . 88

3.5 MinP . 90
3.5.1 Classical implementation . 90
3.5.2 Ge’s implementation . 93
3.5.3 Van Lishout’s implementation 94

3.6 Discussion . 98

vi

Résumé

4 Population stratification and covariate adjustment 100
4.1 Outline . 100
4.2 Correcting for unmeasured confounding factors 103

4.2.1 STRAT1 algorithm . 103
4.2.2 STRAT2 algorithm . 107

4.3 Correcting for available covariates . 114
4.3.1 Residuals-based correction . 114
4.3.2 On-the-fly correction . 119

4.4 Discussion . 136

5 Learning from data 139
5.1 Outline . 139
5.2 MB-MDR for structured population . 140
5.3 Nature versus nuture . 144
5.4 Censoring . 148
5.5 Interpretation and visualization . 151
5.6 Discussion . 155

6 Conclusions and perspectives 156
6.1 Conclusions . 156
6.2 Perspectives . 157

vii

List of Figures

1.1 Single Nucleotide Polymorphism . 2

2.1 Epistasis . 6
2.2 Input/output of mbmdr-4.4.1.out . 7
2.3 Case-control studies . 8
2.4 MDR methodology . 9
2.5 MB-MDR methodology: binary trait 10
2.6 Binary MB-MDR statistic computing (no 1st order correction) 11
2.7 MB-MDR methodology: continuous trait 25
2.8 Continuous MB-MDR statistic computing (no 1st order correction) . . . 26
2.9 MB-MDR methodology: survival trait 39
2.10 Survival MB-MDR statistic computing (no 1st order correction) 41
2.11 Likelihood versus Wald versus score test 51
2.12 Mutual Information . 53

3.1 Minimizing the work of the biologist 56
3.2 Bonferroni correction . 58
3.3 Memory usage: classical Bonferroni vs mbmdr-4.4.1.out implementation 61
3.4 MaxT intuitive idea . 62
3.5 Classical maxT implementation . 64
3.6 Classical implementation of maxT versus Van Lishout’s one 66
3.7 Parallel workflow of Van Lishout’s implementation of maxT 71
3.8 Classical maxT versus gammaMAXT 75
3.9 Theoretical versus predicted Mi values for dataset D1 79
3.10 Theoretical versus predicted Mi values for dataset D2 80
3.11 Theoretical versus predicted Mi values for dataset D3 81
3.12 Theoretical versus predicted Mi values for dataset D4 82
3.13 Parallel workflow of gammaMAXT algorithm 85
3.14 Classical minP implementation . 91
3.15 Ge’s implementation of minP versus Van Lishout’s one 94

4.1 Confounding factor definition . 100
4.2 Population stratification example . 101
4.3 STRAT1 algorithm (basic idea) . 104
4.4 STRAT1 algorithm (practical implementation) 106
4.5 STRAT2 algorithm (basic idea) . 108
4.6 MB-MDR statistic computing with on-the-fly correction: binary trait . 122
4.7 SNP Finder hit for IBD . 135
4.8 Venn diagram of the results of Table 4.12 137

5.1 SD plot of potential epistasis interactions for Crohn’s disease 142

viii

Résumé

5.2 MoG-Plot applied to Crohn’s disease dataset 152

ix

List of Tables

1.1 Available features in some common association interaction studies software 3

3.1 Type I and type II errors in GWAIs . 57
3.2 Two-locus penetrance table used to create the simulated data 70
3.3 Execution times of R package and mbmdr-2.6.2.out 70
3.4 Execution times of the sequential and parallel versions of mbmdr-3.0.3.out 72
3.5 Number of test-statistics computed within the different steps of Van

Lishout’s implementation of MaxT on a dataset containing 103 subjects
and 106 SNPs. 73

3.6 Two-locus penetrance table used to create the simulated datasets D1,
D2 and D3 . 78

3.7 Mean and variance of the fitted parameters for datasets D1 −D4 83
3.8 Execution times of the sequential and parallel versions of mbmdr-4.2.2.out 86
3.9 Observed FWER of mbmdr-4.2.2.out 88
3.10 Power comparison between the gammaMAXT and the MaxT algorithms 89

4.1 SNP pairs having a p-value < 0.05 on the discovery data with gamma-
MAXT . 111

4.2 SNP pairs having a p-value < 0.05 on the discovery and replication
data, using gammaMAXT on the discovery data and STRAT2 on the
replication one. 112

4.3 SNP pairs having a p-value < 0.05 on the discovery and replication
data, using gammaMAXT on the replication data and STRAT2 on the
discovery one. 113

4.4 SNP pairs having a p-value < 0.05 on the discovery data, using gamma-
MAXT with residuals-based correction of gender. 116

4.5 SNP pairs having a p-value < 0.05 on the discovery and replication data,
using each time gammaMAXT with residuals-based correction of gender. 117

4.6 SNP pairs having a p-value < 0.05 on the discovery and replication data,
using each time gammaMAXT with residuals-based correction of the top
10 PCs. 118

4.7 SNP pairs having a p-value < 0.05 on the discovery data, using gamma-
MAXT with on-the-fly correction of gender. 131

4.8 SNP pairs having a p-value < 0.05 on the discovery and replication data,
using each time gammaMAXT with on-the-fly correction of gender. . . 132

4.9 SNP pairs having a p-value < 0.05 on the discovery and replication
data, using each time gammaMAXT with on-the-fly correction of cluster
membership. 133

4.10 Promising SNP pairs to investigate from a biological point of view. . . 134
4.11 Chromosomes and nearest genes of the SNPs from Table 4.10 135

x

Résumé

4.12 Amount of SNP pairs having a p-value < 0.05 on the discovery data, on
the replication data and on both datasets, depending on the method used.137

5.1 SNP-SNP interactions having a multiple testing corrected p-value < 0.05 141
5.2 Location of the SNPs involved in a significant SNP-SNP interaction . . 141
5.3 Significant SNP-environment pairs found with LD pruning at 0.05 . . . 145
5.4 Significant SNP-environment pairs found with LD pruning at 0.2 145
5.5 Significant SNP-environment pairs found with LD pruning at 0.5 145
5.6 Significant SNP-environment pairs found with LD pruning at 0.75 . . . 145
5.7 Significant SNP-environment pairs found with LD pruning at 0.8 145
5.8 Significant SNP-SNP-environment triplets found with LD pruning at 0.2 146
5.9 Percentage of times that the causal pair is found (200 individuals) . . . 148
5.10 Percentage of times that the causal pair is found (400 individuals) . . . 149
5.11 Percentage of times that the causal pair is found (800 individuals) . . . 149
5.12 Percentage of times that the causal pair is found (1600 individuals) . . 149
5.13 Percentage of datasets leading to at least one false-positive (200 subjects)150
5.14 Percentage of datasets leading to at least one false-positive (400 subjects)150
5.15 Percentage of datasets leading to at least one false-positive (800 subjects)150
5.16 Percentage of datasets leading to at least one false-positive (1600 subjects)150
5.17 Significant SNP-SNP pairs found for CAD, without covariate correction 154
5.18 Significant SNP-SNP pairs found for CAD, corrected for gender and age 154

xi

List of Algorithms

Box 2.1. Binary MB-MDR statistic computing (no 1st order correction) 13
Box 2.2. Model fitting using IRLS . 16
Box 2.3. Binary MB-MDR statistic computing (with 1st order correction) . . . 18
Box 2.4. Binary main effect statistic computing 20
Box 2.5. Binary three-order statistic computing (no 1st order correction) 21
Box 2.6. Continuous MB-MDR statistic computing (no 1st order correction) . . 28
Box 2.7. Model fitting for a continuous trait 30
Box 2.8. Continuous MB-MDR statistic computing (with 1st order correction) . 33
Box 2.9. Continuous main effect statistic computing 35
Box 2.10. Continuous 3D statistic computing (no 1st order correction) 36
Box 2.11. Survival MB-MDR statistic computing (no 1st order correction) . . . 42
Box 2.12. Survival MB-MDR statistic computing (with 1st order correction) . . 48
Box 3.1. mbmdr-4.4.1.out’s implementation of Bonferroni 60
Box 3.2. Van Lishout’s implementation of maxT 69
Box 3.3. Step 2(b) of gammaMAXT . 83
Box 3.4. Algorithm for sampling Mi when CDF is given by FZi(z) 84
Box 3.5. Van Lishout’s implementation of minP 96
Box 4.1. Fast Algorithm for Median Estimation 105
Box 4.2. STRAT1 algorithm . 105
Box 4.3. STRAT2 algorithm . 109
Box 4.4. Survival MB-MDR statistic with on-the-fly correction 120
Box 4.5. Binary MB-MDR statistic with on-the-fly correction 126
Box 4.6. Continuous MB-MDR statistic with on-the-fly correction 129

xii

Chapter 1

General introduction

Public health genomics proposes to use genomic information to improve public health.
The aim is to perform an effective and responsible translation of genome-based knowl-
edge into public health policy and health services. One aspect of it is to assess the
impact of genes and their interaction with environmental factors on human health.
This research field is very wide and includes association studies, health prediction
and descriptive genomics. Two major aims of the former are reaching a better un-
derstanding of the underlying mechanism behind diseases and identifying risk factors.
The long-term ambition of predictive methods is to reach a personalized medicine, for
which healthcare would be customized, i.e. based on molecular analysis and for in-
stance clinical/familial history and lifestyle [106, 128, 37, 6, 71]. The main objective of
descriptive genomics is molecular reclassification of subjects, using pattern recognition
in a supervised or unsupervised way. This PhD thesis focuses on association studies.

Deoxyribonucleic acid (DNA) is the hereditary material of all known living organ-
isms and many viruses. Most DNA molecules consist of two strands coiled around each
other to form the famous double helix. The two DNA strands are composed of sim-
pler units called nucleotides. Each nucleotide is composed of a chemical base - either
adenine (A), thymine (T), cytosine (C), or guanine (G) - as well as a monosaccharide
sugar called deoxyribose and a phosphate group. A critical feature of DNA is the abil-
ity of the nucleotides to make specific pairs: adenine pairs with thymine and cytosine
with guanine. A gene is a region (locus) of DNA that encodes a functional ribonucleic
acid (RNA) or protein product. RNA is a polymeric molecule assembled as a chain of
nucleotides, which is more often found in nature as a single-strand folded onto itself,
rather than a paired double-strand as for DNA molecules. Mutations can occur within
genes, leading to different variants of the gene in the population, known as alleles.

The Human Genome Project (1990-2003), allowed the release of the first human
reference genome by determining the sequence of about 3.2 billion base pairs and
identifying the approximately 22 thousand human genes [55, 69, 72]. It comes without
saying that nucleotides not differing from one individual to another cannot regulate
susceptibility to disease. The focus in this thesis is therefore on the approximately
62 million remaining ones [89], called single nucleotide polymorphisms (SNPs) and
illustrated in Figure 1.1. Note that the methods presented in this work are generic. As
a consequence, other forms of polymorphisms can also be handled (for instance human
hemoglobin and blood groups) and other species than humans can be studied.

1

Chapter 1

Source: http://www.dnabaser.com/articles/SNP/SNP-single-nucleotide-polymorphism.html

Figure 1.1: A Single Nucleotide Polymorphism (SNP) is a DNA sequence variation
in which a nucleotide in the genome differs between members of species. In this
example, fragment 1 and 2 differ at a single base-pair location.

Genome-wide association studies (GWAs), using a dense map of SNPs, have become
one of the standard approaches for unraveling the basis of complex genetic diseases
[47]. However, significant genetic variants discovered in GWAS explain only a small
proportion of the expected narrow-sense heritability, defined as the ratio of additive
genetic variance to phenotypic variance [84, 29]. This is known as the missing her-
itability problem, i.e. the fact that individual genes cannot account for much of the
heritability of phenotypes [109, 70]. Focusing on the combined effect of all the genes
in the background, rather than on the disease genes in the foreground, is a promising
idea for estimating heritability [145]. This PhD thesis is dedicated to genome-wide
association interaction studies (GWAIs), the purpose of which is to identify pairs of
SNPs that might regulate the susceptibility to the disease under investigation. Further-
more, we are particularly interested in detecting epistasis, occurring when the effect
of one gene depends on the presence of one or more modifier genes. Epistatic inter-
actions occur whenever one mutation alters the local environment of another residue
(either by directly contacting it, or by inducing changes in the protein structure) [48].
Experimental studies in model organisms have demonstrated evidence of biological in-
teractions among genes [78]. Furthermore, finding pairwise interactions opens the door
for constructing statistical epistasis networks, that allows a better understanding of
the biochemical mechanisms of complex diseases, as was demonstrated in the context
of bladder cancer [118]. As an extension, we are also interested in genome-wide envi-
ronmental interaction studies (GWEIs), whose aim is to identify gene-environmental
factors interactions (for environmental factors such as age, gender, etc) [3]. Nowadays,
a lot of genetical and/or environmental interactions impacting susceptibility to diseases
still needs to be identified and dedicated software is needed for this task. The aim of
this PhD is to develop an efficient and flexible software tool for GWAIs and GWEIs.

2

Chapter 1

Note that from a clinical point of view, a better understanding of the etiology of
complex diseases would be also be useful in the context of diagnosis of rare diseases.
Indeed, around the world there are about 350 million people living with such disorders
and in many cases the genetic factors are still unknown, making a molecular analysis
pointless. The time to diagnosis is therefore undoubtedly long. It is not uncommon for
parents having a child affected by such disorders, to wait for more than 10 years before
finally knowing the type of illness affecting their infant! According to a 2013 survey,
it takes on average 7.6 years in the US and 5.6 years in the UK to receive a proper
diagnosis [97] (631 patients and 256 caregivers surveyed, 466 rare diseases represented).
Furthermore, in the mean time, a patient typically visits four primary care doctors,
four specialists and receives two to three misdiagnoses. According to Yves Moreau
[88, 93], this is in line with what his colleagues geneticists observe in Belgium.

In this PhD project, we present an efficient and flexible software able to perform
GWAIs on real-life data. The difficulty of this task is to find a good balance between
four main issues, that we summarize in the following objectives:

1) Achieve sufficient statistical power to detect relevant pairs.

2) Minimize the amount of false discoveries.

3) Reduce the computational burden implied by the high number of interactions to
investigate.

4) Provide a versatile software package that allow researchers to work with binary,
continuous and survival traits, on datasets that may contain missing values, to
consider multi-allelic data and categorical environmental exposure variables, to
correct for main effects, regress covariates, correct for confouding factors, etc.

Among the numerous software designed for pairwise or higher-order SNP-SNP inter-
actions, we consider BOOST [131], BiForce [45], epiGPU [50], EpiBlaster [61], GLIDE
[60], Multifactor Dimensionality Reduction (MDR) [101, 46] and Model-Based Multi-
factor Dimensionality Reduction (MB-MDR) [13, 15]. Table 1.1 indicates which fea-
tures related to our objectives are available in which software (without claiming to be
exhaustive). Most methods do not handle missingness, but advocate to impute the
missing data. In our lab, we advocate against imputing as such (without additional
pruning steps) as it is known that linkage disequilibrium (LD) between markers can
induce so-called redundant epistasis [87]. Two alleles at different loci are in LD if they
occur together on the same chromosome more often than would be predicted by chance.

Table 1.1: Available features in some common association interaction studies software

Software Handled Handle Handle Maximum
tool traits missingness covariates factor levels

BOOST Binary No No 3
BiForce Binary, Continuous Yes No 3
epiGPU Continuous No No 3

EpiBlaster Binary No No 3
GLIDE Binary, Continuous No No 3
MDR Binary, Continuous No No 3

MB-MDR Binary, Continuous, Survival Yes Yes Unlimited

3

Chapter 1

The following comparison of these approaches is mainly inspired from [43] which
reviews and discusses several practical aspects GWAIs typically involve. BOOST is a
software based on fast Boolean operations, to quickly search for epistasis associated
with a binary outcome. Its main drawbacks are its limitation to binary traits, its
inability to accommodate missing data and its necessity to perform a multiple testing
correction outside the software package. However, note that there is a module in
PLINK to deal with BOOST in a more flexible, but still not perfect way. BiForce
is a regression-based tool handling binary and continuous outcomes, that can take
account of missing genotypes and has a built-in multiple testing correction algorithm.
However, the latter is based on a fast Bonferroni correction implementation, which
leads to reduced power for GWAIs (this subject will be deeply discussed in Chapter 3).

EpiBlaster, epiGPU and GLIDE are all GPU-based approaches. An obvious draw-
back of GPU-dependent software is that it is tuned for a particular GPU-infrastructure.
Therefore, users are advocated to acquire the exact same infrastructure and only ex-
perts can adapt the code to specific needs. Note that users willing to work on dedicated
hardware to speed up the computations can even turn to field-programmable gate array
(FPGa) [137].

MDR is a non-parametric alternative to traditional regression-based methods that
converts two or more variables into a single lower-dimensional attribute. The end
goal is to identify a representation that facilitates the detection of non-linear or non-
additive interactions. Over-fitting issues in MDR are solved via cross-validation and
permutations. Since the design of MDR, several adaptations have been made [127].

MB-MDR breaks with the tradition of cross-validation and invests computing time
in permutation-based multiple multilocus significance assessments and the implemen-
tation of the most appropriate association test for the data at hand. It is able to
correct for important main effects. Its main asset compared to the other methods is
its versatility. MB-MDR can for instance be used to highlight gene-gene (GxG), gene-
environment (GxE) or gene-gene-environment (GxGxE) interactions in relation to a
trait of interest, while efficiently controlling type I error rates and false positives. The
trait can either be expressed on a binary or continuous scale, or as a censored trait.
Before the start of this thesis in 2011, the only available software implementing the
MB-MDR methodology was a very slow R-package [12].

In this PhD, we propose a C++ implementation of the MB-MDR methodology, ful-
filling the aforementioned four objectives. The latest version, mbmdr-4.4.1.out, can be
downloaded at http://www.statgen.ulg.ac.be, with the associated documentation.
Older versions are also still available. mbmdr-4.4.1.out is an easy to use command-line
software, including a man-like help. To see its home page, use the following command:
./mbmdr-4.4.1.out help

In Chapter 2, we introduce our epistasis detection methods. In other words, the
aim of this chapter is to answer the research question “How strongly is a particular
GxG, GxE or GxGxE interaction related to the disease under investigation?”. This
chapter successively describes the cases of a trait expressed on a binary scale, on a
continuous scale and as a censored trait. Each time, methods are given for computing
a number, called MB-MDR statistic, representing the degree of association between the
interaction and the trait. These methods can be split into two categories: with and
without correction for lower order effects.

4

Chapter 1

Chapter 3 addresses the multiple testing problem. In other words, it answers the
research question “Correcting for the fact that a huge set of GxG, GxE or GxGxE
interactions is investigated, what is the probability that a particular interaction is not
significantly associated to the disease?”. This chapter is the corner stone of this PhD
thesis. In particular, it contains a presentation of three classical multiple-testing correc-
tion algorithms, Bonferroni, maxT and minP [39], but proposes new ways to implement
them in order to reach better performances. The purpose of these three algorithms is
to control the family-wise error rate (FWER), Bonferroni being the most conservative
correction method. MaxT, the default algorithm used in the MB-MDR framework,
has requirements in terms of computing time and memory proportional to the number
of permutations. This makes it unsuitable for GWAIs. The first main contribution
of this PhD thesis solves the memory issue: Van Lishout’s implementation of maxT
makes the memory usage independent from the size of the dataset [125]. The second
and most important contribution, gammaMAXT, solves the computing time issue: it
speeds up the computing time further, while still controlling the FWER strongly and
displaying a power similar to the original maxT algorithm.

Chapter 4 addresses the issue of population stratification and also discusses co-
variate adjustments. Two new algorithms, STRAT1 and STRAT2, are introduced to
automatically correct for unmeasured confounding factors. Furthermore, better per-
formances can be observed by correcting for covariates. In this context, two strategies
are presented to correct for covariates. Residuals-based correction is a simple method,
whose computing time is almost the same as if no correction for covariates would be
performed, that increases the power to detect significant interactions when a clear rela-
tionship between the trait and the covariates that are regressed out exists. On-the-fly
correction is a more computational intensive method, that allows to correct for any
combination of categorical covariates and main effects of the SNPs, i.e. find out “pure”
biological interactions that are not driven by any available variable.

Chapter 5 presents different applications of the software, both on simulated and real-
life datasets. This chapter demonstrates that the software can be used successfully to
either retrieve known interactions from the literature or find new ones. A lot could be
learned from the data analysis performed in this chapter, leading to recommendations
for the users of our software, as well as new insights into the assets and limitation of
the methods developed in this PhD work.

5

Chapter 2

Epistasis detection

2.1 Outline

Epistasis is important to tackle complex human disease genetics [78]. It can be viewed
from two perspectives, biological and statistical, illustrated in Figure 2.1. Biological
epistasis is “the result of physical interactions among bio-molecules within gene regula-
tory networks and biological pathways in an individual such that the effect of a gene on
a phenotype depend on one or more other genes” [87]. Statistical epistasis is defined
as “deviation from additivity in a mathematical model summarizing the relationship
between multilocus genotypes and phenotypic variations in a population” [87].

Source: http://www.nature.com/ng/journal/v37/n1/fig_tab/ng0105-13_F1.html

Figure 2.1: Biological epistasis is defined at the individual level and involves DNA
sequence variations (vertical bars), bio-molecules (square, circle and triangle) and
their physical interactions (dashed lines), leading to a phenotype (star) [87]. Statis-
tical epistasis is defined at the population level, as a phenomenon made possible by
inter-individual variability in genotypes, bio-molecules and their interactions [87].

Writing a software that detects statistical epistasis is a challenging task. A typi-
cal genome-wide real-life dataset is composed of millions of SNPs, leading to a huge
amount of interactions to investigate, even when restricting our attention to two-order
interactions (in this case about 1012 SNPs). In this chapter, we specify our method-
ology to compute an MB-MDR statistic, capturing the degree of association between a
particular pair of SNPs and the trait. This enables to produce a ranking of the most
promising interactions. In Chapter 3, we show how to compute a p-value indicating if
a pair is statistically significantly associated to the trait or not.

6

Chapter 2 2.1 Outline

Figure 2.2 describes the input information that we have and the output that we
aim to produce1.

Trait SNP1 SNP2 … SNPM
MB-MDR

statistic
p-value

c1 g11 g12 … g1M (SNPl1, SNPr1) t1 p1

c2 g21 g22 … g2M (SNPl2, SNPr2) t2 p2

… … … … … … … …

cS gS1 gS2 … gSM (SNPln, SNPrn) tn pn

Pair

Input Output

Figure 2.2: The input information consists of the trait and SNP values for the S
subjects under study. The trait can either be expressed on a binary or continuous
scale, or as a censored trait (in the latter case the trait column is replaced by
two columns, respectively for the time and censoring variables). In the event of a
binary scale, if the sth subject is a case (control), cs = 1(0) (s = 1 . . . S). In the
case of a continuous scale, cs is a continuous value representing the state of the sth
subject. SNPb is a label referring to the bth SNP (b = 1, . . .M). The genotype of
an individual s at locus b is denoted as gsb (0 if homozygous for the first allele, 1 if
heterozygous, 2 if homozygous for the second allele and -9 if missing). Multi-allelic
variables and categorical environment variables are also covered, as long as they
are coded with natural numbers. The task consists in generating a ranking of the
most significant SNP pairs in relation with the trait. (SNP lj, SNP rj) refers to the
jth best SNP pair, i.e. the pair with the jth highest MB-MDR statistic tj.

In this chapter, we propose different strategies for computing an MB-MDR statistic.
Obviously, the scale of the trait leads to different types of statistics. Furthermore, miss-
ing values in the dataset can be handled in different ways. Nonetheless, an important
aspect is also whether to adjust the statistic for the main effect of the SNPs or not. It
comes without saying that not adjusting leads to simpler statistics, faster to compute.
However, as soon as the data contains at least one SNP with an important main effect,
these statistics are not good enough. Indeed, the output would undoubtedly contain a
lot of significant pairs, making it impossible to distinguish between real pure epistatic
effects and results driven by the main effect. The default option in our software is
thus to always adjust for main effects. We show in this chapter that there are several
ways to perform the adjustment and discuss the benefits and drawbacks of each choice.
In the next section, we focus on the scenario where the trait is expressed on a binary
scale. We show how to compute a simple statistic (not adjusting for main effects) using
the MB-MDR framework and how to compute two more elaborate statistics to regress
the main effects. We also discuss the pros and cons of using other approaches from
the literature. Traits expressed on a continuous and on a survival scale are handled in
Sections 2.3 and 2.4.

1 In this document, we assign index 1 to the first element of a sequence to facilitate reading. However,
note that the actual implementation uses zero-based numbering for efficiency reasons

7

Chapter 2 2.2 Binary traits

2.2 Trait expressed on a binary scale

Case-controls studies are widely used in medicine. Typically, a group of patients having
a disease (the “cases”) is compared to a group of patients not affected by the disease
(the “controls”), as illustrated in Figure 2.3. This design does not factually restrict
to diseased versus healthy patients. It can in general be used to split subjects in
two groups depending on any condition (for instance, in the context of BMI, morbid
obese or not). In this work, we are interested in finding the pairs of SNPs and/or
environmental variables that bests predict the status of the subjects.

Figure 2.3: The aim of case-control studies is to determine if there is a statistically
significant difference between the affected and unaffected subjects. In this thesis, we
focus on genetic interactions that might regulate the susceptibility to the disease.

Our aim is to compute, for every pair [SNP lj, SNP rj], a number tj capturing its
degree of association with the trait. This allows to sort the pairs by decreasing chances
of regulating the disease. Let N1 be the number of possible values for SNP lj and N2

the number of possible values for SNP rj. In practice, most of the studies concern
bi-allelic SNPs and N1 = N2 = 3. However, the software described in this thesis
automatically detects the exact values of N1 and N2, so that multi-allelic markers
(such as microsatellites) are also covered. Furthermore, environment variables can be
also used as hypothesis, instead of SNPs, as long as they can be treated as categorical.
They should be coded 0, 1, . . . , N1 − 1, resp. 0, 1, . . . , N2 − 1, in any convenient order.

2.2.1 Without correction for main effects

The MB-MDR framework proposes a slightly elaborate way to compute a statistic tj
representing the strength of the association between the pair [SNP lj, SNP rj] and the
trait T . In the discussion section at the end of this chapter, we discuss the pros and
cons of taking a more direct approach, based on information theory. Since the MB-
MDR method comes from its ancestor MDR, we first present the latter. The idea of the
MDR methodology, is to split the subjects into groups, depending on their genotypes.
In the case of bi-allelic genetic marker, there are nine possible groups, as illustrated
in Figure 2.4, inspired from [102]. Every non-empty group is either labeled “L” if it
contains more controls than cases (low-risk) or “H” otherwise (high-risk). In this way,
the dimensionality has been reduced to one dimension with two levels. However, note
that although the dimension has been reduced, the effective degrees of freedom may
not. It has been estimated to be 5.6 for MDR in case of interactions of order two [91].

8

Chapter 2 2.2 Binary traits

Figure 2.4: In the MDR methodology, the subjects are split into groups depending
on their genotypes. These multifactor classes can be organized in a matrix repre-
sentation. For every subject, the alleles of SNP lj defines to which column it belongs
to and the alleles of SNP rj to which line. In every cell, the amount of cases is re-
ported on the left and the amount of controls on the right. If the controls represent
the majority, the group is considered to be in low risk for the disease (in this work
such cells are colored in green). Otherwise, the group is considered to be in high
risk for the disease (in this work such cells are colored in orange). Empty cells are
ignored. Pooling all the orange cells together and all the green ones together, forms
the genetic model of the effect of the pair of SNPs on the disease.

A classical 10-fold cross-validation procedure is used to compute the cross-validation
consistency and the prediction error [101]. The entire procedure is performed 10 times,
to diminish the odds of observing false results due to a poor division of the subjects.
The cross-validation consistency has to be maximized and is defined as “a measure
of the number of times a particular set of loci and/or factors is identified across the
cross-validation subset” [101]. The prediction error has to be minimized and is defined
as “the average of prediction errors across each of the 10 cross-validation subsets” [101].
When the optimal is different among these two metrics, the simplest model is chosen.

An important benefit of MDR is that it is a model-free approach. It does neither
assume any particular genetic model, nor estimate any parameter. The dimensionality
problem involved in interaction detection is tackled by pooling the subjects into two
groups (“H” or “L”), hence the name of the method. Furthermore, this methodology
does not just produce a list of pairs possibly linked to the trait, it also returns the
corresponding genetic models of the disease. Empirical and theoretical studies suggest
that MDR has excellent power for identifying epistasis [101].

9

Chapter 2 2.2 Binary traits

An important drawback of this approach, it that the groups are forced to be either
in high-risk or low-risk, even when there is no statistically significant difference between
the amount of cases and controls [11]. Another hindrance is that the original method
can only handle traits expressed on a binary scale, not a continuous one. The major
drawback however, is probably that it cannot correct for the main effects of the SNPs,
i.e. the effect that the SNPs have on their own on the trait. Therefore, we turn to the
MB-MDR approach in this thesis, resolving all the aforementioned issues.

The idea of the MB-MDR methodology, is to split the subjects into groups in
the same way as in the MDR methodology, except that there are now three possible
categories instead of two: “O” if there is no statistical evidence for any risk change
(neither high-risk, nor low-risk) and “L” or “H” otherwise, as illustrated in Figure 2.5.

Figure 2.5: In the MB-MDR methodology, the subjects are still split into groups
depending on their genotypes, in the same way as in Figure 2.4. However, there
are now three possible categories for the cells. A group is immediately assigned
to the “O” category (no-evidence for any risk change) if it consists of less than
ten individuals. Otherwise, a statistical test is performed to decide if there is a
statistically significant difference between the number of cases and controls. If
there is, the group is assigned to either the “H” or “L” category, in the same way
as before. Otherwise, it is assigned to the “O” category (in this work such cells are
colored in blue).

10

Chapter 2 2.2 Binary traits

Figure 2.6 explains the computation of a statistic tj representing the strength of
the association between the pair [SNP lj, SNP rj] and the trait T .

Trait SNPlj SNPrj

c1 g1lj g1rj

c2 g2lj g2rj

… … …

cS gSlj gSrj

A00 … A0(N2-1) U00 … U0(N2-1)

… … … … … …

A(N1-1)0 … A(N1-1)(N2-1) U(N1-1)0 … U(N1-1)(N2-1)

R00 … R0(N2-1)

… … …

R(N1-1)0 … R(N1-1)(N2-1)

tj

affected-subjects matrix unaffected-subjects matrix

HLO matrix

Figure 2.6: Computation of an MB-MDR statistic for a binary trait, without cor-
rection for main effects. Input: cs is 1 (0) if the sth subject is a case (control),
gslj and gsrj are the genotypes of the sth subject for SNP lj and SNP rj respectively.
The computation can be decomposed in three steps. First, the affected-subjects
and unaffected-subjects matrices are constructed. Amn and Umn are respectively
the number of affected/unaffected subjects, whose genotype gslj = m and gsrj = n.
Second, the HLO matrix is constructed. Rmn is either “H” if the subjects whose
genotype is m for SNP lj and n for SNP rj have a high statistical risk of disease, “L”
if they have a low statistical risk and “O” if there is no statistical evidence (or no
data). Third, the final tj value is computed from the three matrices constructed at
steps 1 and 2.

11

Chapter 2 2.2 Binary traits

The three steps of the computation of the number tj capturing the degree of asso-
ciation between the pair [SNP lj, SNP rj] and the trait T are as follows:

1) Generation of the affected-subjects and unaffected-subjects matrices A and U .
For efficiency reasons and to take account of empty groups more easily, these
objects are in fact coded as vectors2. They are created with a size N1 × N2

and initialized with zero values. Then, a loop over the subjects of the dataset
is performed. For s = 1, . . . S: if no value is missing for subject s: increment a
cell of the affected-subjects vector if cs = 1, otherwise a cell of the unaffected-
subjects one. The index of the cell to be incremented is given by gslj ×N2 + gsrj,
i.e. depends on the subject’s genotype3. The total amount NA of affected and NU

of unaffected subjects without missing values can easily be deduced from these
vectors. After this process, a loop is performed to create a vector T containing
the total number of subjects in each non-empty group and a vector Y containing
the ratio of cases versus number of subjects in each non-empty group4. Empty
groups are removed from A and U on the fly during this process. Let dim be the
final size of vectors A, U , T and Y .

2) Generation of the HLO-matrix from the objects generated at step 1. This object
is in fact also coded as vector for efficiency reasons and has a size of dim. Each Rh

element depends on a test for association between the trait and the belonging to
the genotype group satisfying (SNP lj×N2+SNP rj = h), with h = 0, . . . , dim−1.
A χ2 test with one degree of freedom (1 df) is performed by default, to keep things
simple. However, the architecture of the software makes it easy to implement
other test statistics that are appropriate for the data at hand. The statistic that
we use follows a χ2 distribution and is defined as (ad−bc)2(a+b+c+d)

(a+b)(c+d)(b+d)(a+c)
, where a (c)

refers to the number of affected (unaffected) subjects having a genotype satisfying
(SNP lj×N2 +SNP rj = h) and b (d) refers to the number of affected (unaffected)
subjects having a different genotype. Those values are easy to compute: a = Ah,
b = NA − Ah, c = Uh and d = NU − Uh. At this point, if either a + c or b + d
is below a threshold that is a parameter of the program (default value 10) then
the test is not performed at all, since it would not be statistically significant.
In this case the value of Rh is automatically set to “O”, to indicate the absence
of evidence that the subset of individuals with multilocus genotype satisfying
SNP lj×N2 +SNP rj = h has neither a high nor a low risk for disease. Otherwise,
the test is performed. When the computed χ2

obs value is below the critical value5
χ2
crit = 2, 705543, the value of Rh is set to “O”, to indicate that we cannot reject

the independence hypothesis. Otherwise, Rh is set to either “H” if (ad− bc) > 0,
to indicate a high risk of having the trait, or to “L” if (ad− bc) < 0, to indicate
a low risk for this event.

2 From the programmers perspective, coding a matrix as a vector is just an implementation choice.
Matrices are used in Figure 2.6 because from a conceptual point of view it is easier to understand.

3 Note that this is the same as working in matrix format and numbering the cells from left to right
and top to bottom, by starting with 0 on the top left corner and finishing on the bottom right one.

4 The vectors T and Y are not necessary from a conceptual point of view (they can be deduced from
A and U) and do therefore not appear in Figure 2.6. In practice, they are useful to win computing
time by avoiding some operations to be performed several times in the next steps.

5 90th percentile of the χ2 distribution with 1 degree of freedom.

12

Chapter 2 2.2 Binary traits

3) Computation of tj from the objects generated at steps 1 and 2. It consists in
performing two χ2 tests with 1 df and returning the maximum of both. The first
one tests association between the trait and the belonging to the “H” category
versus the “L” or “O” one. The second one tests association between the trait
and the belonging to the “L” category versus the “H” or “O” one. In the first
(second) case, a and c are respectively the number of affected and unaffected
subjects belonging to the “H” (“L”) category and b and d to the “L” (“H”) or “O”
category. Computing this can easily be achieved by initializing a, b, c and d to
zero, and for h = 0, . . . , dim − 1 adding Ah to a and Uh to c if Rh = “H” (“L”)
and Ah to b and Uh to d otherwise. Note that in many case, there are only cells
associated to the “O” category and tj is readily equal to zero.

The detailed algorithm computing statistics tj (without correction for the main
effects of the SNPs) is reported in Box 2.1.

Box 2.1. Binary MB-MDR statistic computing (no 1st order correction)

(1) Create vectors A, U , T and Y of size dim = N1×N2. Define χ2
crit = 2, 705543.

(2) Fill A and U with 0’s. For s = 1, . . . , S: if gslj and gsrj are not missing do
either Agslj×N2+gsrj++ if cs = 1 or Ugslj×N2+gsrj++ otherwise.

(3) Set a = 0. For h = 0, . . . , dim− 1: compute Ta = Aa + Ua ; if (Ta = 0) erase
the ath element of vectors A and U , else compute Ya = Aa

Ta
and perform a++.

After the loop compute the final dimension: dim = a.

(4) Compute NA = A0 + . . .+Adim−1, NU = U0 + . . .+Udim−1 and N = NA+NU .

(5) Create HLO vector R of size dim. For h = 0, . . . , dim− 1:

(a) Define a = Ah, b = NA − a, c = Uh and d = NU − c.
(b) If (a+ c) < 10 or (b+ d) < 10: set Rh = “O”, else compute

χ2
obs = (ad−bc)2N

NANU (b+d)(a+c)
. If χ2

obs < χ2
crit set Rh = “O”, else if

(ad− bc) < 0 set Rh = “H”, else set Rh = “L”.

(6) If there is no “H” and no “L” in the R vector, return tj = 0.

(7) If there is at least one “H”:

(a) Initialize a = 0 and c = 0. For h = 0, . . . , dim− 1: if Rh = “H” compute
a+=Ah and c+=Uh.

(b) Define b = NA − a and d = NU − c. Compute χ2
HvsLO = (ad−bc)2N

NANU (b+d)(a+c)
.

(8) If there is at least one “L”:

(a) Initialize a = 0 and c = 0. For h = 0, . . . , dim− 1: if Rh = “L” compute
a+=Ah and c+=Uh.

(b) Define b = NA − a and d = NU − c. Compute χ2
LvsHO = (ad−bc)2N

NANU (b+d)(a+c)
.

(9) Return tj = max(χ2
HvsLO, χ

2
LvsHO).

13

Chapter 2 2.2 Binary traits

Since we are interested in GWAIs and GWEIs, we must realize that the part of the
code that reads the data at the start of the program cannot store it in cache because
of its size. Accessing to the trait and SNP values is thus slow and must be avoided
as much as possible. For this reason, the three columns Trait , SNP lj and SNP rj of
Figure 2.6 are passed by value and not by reference to the function. In this way, an
explicit local copy of them is performed, on which the function is able to work faster.
Note that the loops at step (3), (4), (5), (7) and (8) in Box 2.1. involves only up to
nine iterations (in the bi-allelic case) and are therefore very fast. Everything has been
optimized to reduce the number of operations to a minimum. This is indeed crucial,
since this function is called about 1015 times for GWAIs, as shown in Chapter 3.

An important benefit of MB-MDR, is that the robust association tests that are
performed, hereby acknowledging that not all multi-locus genotype combination are
informative, have proven to give optimal performance compared to MDR, especially
in the presence of genetic heterogeneity [15]. Another value of MB-MDR is that it is
flexible: it can be adapted to correct for the main effects of the SNPs in different ways,
it can handle missingness optimally, the trait can be expressed on different scales,...
The main drawback of the computation of MB-MDR statistics compared to MDR ones,
is that they require more computing time. However, by optimizing all steps as we did,
the calculation time can be kept low (numerical results are given in Chapter 3).

2.2.2 With correction for main effects

In the previous section, we have shown strategies to perform a global epistasis test. In
this section, we show how to perform a targeted epistasis test within the MB-MDR
framework, by adjusting for lower-order effects. This is in fact the origin of the model-
based (MB) component in the name of the MB-MDR methodology. Correcting for
lower-order effects avoids main effects signals giving rise to false epistasis effects [80].

Coding scheme

In genome-wide association testing, the SNPs are often coded in an additive way,
i.e. the code is given by the number of minor alleles [38]. For instance, if A is the
major allele and C the minor one, AA is coded 0, AC is coded 1 and CC is coded
2. If C has a negative effect on the disease, the genotype CC is considered to be two
times worse for the subject’s health than the AC one. The additive scheme is very
straightforward and can work well in a lot of scenarios, but power can be gained by
taking the true underlying genetic models into account [108]. An alternative is to use
a codominant coding. In the bi-allelic case, two binary variables are used: one equal
to 1 for AC and 0 otherwise and the other equal to 1 for CC and 0 otherwise. In
mbmdr-4.4.1.out, the user can choose between these two coding. Codominant is the
default, since it is an all-purpose acceptable (in terms of power and type I error) choice
[79]. In practice, choosing between additive and codominant coding schemes implies
choosing between the least and most severe such removal of effects [79]. The general
idea of the lower-order correction is as follows. First, construct the affected-subjects
and unaffected-subjects matrices of Figure 2.6, but implemented as vectors. Then,
create again a vector Y of size dim containing the ratio of cases versus number of
subjects for every non-empty group. Then, try to fit the following model:

E{Y |X} = Xβ (2.1)

14

Chapter 2 2.2 Binary traits

where X is the model matrix and β a row vector of parameters to fit. For an
additive correction, the model matrix Xadditive consists of dimc = 3 columns (one for
the intercept, 1 for SNP lj and 1 for SNP rj) and dim rows [14]. The second column
corresponds to the value of SNP lj and the third one to the value of SNP rj . Vector β
is obviously composed of dimc = 3 elements. In the bi-allelic case, when no group is
empty, the model matrix is given explicitly by

Xadditive =

1 0 0
1 0 1
1 0 2
1 1 0
1 1 1
1 1 2
1 2 0
1 2 1
1 2 2

(2.2)

For a codominant main effects correction, the model matrix Xcodominant consists of
dimc = N1 + N2 − 1 columns (one for the intercept, N1 − 1 for SNP lj and N2 − 1 for
SNP rj) and dim rows [14]. Vector β is obviously composed of dimc = N1 + N2 − 1
elements as well. In the bi-allelic case, the second (third) column is 1 if SNP lj has
value 1 (2) and 0 otherwise and the fourth (fifth) column is 1 if SNP rj has value 1 (2)
and 0 otherwise. In this case, when no group is empty, the matrix is given by

Xcodominant =

1 0 0 0 0
1 0 0 1 0
1 0 0 0 1
1 1 0 0 0
1 1 0 1 0
1 1 0 0 1
1 0 1 0 0
1 0 1 1 0
1 0 1 0 1

(2.3)

When a group is empty, the corresponding row is removed from X and the corre-
sponding element from Y . This process can produce a model matrix that is singular.
Trying to fit the model would fail. An obvious way to avoid this would be to check if the
matrix is singular or not and act accordingly. However, in practice the matrix is almost
never singular and testing the singularity each time would lead to a big waste of time.
For this reason, the code is organized as a “try and catch” block. First, the software
tries to estimate the model without taking care of this issue. Then, in the rare cases
where it fails, the matrix is investigated in details and the linearly dependent columns
are removed. From a programming point of view, it is important to realize that the
model matrix is strictly the same for most of the SNP pairs. Indeed, the majority
of the SNPs are bi-allelic. For this reasons, the Xadditive and Xcodominant matrices are
hard-coded. In this way, significant computing time can be saved. When empty groups
are present, the actual model matrix used is easy to construct from the hard-coded one,
by keeping only the rows corresponding to the non-empty groups. When at least one
SNP is not bi-allelic, the most common scenarios are again hard-coded and in the very
rare other cases, the model matrix is constructed explicitly.

15

Chapter 2 2.2 Binary traits

Fitting the model

This section is mainly influenced by [14]. The strategy to fit equation 2.1 is to start
from an initial guess and to update it iteratively. This can be achieved using the
Newton-Raphson method [19], since the Y vector contains expected outcome values
and not binary ones. In fact, for generalized linear models (GLMs), this comes down
to iteratively reweighted least squares (IRLS). The implementation is based on the R
function glm.fit and described in Box 2.2.

Box 2.2. Model fitting using IRLS

(1) Create vectors A, U , T and Y of size dim = N1×N2. Define χ2
crit = 2, 705543.

(2) Fill A and U with 0’s. For s = 1, . . . , S: if gslj and gsrj are not missing do
either Agslj×N2+gsrj++ if cs = 1 or Ugslj×N2+gsrj++ otherwise.

(3) Create matrix X consisting of dimc = 3 columns in case of additive coding
and dimc = N1 + N2 − 1 columns in case of codominant coding. Set a = 0.
For h = 0, . . . , dim − 1: compute Ta = Aa + Ua ; if (Ta = 0) erase the ath
element of vectors A and U , else perform the following operations

(a) Add the ath row of the hard-coded model matrix to X.
(b) Compute Ya = Aa

Ta
.

(c) Perform a++.

Compute dim = a.

(4) Compute NA = A0 + . . .+Adim−1, NU = U0 + . . .+Udim−1 and N = NA+NU .

(5) Create fitted values vector µ of size dim and initialize all elements to NA
N
.

(6) Create linear predictor vector η = ln(µ
1−µ).

(7) ComputeD = 2{N lnN−NA lnNA−NU lnNU+
dim−1∑
i=0

[Ai ln(Yi)+Ui ln(1−Yi)]}.
(where only the first term of the latter sum is taken if Yi = 1 and only the second if Yi = 0)

(8) Perform the following iterations:

(a) Create a vector z = η + Y−µ
µ(1−µ)

(taking zi = ηi − 1 if µi = 0 and zi = ηi + 1 if µi = 1)

(b) Calculate the dim× dim diagonal matrix W where Wii = Tiµi(1− µi).
(c) Calculate dimc × dimc symmetric positive definite matrix I = X ′WX.
(d) Calculate the right-hand side vector v of size dimc defined by v = X ′Wz.
(e) Calculate vector β of size dimc by trying to solve Iβ = v. If it fails,

remove all linearly dependent columns from X and go back to step (c).
(f) Update η = Xβ and µ = 1

1+e−η
.

(g) Compute D = 2{
dim−1∑
i=0

Ai lnYiµi + Ui ln 1−Yi
1−µi).

(where only the first term is taken if Yi = 1 and only the second if Yi = 0)

(h) Stop iterating if |D−Dold|
0.1+D < 10−8 or after 25 iterations.

16

Chapter 2 2.2 Binary traits

At step (5), the fitted values vector µ is initialized to the values under the null
model (only intercept), i.e. the trivial model fit consisting of the observed ratios of
cases versus individuals in each group. The difficult part is step (8) (e). Because I is
symmetric and positive definite, this linear system can be solved based on the Cholesky
decomposition of I, which is guaranteed to exist and be unique if X is not singular:

I = LDL′ (2.4)

where L is a dimc × dimc lower triangular matrix with diagonal elements equal
to 1 and D a dimc × dimc diagonal matrix with strictly positive diagonal elements.
The linear system Iβ = v can then be solved by subsequently solving Lv1 = v for v1,
Dv2 = v1 for v2 and L′β = v2 for β. Hence, no explicit matrix inversion is involved. In
practice, we call a library (alglib) that performs the Cholesky decomposition very fast.
As already mentioned, this part of the code is organized as a try-catch block. Indeed,
the decomposition can only fail if X is singular (which leads to a matrix I that is not
positive definite) and in this case the linearly dependent columns are removed from X.

Test statistic

So far, we have defined a model and have shown how to fit it. However, there was no
obvious link to the MB-MDR methodology. The connection is in fact that, instead of
performing simple χ2 tests as in steps (5), (7) and (8) of Box 2.1, score statistics are
used to take account of the model. In each of these steps, the idea was to compare
a selection of subjects S1 versus the others S0. At step (5), the subjects with one
particular genotype versus the rest. At step (7) (respectively 8), the subjects belonging
to the “H” (respectively “L”) category versus the rest. To simultaneously take account
of the main effects and of the group belongings, the model matrix needs to be extended.
A column is added at the back of matrix X, whose value is 1 if the row corresponds to
subjects belonging to S1 and 0 otherwise. To avoid confusion in the rest of this section,
we note Xmain the original model matrix (taking only the main effect into account)
and Xc+1 the aforementioned extra column. The score statistic is defined by

S =
u2

i
(2.5)

where the score u and information i can be computed in different ways. A stable
calculation is based on the QR decomposition Q1R1 =

√
WXmain [110]. This QR

decomposition is thin and needs to be executed only once. The extra column Xc+1

is explicitly orthogonalized with respect to Xmain by solving R1V = QT
1

√
WXc+1 for

vector V and calculating O = Xc+1 −XmainV . From this, we can calculate

u =
∑
i

WiOiρi (2.6)

i =
∑
i

WiO2
i (2.7)

where the residual vector ρ of size dim is given by

ρ =
Y − µ
µ(1− µ)

(2.8)

17

Chapter 2 2.2 Binary traits

Algorithm

In the previous section, we have given all the pieces of the puzzle to compute a number
tj, capturing the degree of association between the pair [SNP lj, SNP rj] and the trait T ,
adjusted for the main effects of the two SNPs (or environmental variables), using either
a codominant or an additive coding scheme. In this section, we sum up everything and
give the exact algorithm. The computation still follows the general scheme of Figure
2.6, but the three steps are now as follows:

1) The first step still begins by constructing the affected-subjects and unaffected-
subjects matrices, but again coded as vectors. They are obtained in the exact
same way as in Section 2.2.1. Then, vectors T and Y are again constructed,
while adjusting the size of A and U to take account of empty groups, but with
a small difference compared to Section 2.2.1: the model matrix X is as well
constructed on the fly during this process as well. It is created empty and at
each iteration h = 0, . . . , dim− 1, if there is at least one subject whose genotype
satisfies (SNP lj × N2 + SNP rj = h), the hth row of the hard coded-matrix is
added as the next row of X. Recall that in the rare cases where the hard-coded
matrix does not exist, i.e. when either N1 > 3 or N2 > 3, then the row is created
explicitly. At the end of this step, A, U , T and Y contains dim elements and X
contains dim rows, where dim is the number of non-empty groups.

2) The second step still consists in generating the HLO-matrix, but again coded
in vector format. First, the model is fitted as described in Box 2.2 and the
QR decomposition Q1R1 =

√
WXmain is obtained by calling a library (alglib)

dedicated for this task. Then, a column is added at the back of X. Each Rh

element of the HLO-vector depends on a test for association between the trait
and the belonging to the genotype group satisfying (SNP lj ×N2 + SNP rj = h),
but this time adjusted for the main effects of the SNPs. For h = 0, . . . , dim− 1,
if Th < 10 set the hth element of the HLO-vector to “O”. Otherwise, overwrite
the last column of X with 0’s, except the hth element which is set to 1. Then
compute the score statistic from equation 2.5. When this value, following a 1df
(one degrees of freedom) χ2, is below the critical value χ2

crit = 2, 705543, set the
hth element of the HLO-vector to “O”. Otherwise, set it to either “H” if u > 0 or
“L” otherwise.

3) If there is neither “H” nor “L” values in the HLO vector, return 0. Otherwise,
compute the following two score statistics. First, overwrite the last column of
X with 0’s, except for the elements for which the corresponding element of the
HLO vector is equal to “H” which are set to 1. Then, compute the score statistic
from equation 2.5. Second, do exactly the same except that the elements set to
1 are now those corresponding to a “L” value. Of course, if there are no “H” (“L”)
values, the first (second) number is not computed and the functions obviously
returns the second (first) one. Otherwise, the function returns the maximum of
the two numbers.

The detailed algorithm is reported in Box 2.3.

18

Chapter 2 2.2 Binary traits

Box 2.3. Binary MB-MDR statistic computing (with 1st order correction)

(1) Execute the algorithm from Box 2.2. Find Q1R1 =
√
WX.

(2) Create empty vectors V of size dimc and O of size dim. Create residual vector
ρ of size dim. For i = 0, . . . , dim− 1: if (µi = 0) set ρi = −1, else if (µi = 1)
set ρi = 1, else set ρi = Yi−µi

µi(1−µi) .

(3) Create empty HLO vector R of size dim. For h = 0, . . . , dim− 1:

(a) If (Th < 10) set Rh = “O” and skip steps (b), (c), and (d).

(b) For j = 0, . . . , dimc−1: execute Vj = Q1hj

√
Wh. For i = dimc−1, . . . , 0:

do (for j = i+ 1, . . . , dimc − 1: Vi = Vi −R1ijVj) and (Vi = Vi
R1ii

).

(c) For s = 0, . . . , dim − 1: do (Os = 0) and (for t = 0, . . . , dimc − 1:
Os = Os −XstVt). Execute Oh++.

(d) Set u = i = 0. For s = 0, . . . , dim − 1: do (u+=WsOsρs) and
(i+=WsO2

s). If i=0 set Rh = “O”, else calculate S = u2

i
. If S < χ2

crit set
Rh = “O”, else if (u > 0) set Rh = “H”, else set Rh = “L”.

(4) If there is no “H” and no “L” in the HLO vector R, return tj = 0.

(5) If there is at least one “H”:

(a) For i = 0, . . . , dimc − 1: do (Vi = 0) and (for j = 0, . . . , dim − 1: if
(Rj = “H”) do (Vi = Vi + Q1ji

√
Wj). For i = dimc − 1, . . . , 0: do (for

j = i+ 1, . . . , dimc − 1: Vi = Vi −R1ijVj) and (Vi = Vi
R1ii

).

(b) For s = 0, . . . , dim− 1: do (if (Rj = “H”) do Os = 1 else do Os = 0) and
(for t = 0, . . . , dimc − 1: do Os = Os −XstVt).

(c) Set u = i = 0. For s = 0, . . . , dim − 1: do (u+=WsOsρs) and
(i+=WsO2

s). If (i>0) compute SHvsLO = u2

i
else set it to zero.

(6) If there is at least one “L”:

(a) For i = 0, . . . , dimc − 1: do (Vi = 0) and (for j = 0, . . . , dim − 1: if
(Rj = “L”) do (Vi = Vi + Q1ji

√
Wj). For i = dimc − 1, . . . , 0: do (for

j = i+ 1, . . . , dimc − 1: Vi = Vi −R1ijVj) and (Vi = Vi
R1ii

).

(b) For s = 0, . . . , dim− 1: do (if (Rj = “L”) do Os = 1 else do Os = 0) and
(for t = 0, . . . , dimc − 1: do Os = Os −XstVt).

(c) Set u = i = 0. For s = 0, . . . , dim − 1: do (u+=WsOsρs) and
(i+=WsO2

s). If (i>0) compute SLvsHO = u2

i
else set it to zero.

(7) Return tj = max(SHvsLO,SLvsHO).

19

Chapter 2 2.2 Binary traits

2.2.3 Main effect screening

Before searching for GxG or GxE interactions influencing the disease, users may be in-
terested in solving the simpler task of finding direct genetical or environmental factors.
We propose an option in the software to perform such an analysis (the -d 1D option)
whose implementation is based on the idea that the source code from Section 2.2.1 can
be degenerated to search for single SNPs or environmental factors. The input is still
the same as in Figure 2.2, but the output is slightly different. The first column no
longer contains a ranking of the most significant pairs of SNPs, but a simple ranking
SNPt1, . . . , SNPtn of the most significant main effects. In this case, the aim is to com-
pute, for every SNPtj, a number tj capturing its degree of association with the trait.
Let N1 be the number of possible values for SNPtj. The different N1×N2 matrices of
Figure 2.5 and 2.6 now becomes vectors of size N1. Box 2.4 gives the algorithm.

Box 2.4. Binary main effect statistic computing

(1) Create vectors A, U , T and Y of size dim = N1. Define χ2
crit = 2, 705543.

(2) Fill A and U with 0’s. For s = 1, . . . , S: if gslj is not missing do either Agslj++
if cs = 1 or Ugslj++ otherwise.

(3) Set a = 0. For h = 0, . . . , dim− 1: compute Ta = Aa + Ua ; if (Ta = 0) erase
the ath element of vectors A and U , else compute Ya = Aa

Ta
and perform a++.

After the loop compute the final dimension: dim = a.

(4) Compute NA = A0 + . . .+Adim−1, NU = U0 + . . .+Udim−1 and N = NA+NU .

(5) Create HLO vector R of size dim. For h = 0, . . . , dim− 1:

(a) Define a = Ah, b = NA − a, c = Uh and d = NU − c.
(b) If (a+ c) < 10 or (b+ d) < 10: set Rh = “O”, else compute

χ2
obs = (ad−bc)2N

NANU (b+d)(a+c)
. If χ2

obs < χ2
crit set Rh = “O”, else if

(ad− bc) < 0 set Rh = “H”, else set Rh = “L”.

(6) If there is no “H” and no “L” in the R vector, return tj = 0.

(7) If there is at least one “H”:

(a) Initialize a = 0 and c = 0. For h = 0, . . . , dim− 1: if Rh = “H” compute
a+=Ah and c+=Uh.

(b) Define b = NA − a and d = NU − c. Compute χ2
HvsLO = (ad−bc)2N

NANU (b+d)(a+c)
.

(8) If there is at least one “L”:

(a) Initialize a = 0 and c = 0. For h = 0, . . . , dim− 1: if Rh = “L” compute
a+=Ah and c+=Uh.

(b) Define b = NA − a and d = NU − c. Compute χ2
LvsHO = (ad−bc)2N

NANU (b+d)(a+c)
.

(9) Return tj = max(χ2
HvsLO, χ

2
LvsHO).

20

Chapter 2 2.2 Binary traits

2.2.4 High-dimensional interaction screening

In practical studies, users may be interested in searching for three-order interactions.
The user usually chooses between a GxGxG interaction analysis or GxGxE one, but
any combination of genes and environmental factors is allowed. The GxGxG interac-
tion analysis is the most computational intensive, since it implies the highest amount of
hypothesis to investigate. This section is an extension of the code presented in Section
2.2.1 and 2.2.2. Although the input is the same as in Figure 2.2, the first column of the
output is different and contains a ranking (SNPl1, SNPm1, SNPr1), . . . , (SNPln, SNPmn, SNPrn)
of the most important triplets. Our aim is to compute, for every (SNPlj, SNPmj, SNPrj)
triplet, a number tj capturing its degree of association with the trait. Let N1, N2 and
N3 be the number of possible values for SNPlj, SNPmj and SNPrj respectively. The dif-
ferent N1×N2 matrices of Figure 2.5 and 2.6 becomes 3D matrices of size N1×N2×N3.
Box 2.5 gives the code computing tj without main effects correction.

Box 2.5. Binary three-order statistic computing (no 1st order correction)

(1) Create vectors A, U , T , Y of size dim = N1×N2×N3. Set χ2
crit = 2, 705543.

(2) Fill A and U with 0’s. For s = 1, . . . , S: if gslj, gsmj and gsrj are not missing
do either Agslj×N2×N3+gsmj×N3+gsrj++ if cs = 1 or Ugslj×N2×N3+gsmj×N3+gsrj++.

(3) Set a = 0. For h = 0, . . . , dim− 1: compute Ta = Aa + Ua ; if (Ta = 0) erase
the ath element of vectors A and U , else compute Ya = Aa

Ta
and perform a++.

After the loop compute the final dimension: dim = a.

(4) Compute NA = A0 + . . .+Adim−1, NU = U0 + . . .+Udim−1 and N = NA+NU .

(5) Create HLO vector R of size dim. For h = 0, . . . , dim− 1:

(a) Define a = Ah, b = NA − a, c = Uh and d = NU − c.
(b) If (a+ c) < 10 or (b+ d) < 10: set Rh = “O”, else compute

χ2
obs = (ad−bc)2N

NANU (b+d)(a+c)
. If χ2

obs < χ2
crit set Rh = “O”, else if

(ad− bc) < 0 set Rh = “H”, else set Rh = “L”.

(6) If there is no “H” and no “L” in the R vector, return tj = 0.

(7) If there is at least one “H”:

(a) Initialize a = 0 and c = 0. For h = 0, . . . , dim− 1: if Rh = “H” compute
a+=Ah and c+=Uh.

(b) Define b = NA − a and d = NU − c. Compute χ2
HvsLO = (ad−bc)2N

NANU (b+d)(a+c)
.

(8) If there is at least one “L”:

(a) Initialize a = 0 and c = 0. For h = 0, . . . , dim− 1: if Rh = “L” compute
a+=Ah and c+=Uh.

(b) Define b = NA − a and d = NU − c. Compute χ2
LvsHO = (ad−bc)2N

NANU (b+d)(a+c)
.

(9) Return tj = max(χ2
HvsLO, χ

2
LvsHO).

21

Chapter 2 2.2 Binary traits

The source code computing tj with main effects correction can easily be deduced
from the algorithms described in Section 2.2.2. Vector Y still contains the ratio of
cases versus number of individuals for every non-empty group of the affected-subjects
and unaffected-subjects matrices, but these matrices are here 3D ones. The aim is
once more to fit the model E{Y |X} = Xβ, where the number of rows in X is still
equal to the number of elements in Y . For an additive correction, the model matrix
Xadditive obviously consists of c = 4 columns (one for the intercept and one for each
SNP) and for a codominant correction, the model matrix Xcodominant now consists of
c = N1 + N2 + N3 − 2 columns. In the bi-allelic case, when no group is empty, these
objects are given explicitly by

Xadditive =

1 0 0 0
1 0 0 1
1 0 0 2
1 0 1 0
1 0 1 1
1 0 1 2
1 0 2 0
1 0 2 1
1 0 2 2
1 1 0 0
1 1 0 1
1 1 0 2
1 1 1 0
1 1 1 1
1 1 1 2
1 1 2 0
1 1 2 1
1 1 2 2
1 2 0 0
1 2 0 1
1 2 0 2
1 2 1 0
1 2 1 1
1 2 1 2
1 2 2 0
1 2 2 1
1 2 2 2

Xcodominant =

1 0 0 0 0 0 0
1 0 0 0 0 1 0
1 0 0 0 0 0 1
1 0 0 1 0 0 0
1 0 0 1 0 1 0
1 0 0 1 0 0 1
1 0 0 0 1 0 0
1 0 0 0 1 1 0
1 0 0 0 1 0 1
1 1 0 0 0 0 0
1 1 0 0 0 1 0
1 1 0 0 0 0 1
1 1 0 1 0 0 0
1 1 0 1 0 1 0
1 1 0 1 0 0 1
1 1 0 0 1 0 0
1 1 0 0 1 1 0
1 1 0 0 1 0 1
1 0 1 0 0 0 0
1 0 1 0 0 1 0
1 0 1 0 0 0 1
1 0 1 1 0 0 0
1 0 1 1 0 1 0
1 0 1 1 0 0 1
1 0 1 0 1 0 0
1 0 1 0 1 1 0
1 0 1 0 1 0 1

(2.9)

The algorithm provided in Box 2.2 is almost readily applicable to the new setting.
The only change is at the first step which is replaced by steps (1), (2) and (3) of Box
2.5 (instead of steps (1), (2) and (3) of Box 2.1 before). The algorithm from Box 2.3
does not change at all. In conclusion, adapting the code to three-order interactions is
rather straightforward.

22

Chapter 2 2.2 Binary traits

Higher-order interactions

It is of course possible to write a source code allowing the user to go for four-order
interactions, or even higher. Its is also possible to write a generic code enabling the
user to pick any natural number. These options have not been implemented in the
software for several reasons, enumerated in the discussion section of this chapter.

Customized analysis

Our software contains a lot of options to tune the analysis to the data at hand. For
instance, it can accommodate covariates. This feature is discussed in details in Chap-
ter 4. In Section 2.2.2 we have shown how the software corrects for main effects. This
obviously increases the computing time. For this reason, an intermediate option be-
tween correcting for main effects or not has been developed. In this case, no correction
is performed while the HLO matrices are constructed, but a correction is executed to
compute the final tj value. In other words, the first six steps of Box 2.1 are executed,
followed by steps (5), (6) and (7) of Box 2.3. This smooth correction is about 2.5 times
faster than the full one [79]. If the user is not interested in all possible combination of
SNPs, he can use the different filtering options provided. For instance, he can create
two files and investigate only the pairs that can be obtained by taking one SNP from
the first file and one SNP from the second file. We refer to the documentation presented
in the Appendix for more details.

23

Chapter 2 2.3 Continuous traits

2.3 Trait expressed on a continuous scale

Studies with patients having different degrees of severity for the disease are widely used
in medicine. This degree of severity is often measured on a numeric scale (for instance
the lungs capacity of the patient can be used as an indicator of the patient’s health
for certain diseases). The aim of continuous trait studies is to determine if there is a
statistically significant association between the genetic patrimonies of the subjects and
their continuous traits or phenotypes. In this thesis, we focus on genetic interactions
that might regulate the susceptibility to the disease. This design does not factually
restrict to a numerical value representing a disease status. It can in general handle any
continuous trait, as height, which is a highly heritable one.

Our aim is to compute for every pair [SNP lj, SNP rj], a number capturing its degree
of association with the trait. This enables to sort the pairs by decreasing chances of
regulating the disease. Let N1 and N2 be the number of possible values for SNP lj and
SNP rj respectively. Note that categorical environment variables can still be handled,
as long as they are coded 0, 1, . . . , N1 − 1, resp. 0, 1, . . . , N2 − 1.

2.3.1 Without correction for main effects

The starting point of the computation is similar to what was done for a binary trait in
Figure 2.5. All subjects are still split into groups depending on their genotypes (nine
groups in the bi-allelic case) and the risk of each group is still assessed (“H”, “L” or “O”).
However, in the case of a continuous trait, the assessment is based on the distribution
of the trait values of the subjects across the group. Figure 2.7 illustrates the process
with histograms.

In the case of a binary trait, χ2 tests were used whenever two groups of subjects
needed to be compared. The equivalent in the continuous world is the t-test, defined
by

t =
X̄1 − X̄2

SX1X2

√
1
n1

+ 1
n2

(2.10)

where X̄1 (X̄2) is the average trait value for group 1 (2), n1 (n2) is the number of
subjects in group 1 (2) and SX1X2 is an estimator of the common standard deviation
of the two samples defined by

SX1X2 =

√
(n1 − 1)S2

X1
+ (n2 − 1)S2

X2

n1 + n2 − 2
(2.11)

In this equation, S2
X1

(S2
X2
) is the unbiased estimators of the variance of group 1 (2).

This definition of the t-test is customized for unequal sample sizes and equal vari-
ance, as suggested by [79]. Note that from a programming point of view, it is much
faster to do things slightly differently. First, computing a square root is computational
intensive, so instead of computing t, t2 should be computed. Second, the definition of
the unbiased estimator of the variances of group 1 and 2 are given by

24

Chapter 2 2.3 Continuous traits

Figure 2.7: For a continuous trait, the subjects are still split into cells depending on
their genotypes, in the same way as in Figure 2.5. However, here the cells contain
an estimation of the distribution of the continuous trait across the group of subjects
having the same genotypes. A cell is immediately assigned to the “O” category (no-
evidence for any risk change) if it consists of less than ten individuals. Otherwise, a
statistical test is performed to decide if there is a statistically significant difference
between the group of subjects belonging to the cell and the group consisting of all
other subjects. If there is, the cell is assigned to either the “H” or “L” category,
depending on which group has the highest average. Otherwise, it is assigned to the
“O” category.

S2
X1

=

n1∑
i=1

(X̄1 −Xi)
2

n1 − 1
(2.12)

and

S2
X2

=

n2∑
i=1

(X̄2 −Xi)
2

n2 − 1
(2.13)

A close look at equation 2.11 shows that the (n1 − 1) and (n2 − 1) terms are
divided by themselves. Since this equation is used billions of times, it is crucial to
optimize its implementation and avoid such unnecessary division. For this reason, only
the numerator of S2

X1
and S2

X2
is computed. Figure 2.8 sketches the computation of a

statistic t2j representing the strength of the association between the pair [SNP lj, SNP rj]
and the trait T .

25

Chapter 2 2.3 Continuous traits

Trait SNPlj SNPrj

c1 g1lj g1rj

c2 g2lj g2rj

… … …

cS gSlj gSrj

T00 … T0(N2-1) Y00 … Y0(N2-1) V00 … V0(N2-1)

… … … … … … … … …

T(N1-1)0 … T(N1-1)(N2-1) Y(N1-1)0 … Y(N1-1)(N2-1) V(N1-1)0 … V(N1-1)(N2-1)

R00 … R0(N2-1)

… … …

R(N1-1)0 … R(N1-1)(N2-1)

HLO matrix

tj2

mean-matrixamount-matrix varnum-matrix

Figure 2.8: MB-MDR statistic computing for a continuous trait, without 1st order
correction. Input: cs is the continuous trait value for the sth subject, gslj and
gsrj are the genotypes of the sth subject for SNP lj and SNP rj respectively. The
computation can be decomposed in three steps. First, the amount, mean and
varnum matrices are constructed. Tmn, Ymn and Vmn are respectively the total
number of subjects, the mean and the variance numerator of the group of subjects
whose genotype is gslj = m and gsrj = n. Second, the HLO matrix is constructed.
Rmn is either “H” if the subjects whose genotype is m for SNP lj and n for SNP rj

have a high statistical risk of disease, “L” if they have a low statistical risk and “O”
if there is no statistical evidence. Third, the final t2j value is computed from the
four matrices constructed at steps 1 and 2.

The three steps of the computation of the number t2j capturing the degree of asso-
ciation between the pair [SNP lj, SNP rj] and the trait T are as follows:

1) Generation of the amount-, mean- and varnum- matrices. For efficiency reasons
these objects are again coded as vectors. They are created with a size N1 × N2

and initialized with zeros. Then, several loops are performed. First, a loop over
the subjects of the dataset: for s = 1, . . . S, if no value is missing for subject
s, increment the (gslj × N2 + gsrj)

th element of the amount-vector by one and
the (gslj × N2 + gsrj)

th element of the mean-vector by cs. Second, loop over the
elements of the mean-vector: for h = 0, . . . , (N1×N2)−1, if the hth element of the
amount-vector is not equal to zero, divide the hth element of the mean-vector by
the hth of the amount-vector. The quantity N of subjects without missing values
is computed on the fly during this process. Third, loop over the subjects of the

26

Chapter 2 2.3 Continuous traits

dataset again: for s = 1, . . . S, if no value is missing for subject s increment the
(gslj ×N2 + gsrj)

th element of the varnum-vector by the square of the difference
between the (gslj×N2 +gsrj)

th value of the mean-vector and the cs value. Finally,
remove empty groups from these three vectors. Let dim be their final sizes.

2) Generation of the HLO-matrix from the objects generated at step 1, but coded as
vector. The value of each Rh elements depends on an independent two-sample t-
test between the subjects having a genotype satisfying (SNP lj×N2 +SNP rj = h)
and the other ones. For h = 0, . . . , dim − 1, we compute the square of equation
2.10. The n1, X̄1 and numerator of S2

X1
values are readily given by the hth element

of the amount-, mean- and varnum-vectors. n2 is given by N − n1 and X̄2 calcu-
lated as the sum of the elements of the mean-vector except the hth one, divided
by n2. The numerator of S2

X2
is a bit more tricky to compute. Each element of

the varnum-vector is an expression of the deviance from the corresponding ele-
ment of the mean-vector. However, we are now interested in the deviance from
X̄2 so that these values should be rescaled. Therefore, the numerator of S2

X2
can

be obtained by summing all elements of the varnum-matrix except the hth one
and each time adding a rescaling factor computed as the product of two terms.
First, the square of the difference between X̄2 and the corresponding element of
the mean-vector. Second, the corresponding element of the amount-vector. The
latter term is in fact a weighting one, to properly take account of the different
group sizes. Note that, if either n1 or n2 is below a threshold that is a parameter
of the program (default value 10) then the test is not performed at all, since it
would not be statistically significant. In this case the value of Rh is automatically
set to “O”, to indicate the absence of evidence that the subset of individuals with
multilocus genotype satisfying (SNP lj × N2 + SNP rj = h) has neither a high
nor a low risk for disease. Otherwise, the test is performed, based on a critical
value Fcrit defined by an F-distribution with parameters 1 and degrees of freedom
N -2 (based on a liberal significance threshold of 0.1) 6. When the computed t2
value is below Fcrit the value of Rh is set to “O”, to indicate that we cannot reject
the independence hypothesis. Otherwise, Rh is set to either “H” if X̄1 > X̄2, to
indicate a high risk of having the trait, or to “L” if X̄1 < X̄2, for a low one.

3) Computation of tj from the four objects generated at steps 1 and 2. It consists in
performing two t-tests and returning the maximum of both. The first one tests
independence between the trait and the belonging to the “H” category versus the
“L” or “O” category. The second one tests independence between the trait and
the belonging to the “L” category versus the “H” or “O” category. In the first
(second) case, n1, X̄1 and the numerator of S2

X1
are respectively the number, the

mean and the numerator of the variance of the group of individuals belonging to
the “H” (“L”) category and n2, X̄2 and the numerator of S2

X2
to the “L” (“H”) or

“O” category. Computing this can be easily achieved in a similar way as in step
2. Note that in many cases, there are only cells associated to the “O” category
and t2j can readily be set to zero.

6 Indeed, when the degrees of freedom are high, which is the case here since the number of subjects
is important, the t2 distribution comes down to an F distribution, as can be proved by
t2 = (N(0,1)√

χ2(p)/p
)2 = N2(0,1)

χ2(p)/p = χ2(1)
χ2(p)/p = χ2(1)/1

χ2(p)/p ∼ F (1, p)

27

Chapter 2 2.3 Continuous traits

The detailed algorithm computing the t2j statistic is reported in Box 2.6. Note
that for efficiency reasons, the implementation is based on a vector B that was not
presented so far. The elements of this vector are simply given by the product of the
corresponding elements of the amount- and mean-vectors. This vector is not necessary
from a conceptual point of view and does therefore not appear in Figure 2.8. However,
it is useful in practice since it helps avoiding some operations to be performed several
times (within a function that is called billions of times in GWAIs).

Box 2.6. Continuous MB-MDR statistic computing (no 1st order correction)

(1) Create vectors T , B, Y , V of size dim = N1 ×N2.

(2) Fill T and B with 0’s. For s = 1, . . . , S: if gslj and gsrj are not missing do
Tgslj×N2+gsrj++ and Bgslj×N2+gsrj+=cs.

(3) Set N = 0. For h = 0, . . . , dim − 1: if (Th > 0) do Yh = Bh
Th

and N+=Th.
Define Fcrit = F0,1(1, N − 2).

(4) Fill V with 0’s. For s = 1, . . . , S: if gslj and gsrj are not missing do
Vgslj×N2+gsrj+=(Ygslj×N2+gsrj − cs)2.

(5) Set a = 0. For h = 0, . . . , dim−1: if (Th = 0) erase the ath element of vectors
T , B, Y and V , else do a++. After the loop compute dim = a.

(6) Create HLO vector R of size dim. For h = 0, . . . , dim− 1:

(a) Define n1 = Th, X̄1 = Yh, Snum1 = Vh and n2 = N − n1.

(b) If (n1 < 10) or (n2 < 10) set Rh = “O” and skip steps (c), (d), and (e).

(c) Set X̄2 = 0. For i = 0, . . . , dim − 1: if (i 6= h) execute X̄2+=Bi.
Compute X̄2 = X̄2

n2
.

(d) Set Snum2 = 0. For i = 0, . . . , dim− 1: if (i 6= h) execute Snum2+=Vi +
(Yi − X̄2)2 × Ti.

(e) Compute t2 = (X̄1−X̄2)2(n1+n2−2)

(Snum1+Snum2)(1
n1

+ 1
n2

)
. If t2 < Fcrit set Rh = “O”, else if

X̄1 > X̄2 set Rh = “H”, else set Rh = “L”.

(7) If there is no “H” and no “L” in the R matrix, return t2j = 0.

(8) If there is at least one “H”:

(a) Initialize n1 = 0, X̄1 = 0, Snum1 = 0, n2 = 0, X̄2 = 0 and Snum2 = 0.

(b) For h = 0, . . . , dim− 1: if Rh = “H” execute n1+=Th and X̄1+=Bh, else
n2+=Th and X̄2+=Bh. Compute X̄1 = X̄1

n1
and X̄2 = X̄2

n2
.

(c) For h = 0, . . . , dim−1: if Rh = “H” execute Snum1+=Vh+(Yh−X̄1)2×Th,
else execute Snum2+=Vh + (Yh − X̄2)2 × Th.

(d) Compute t2HvsLO = (X̄1−X̄2)2(n1+n2−2)

(Snum1+Snum2)(1
n1

+ 1
n2

)

28

Chapter 2 2.3 Continuous traits

(9) If there is at least one “L”:

(a) Initialize n1 = 0, X̄1 = 0, Snum1 = 0, n2 = 0, X̄2 = 0 and Snum2 = 0.

(b) For h = 0, . . . , dim− 1: if Rh = “L” execute n1+=Th and X̄1+=Bh, else
n2+=Th and X̄2+=Bh. Compute X̄1 = X̄1

n1
and X̄2 = X̄2

n2
.

(c) For h = 0, . . . , dim−1: if Rh = “L” execute Snum1+=Vh+(Yh−X̄1)2×Th,
else execute Snum2+=Vh + (Yh − X̄2)2 × Th.

(d) Compute t2LvsHO = (X̄1−X̄2)2(n1+n2−2)

(Snum1+Snum2)(1
n1

+ 1
n2

)

(10) Return t2j = max(t2HvsLO, t
2
LvsHO).

2.3.2 With correction for main effects

In the previous section, we have proposed a strategy to compute a generic epistasis test.
However, this is not what we advocate by default. Indeed, users performing a GWAIs
are most of the time interested in finding pure epistatic effects, since they already
know the main effects from the literature or a previous analysis realized with software
customized for this task. The implementation presented in the previous section would
detect any interaction linked to the trait, regardless of the fact that it comes from the
main effect of one of the SNP involved in the interaction or from a pure interaction. In
this section, we describe the default option of the software in the case of a continuous
trait, correcting for lower-order effects.

Coding scheme

The general idea of the lower-order correction is as follows. First, construct the amount-
matrix, mean-matrix and varnum-matrix as in Figure 2.8, but store them again in
vectors T , Y and V . Empty groups are not added at all to these vectors. Let dim be
their final sizes. Then, try to fit the following model:

E{Y |X} = Xβ (2.14)

where X is the model matrix and β a row vector of parameters to fit.

The model matrix is the same as for a binary trait. For an additive correction, in
the bi-allelic case, when no group is empty, it is given explicitly by

Xadditive =

1 0 0
1 0 1
1 0 2
1 1 0
1 1 1
1 1 2
1 2 0
1 2 1
1 2 2

(2.15)

29

Chapter 2 2.3 Continuous traits

For a codominant main effects correction, when no group is empty, it is given
explicitly by

Xcodominant =

1 0 0 0 0
1 0 0 1 0
1 0 0 0 1
1 1 0 0 0
1 1 0 1 0
1 1 0 0 1
1 0 1 0 0
1 0 1 1 0
1 0 1 0 1

(2.16)

When a group is empty, the corresponding row is removed from matrix X and the
corresponding element is removed from vector Y . This process can again produce a
model matrix that is singular. This issue is handled in the same way as for a binary
trait. First, the software tries to estimate the model without taking care of this issue.
Then, in the rare cases where it fails, the matrix is investigated in details and the
linearly dependent columns are removed.

For efficiency reasons, the aforementioned Xadditive and Xcodominant matrices are still
hard-coded in the software. In this way, significant computing time can be saved. When
empty groups are present, the actual model matrix used for the corresponding pair is
easy to construct from the hard-coded one, by keeping only the rows corresponding
to the non-empty groups. When at least one SNP is not bi-allelic, the most common
scenarios are again hard-coded (in fact, all scenario where N1 ≤ 3 and N2 ≤ 3) and in
the very rare other cases, the model matrix needs to be constructed explicitly.

Fitting the model

This section is mainly influenced by [14]. In the case of a continuous trait, a closed
form to obtain the parameter estimates in equation 2.14 exists. Therefore, there is no
need to use a Newton-Raphson type of strategy, as was the case for a binary trait. The
different steps are given in Box 2.7.

Box 2.7. Model fitting for a continuous trait

(1) Create dim× dim diagonal weights matrix W . The diagonal elements corre-
spond to the elements of the amount-vector.

(2) Calculate the c× c symmetric positive definite information matrix
I = X ′WX.

(3) Calculate the right-hand side vector v = X ′WY of size dimc.

(4) Estimate parameter vector β of size dimc by solving the linear system Iβ = v.
If it fails, find and remove all linearly dependent columns from X and go back
to step (2).

(5) Create fitted values vector µ of size dim as µ = Xβ.

30

Chapter 2 2.3 Continuous traits

The difficult part is step (4). Because I is symmetric and positive definite, this
linear system can again be solved based on the Cholesky decomposition of I, which is
guaranteed to exist and be unique if X is not singular:

I = LDL′ (2.17)

where L is a c × c lower triangular matrix with diagonal elements equal to 1 and
D a c× c diagonal matrix with strictly positive diagonal elements. The linear system
Iβ = v can then be solved by subsequently solving Lv1 = v for v1, Dv2 = v1 for
v2 and L′β = v2 for β. Hence, no explicit matrix inversion is involved. In practice,
we call a library (alglib) that performs the Cholesky decomposition very fast. As
already mentioned, this part of the code is organized as a try-catch block. Indeed,
the decomposition can only fail if X is singular (which leads to a matrix I that is not
positive definite) and in this case the linearly dependent columns are removed from X
to ensure that the decomposition succeeds.

Wald statistic

To make use of the fitted model, simple t-tests can no longer be used as in steps (6),
(8) and (9) of Box 2.6. In each of these three steps, the idea was to compare a selection
of subjects S1 versus the others S0. At step (6), the subjects with one particular
genotype versus the rest. At step (7) (respectively 8), the subjects belonging to the
“H” (respectively “L”) category versus the rest. These comparisons should now take
into account the main effects and the group belongings simultaneously. To achieve
this, the model is again extended by adding a column at the back of matrix X, whose
value is 1 if the row corresponds to subjects belonging to S1 and 0 otherwise. Note
that the whole process of calculating the weights matrix W , the information matrix I,
its Cholesky decomposition and the right-hand-side vector v is done column by column
[14]. Therefore, this only needs to be performed for the one extra column here. Note
that such optimization is only possible because the implementation is done explicitly.
Calling a package that would take care of the model fitting would not enable such
optimizations so easily.

Wald statistic enables to test if the precision of the model gets statistically signifi-
cantly better by adding the extra column or not. The computation is based on the sum
of squared errors (SSE) in both scenarios. To avoid confusion, we note SSEmain the one
without the extra column (taking only the main effects into account) and SSEmain+

the one with the group-belongings column. In our context, the Wald statistic is also
an F statistic, since the two are the same for a 1df test. It can be defined by

W = (SSEmain − SSEmain+)
N − (c+ 1)

SSEmain+

(2.18)

where N is the total number of subjects considered.

Denoting by σ2
i the within genotype cell variance, the SSE of the full model (main

effects and epistasis) is given by

SSEfull =
∑
i

(ni − 1)σ2
i (2.19)

31

Chapter 2 2.3 Continuous traits

Note that for each term of this sum, the computation comes down to the calculation
of the numerator of the definition of σi, since the denominator simplifies itself with the
(ni − 1) term, similarly as what was done in the case of a binary trait. The two SSE
from equation 2.18 can be now be defined as

SSEmain = SSEfull +
∑
i

ni(Yi − µi)2 (2.20)
and

SSEmain+ = SSEmain +
∑
i

ni(Yi − µmain+
i)2 (2.21)

Note that in equation 2.20, µ is as expected the vector from Box 2.7. In equation
2.21, µmain+ can be assessed trivially for the extra column by

µmain+
i = m1I(i ∈ S1) +m0I(i ∈ S0) (2.22)

where
mj =

∑
i∈Sj niYi∑
i∈Sj ni

(2.23)

are the means within the selected and non-selected groups.

Significance of the Wald test is assessed with respect to the F distribution with
degrees of freedom 1 and N − (c + 1). When a significant group is found during the
HLO matrix construction, it is assigned to the “H” category when m1 > m0 and to the
“L” one otherwise. Note that in practice we test if βc+1 > 0, since this is obviously the
same as testing if m1 > m0.

Algorithm

This section describes the algorithm computing a number tj, capturing the degree of
association between the pair [SNP lj, SNP rj] and the trait T , adjusted for the main
effects of the two SNPs (or environmental variables), using either a codominant or an
additive coding scheme. The computation still follows the general strategy of Figure
2.8, but the three steps are now as follows:

1) The first step still begins by constructing the amount-, mean- and varnum- ma-
trices, but again coded as vectors for efficiency and facility reasons. They are
created with a size N1 × N2 and initialized with zeros. Then, several loops are
performed. First, a loop over the subjects of the dataset: for s = 1, . . . S, if no
value is missing for subject s, increment the (gslj × N2 + gsrj)

th element of the
amount-vector by one and the (gslj×N2+gsrj)

th element of the mean-vector by cs.
Second, loop over the elements of the mean-vector: for h = 0, . . . , (N1×N2)−1, if
the hth element of the amount-vector is not equal to zero, divide the hth element
of the mean-vector by the hth of the amount-vector. The quantity N of subjects
without missing values is computed on the fly during this process. Third, loop
over the subjects of the dataset again: for s = 1, . . . S, if no value is missing for
subject s increment the (gslj ×N2 + gsrj)

th element of the varnum-vector by the
square of the difference between the (gslj ×N2 + gsrj)

th value of the mean-vector
and the cs value. Finally, remove empty groups from the amount-, mean- and
varnum- vectors and on the fly construct the model matrix from the hard-coded
one (or explicitly in the rare scenarios explained earlier) and compute the SSEfull
value. Let dim be the final size of the vectors.

32

Chapter 2 2.3 Continuous traits

2) The second step still consists in generating the HLO-matrix, but again coded
in vector format. First, the model is fitted as described in Box 2.7. Then, a
column is added to X. For h = 1, . . . , dim− 1, if the hth element of the amount-
matrix is less than 10, set the hth element of the HLO-vector to “O”, to indicate
the absence of evidence that the subset of individuals with multilocus genotype
satisfying SNP lj ×N2 + SNP rj = h has neither a high nor a low risk for disease.
Otherwise, overwrite the last column of X with 0’s, except the hth element which
is set to 1. Then compute the Wald statistic from equation 2.18. When this
value is below the critical value Fcrit defined by an F distribution with degrees
of freedom 1 and N − (c + 1), set the hth element of the HLO-vector to “O”.
Otherwise, set it to either “H” if βc+1 > 0, to indicate a high risk for disease, or
to “L” to indicate a low risk for the disease.

3) If there are neither “H” nor “L” values in the HLO vector, return 0. Otherwise,
compute the following two Wald statistics and return the maximum. First, over-
write the last column of X with 0’s, except for the elements corresponding to
HLO-vector cells equal to “H”, which are set to 1. Then, compute again the Wald
statistic from equation 2.18. Second, do exactly the same except that the ele-
ments set to 1 are now those corresponding to a “L” value. Of course, if there are
no “H” (“L”) values, the first (second) number is not computed and the function
readily returns the second (first) one.

The algorithm is reported in Box 2.8. Note that for efficiency reasons, the code is
again based on a vector B which is the elements-wise product of T and Y .

Box 2.8. Continuous MB-MDR statistic computing (with 1st order correction)

(1) Create vectors T , B, Y , V of size dim = N1 ×N2.

(2) Fill T and B with 0’s. For s = 1, . . . , S: if gslj and gsrj are not missing do
Tgslj×N2+gsrj++ and Bgslj×N2+gsrj+=cs.

(3) Set N = 0. For h = 0, . . . , dim − 1: if (Th > 0) do Yh = Bh
Th

and N+=Th.
Define Fcrit = F0,1(1, N − 2).

(4) Fill V with 0’s. For s = 1, . . . , S: if gslj and gsrj are not missing do
Vgslj×N2+gsrj+=(Ygslj×N2+gsrj − cs)2.

(5) Set a = 0. Create empty matrix X. Set SSEfull = 0. For h = 0, . . . , dim−1:
if (Th = 0) erase the ath element of vectors T , B, Y and V , else take the hth
row of the hard coded model matrix and add it to X, execute SSEfull+=Va
and do a++. After the loop compute dim = a.

(6) Execute the algorithm from Box 2.7. Initialize SSEmain = SSEfull.
For h = 0, . . . , dim− 1: execute SSEmain+ = (Yh − µh)2 × Th.

(7) Update the sizes of X to dim× (c+ 1), I to (c+ 1)× (c+ 1) and v to c+ 1.

33

Chapter 2 2.3 Continuous traits

(8) Create HLO vector R of size dim. For h = 0, . . . , dim− 1:

(a) If Th < 10: set Rh = “O” and skip steps (b), (c) and (d).

(b) Overwrite the last column of X with 0’s except at the hth row put to 1.

(c) Execute steps (2) to (5) of Box 2.7. Initialize SSEmain+ = SSEmain.
For h = 0, . . . , dim− 1: execute SSEmain++ = (Yh − µh)2 × Th.

(d) Compute W = (SSEmain − SSEmain+) N−(c+1)
SSEmain+

. If W < Fcrit set Rh =
“O”, else if βc+1 > 0 set Rh = “H”, else set Rh = “L”.

(9) If there is no “H” and no “L” in the HLO vector R, return tj = 0.

(10) If there is at least one “H”:

(a) Overwrite the last column of X with 0’s except for rows corresponding
to elements of R equals to “H” which are set to 1.

(b) Execute steps (2) to (5) of Box 2.7. Initialize SSEmain+ = SSEmain.
For h = 0, . . . , dim− 1: execute SSEmain++ = (Yh − µh)2 × Th.

(c) Compute WHvsLO = (SSEmain − SSEmain+) N−(c+1)
SSEmain+

.

(11) If there is at least one “L”:

(a) Overwrite the last column of X with 0’s except for rows corresponding
to elements of R equals to “L” which are set to 1.

(b) Execute steps (2) to (5) of Box 2.7. Initialize SSEmain+ = SSEmain.
For h = 0, . . . , dim− 1: execute SSEmain++ = (Yh − µh)2 × Th.

(c) Compute WLvsHO = (SSEmain − SSEmain+) N−(c+1)
SSEmain+

.

(12) Return tj = max(WHvsLO,WLvsHO).

2.3.3 Main effect screening

For the same reasons as for a binary trait, users may first be interested in performing
a main effect analysis. Performing different kinds of analysis on the same dataset
helps indeed to get a deeper understanding of the biological processes regulating the
disease. The code for performing a main effect analysis is obtained by degenerating
the algorithm from Box 2.6. The input is still the same as in Figure 2.2, but the
output is again slightly different. The first column no longer contains a ranking of
the most significant pairs (SNPl1, SNPr1), . . . , (SNPln, SNPrn), but a simple ranking
SNPt1, . . . , SNPtn of the most significant main effects or environmental factors. Here
our aim is to compute, for every SNPtj, a number tj capturing its degree of association
with the trait. Let N1 be the number of possible values for SNPtj. The different
N1 ×N2 matrices of Figure 2.7 and 2.8 now becomes vectors of size N1. Box 2.9 gives
the detailed algorithm.

34

Chapter 2 2.3 Continuous traits

Box 2.9. Continuous main effect statistic computing

(1) Create vectors T , B, Y , V of size dim = N1. Fill T and B with 0’s.
For s = 1, . . . , S: if gstj is not missing do Tgstj++ and Bgstj+=cs.

(2) Set N = 0. For h = 0, . . . , dim − 1: if (Th > 0) do Yh = Bh
Th

and N+=Th.
Define Fcrit = F0,1(1, N − 2).

(3) Fill V with 0’s. For s = 1, . . . , S: if gstj is not missing do Vgstj+=(Ygstj − cs)2.

(4) Set a = 0. For h = 0, . . . , dim−1: if (Th = 0) erase the ath element of vectors
T , B, Y and V , else do a++. After the loop compute dim = a.

(5) Create HLO vector R of size dim. For h = 0, . . . , dim− 1:

(a) Define n1 = Th, X̄1 = Yh, Snum1 = Vh and n2 = N − n1.
(b) If (n1 < 10) or (n2 < 10) set Rh = “O” and skip steps (c), (d), and (e).
(c) Set X̄2 = 0. For i = 0, . . . , dim − 1: if (i 6= h) execute X̄2+=Bi.

Compute X̄2 = X̄2

n2
.

(d) Set Snum2 = 0. For i = 0, . . . , dim− 1: if (i 6= h) execute Snum2+=Vi +
(Yi − X̄2)2 × Ti.

(e) Compute t2 = (X̄1−X̄2)2(n1+n2−2)

(Snum1+Snum2)(1
n1

+ 1
n2

)
. If t2 < Fcrit set Rh = “O”, else if

X̄1 > X̄2 set Rh = “H”, else set Rh = “L”.

(6) If there is no “H” and no “L” in the R matrix, return t2j = 0.

(7) If there is at least one “H”:

(a) Initialize n1 = 0, X̄1 = 0, Snum1 = 0, n2 = 0, X̄2 = 0 and Snum2 = 0.
(b) For h = 0, . . . , dim− 1: if Rh = “H” execute n1+=Th and X̄1+=Bh, else

n2+=Th and X̄2+=Bh. Compute X̄1 = X̄1

n1
and X̄2 = X̄2

n2
.

(c) For h = 0, . . . , dim− 1: if Rh = “H” do Snum1+=Vh + (Yh − X̄1)2 × Th,
else do Snum2+=Vh + (Yh − X̄2)2 × Th.

(d) Compute t2HvsLO = (X̄1−X̄2)2(n1+n2−2)

(Snum1+Snum2)(1
n1

+ 1
n2

)

(8) If there is at least one “L”:

(a) Initialize n1 = 0, X̄1 = 0, Snum1 = 0, n2 = 0, X̄2 = 0 and Snum2 = 0.
(b) For h = 0, . . . , dim− 1: if Rh = “L” execute n1+=Th and X̄1+=Bh, else

n2+=Th and X̄2+=Bh. Compute X̄1 = X̄1

n1
and X̄2 = X̄2

n2
.

(c) For h = 0, . . . , dim − 1: if Rh = “L” do Snum1+=Vh + (Yh − X̄1)2 × Th,
else do Snum2+=Vh + (Yh − X̄2)2 × Th.

(d) Compute t2LvsHO = (X̄1−X̄2)2(n1+n2−2)

(Snum1+Snum2)(1
n1

+ 1
n2

)

(9) Return t2j = max(t2HvsLO, t
2
LvsHO).

35

Chapter 2 2.3 Continuous traits

2.3.4 High-dimensional interaction screening

In practical studies, users may be interested in searching for three-order interactions.
The user can chose between a GxGxG interaction analysis, a GxGxE one, or any other
three-way combination of G’s and E’s. To perform a GxGxE analysis, the user just
needs to use a filtering option7 to ensure that only triplets containing the environmental
factor are investigated.

The code without correction for main effects is a generalization of the algorithm
described in Section 2.3.1. The input is still the same as in Figure 2.2, but the output
is as usual slightly different. The first column no longer contains a ranking of the most
significant SNP pairs (SNPl1, SNPr1), . . . , (SNPln, SNPrn), but a ranking of the most
important SNP triplets (SNPl1, SNPm1, SNPr1), . . . , (SNPln, SNPmn, SNPrn). Here, our
aim is to compute, for every triplet (SNPlj, SNPmj, SNPrj), a number tj capturing its
degree of association with the trait, without trying to correct for the main effects of
the SNPs. Let N1, N2 and N3 be the number of possible values for SNPlj, SNPmj and
SNPrj respectively. The different N1×N2 matrices of Figure 2.7 and 2.8 now becomes
3D matrices of size N1 ×N2 ×N3. Box 2.10 gives the detailed algorithm.

Box 2.10. Continuous 3D statistic computing (no 1st order correction)

(1) Create vectors T , B, Y , V of size dim = N1 × N2 × N3. Fill T and
B with 0’s. For s = 1, . . . , S: if gslj, gsmj and gsrj are not missing do
Tgslj×N2×N3+gsmj×N3+gsrj++ and Bgslj×N2×N3+gsmj×N3+gsrj+=cs.

(2) Set N = 0. For h = 0, . . . , dim − 1: if (Th > 0) do Yh = Bh
Th

and N+=Th.
Define Fcrit = F0,1(1, N − 2).

(3) Fill V with 0’s. For s = 1, . . . , S: if gslj, gsmj and gsrj are not missing do
Vgslj×N2×N3+gsmj×N3+gsrj+=(Ygslj×N2×N3+gsmj×N3+gsrj − cs)2.

(4) Set a = 0. For h = 0, . . . , dim−1: if (Th = 0) erase the ath element of vectors
T , B, Y and V , else do a++. After the loop compute dim = a.

(5) Create HLO vector R of size dim. For h = 0, . . . , dim− 1:

(a) Define n1 = Th, X̄1 = Yh, Snum1 = Vh and n2 = N − n1.

(b) If (n1 < 10) or (n2 < 10) set Rh = “O” and skip steps (c), (d), and (e).

(c) Set X̄2 = 0. For i = 0, . . . , dim − 1: if (i 6= h) execute X̄2+=Bi.
Compute X̄2 = X̄2

n2
.

(d) Set Snum2 = 0. For i = 0, . . . , dim− 1: if (i 6= h) execute Snum2+=Vi +
(Yi − X̄2)2 × Ti.

(e) Compute t2 = (X̄1−X̄2)2(n1+n2−2)

(Snum1+Snum2)(1
n1

+ 1
n2

)
. If t2 < Fcrit set Rh = “O”, else if

X̄1 > X̄2 set Rh = “H”, else set Rh = “L”.

7 The -f option allows users to investigate only the triplets composed of exactly one marker from
the comma-separated list of markers passed as argument, while the -F option does the same, but
instead of passing the marker names as arguments, they are read from a file.

36

Chapter 2 2.3 Continuous traits

(6) If there is no “H” and no “L” in the R matrix, return t2j = 0.

(7) If there is at least one “H”:

(a) Initialize n1 = 0, X̄1 = 0, Snum1 = 0, n2 = 0, X̄2 = 0 and Snum2 = 0.

(b) For h = 0, . . . , dim− 1: if Rh = “H” execute n1+=Th and X̄1+=Bh, else
n2+=Th and X̄2+=Bh. Compute X̄1 = X̄1

n1
and X̄2 = X̄2

n2
.

(c) For h = 0, . . . , dim−1: if Rh = “H” do Snum1+=Vh+(Yh−X̄1)2×Th, else
do Snum2+=Vh+(Yh−X̄2)2×Th. Compute t2HvsLO = (X̄1−X̄2)2(n1+n2−2)

(Snum1+Snum2)(1
n1

+ 1
n2

)

(8) If there is at least one “L”:

(a) Initialize n1 = 0, X̄1 = 0, Snum1 = 0, n2 = 0, X̄2 = 0 and Snum2 = 0.

(b) For h = 0, . . . , dim− 1: if Rh = “L” execute n1+=Th and X̄1+=Bh, else
n2+=Th and X̄2+=Bh. Compute X̄1 = X̄1

n1
and X̄2 = X̄2

n2
.

(c) For h = 0, . . . , dim−1: if Rh = “L” do Snum1+=Vh+(Yh−X̄1)2×Th, else
do Snum2+=Vh+(Yh−X̄2)2×Th. Compute t2LvsHO = (X̄1−X̄2)2(n1+n2−2)

(Snum1+Snum2)(1
n1

+ 1
n2

)

(9) Return t2j = max(t2HvsLO, t
2
LvsHO).

The code correcting for main effects is a generalization of the algorithm presented
in Section 2.3.2. Vector Y still contains the mean trait value of every non-empty group
and the aim is again to fit the model Y = Xβ. For an additive correction, the model
matrix Xadditive now consists of c = 4 columns (one for the intercept and one for each
SNP) and for a codominant correction, the model matrix Xcodominant now consists of
c = N1 + N2 + N3 − 2 columns. In the bi-allelic case, when no group is empty, these
objects are exactly the same as in the case of a binary trait reported in equations 2.9.
The algorithm from Box 2.7 can be used without any modification to fit the model. The
algorithm from Box 2.8 requires a slight modification: steps (1) and (4) are replaced
by steps (1) and (3) of Box 2.10 respectively.

Higher-order interactions

The discussion from Section 2.2.4 regarding higher-order interactions is also applicable
in the case of a continuous trait. In summary, investigation pairs and triplets is already
a big enough challenge and anyway looking for higher-order interactions is even from a
conceptual point of view doubtless. Trying to construct networks is a better strategy.

Customized analysis

Users are offered a panel of options to customize their analysis, similar to those pro-
posed in the case of a binary trait. However, in the case of a continuous trait there
is another option that has no equivalent in the binary world. The -rt option consists
in performing either a rank transformation of the trait, or a rank transformation to
normality. These pre-processing steps can increase the power in particular situations,
as was shown in [81].

37

Chapter 2 2.4 Censored traits

2.4 Trait expressed on a survival scale

In survival analysis, subjects are followed over a certain time period and the aim is
to model factors that influence the time to an event to occur, for instance death.
Ordinary least squares (OLS) regression methods fall short because the time to event
is usually not normally distributed. Furthermore, the model cannot handle censoring
without modification. Censoring can be seen as a form of missingness. Typically, some
subjects did not show up at the hospital anymore for a reason independent from the
event of interest. Such observations are called right censored and are very common in
survival data. A classical survival dataset contains two trait columns: one is the time
of follow-up and the other is the event status, which records if the event of interest
occurred or not. In the case of such a binary variable response, the residuals from an
OLS linear probability model violate the homoskedasticity (variance homogeneity) and
normality of errors assumptions of OLS regression, resulting in invalid standard errors
and hypothesis tests. For a more thorough discussion of this problematic see [105].

Time can be expressed on any measurement scale (days, months, years,...), as long
as the same scale is used for all subjects. One can then estimate two functions that are
dependent on time, the survival and hazard functions. The first gives, for every time,
the probability of surviving (or not experiencing the event) up to that time [63]:

S(t) = P (T > t) (2.24)

where t is a time of interest and T a random variable denoting the time of the event,
for instance death. Usually, at the start of the study, the patients did not experience
the event yet, so that S(0) = 1. This function has of course to be decreasing, i.e.
S(a) ≤ S(b) ∀a ≥ b. In the context of death, this equation expresses the fact that
survival at a later age is only possible if an individual survived earlier days. Given this
property, we can define the lifetime distribution function

F = P (T ≤ t) = 1− S(t) (2.25)

and event density, i.e. rate of failure events per unit of time

f = F ′(t) (2.26)

The hazard function λ, gives the potential that the event will occur, per time unit,
given that an individual has survived up to the specified time [63]:

λ(t) = limdt⇒0
P (t ≤ T < t+ dt)

dtS(t)
=
f(t)

S(t)
=
−S ′(t)
S(t)

(2.27)

This function, also called instantaneous rate of death, is positive definite but it does
neither have to be increasing, nor to be decreasing and can even have discontinuities.
It can sometimes be convenient to work with the cumulative hazard function Λ defined
by

Λ(t) = −logS(t) (2.28)

The name of this function comes from the following relationship

Λ(t) =

∫ t

0

λ(u)du (2.29)

which can be poetically described as the accumulation of hazard over time.

38

Chapter 2 2.4 Censored traits

Our aim is to compute, for every pair [SNP lj, SNP rj], a number representing the
strength of its association with the survival trait (consisting of a time and a censoring
variable). This enables to sort the pairs by decreasing chances of regulating the dis-
ease. The variable N1 (N2) defines the number of possible values for SNP lj (SNP rj).
Categorical environment variables can also be handled.

2.4.1 Without correction for main effects

Conceptually, the starting point is similar to what was done for a continuous trait
in Figure 2.7. The subjects are split into groups depending on their genotypes (nine
groups in the bi-allelic case) and the risk of each group is assessed (“H”, “L” or “O”),
as illustrated in Figure 2.9. Note that the word “risk” is used loosely in this section,
hazard ratios are commonly used when presenting results in clinical trials involving
survival traits and are strictly speaking not the same as relative risk ratios.

Figure 2.9: The subjects are still split into cells depending on their genotypes, in
the same way as in Figure 2.7. However, here the cells contains an estimation of
the probability of survival over time. In each cell, the x-axis represents time and
the y-axis the probability of not experiencing the event. A cell is immediately
assigned to the “O” category (no-evidence for any risk change) if it consists of less
than ten individuals. Otherwise, a logrank test is performed to decide if there is
a statistically significant difference between the group of subjects belonging to the
cell and the group consisting of all other subjects. If there is, the cell is assigned to
either the “H” or “L” category, depending on which group has the fastest decreasing
curve. Otherwise, it is assigned to the “O” category.

39

Chapter 2 2.4 Censored traits

To assign a category to a multilocus genotype combination cell, the subjects are split
into two groups: those belonging to the cell of interest and all the other subjects. The
null hypothesis is that the risk of event is the same in the two groups. There are several
tests to test this hypothesis. Log-rank and Wilcoxon are two nonparametric ones, in
that they do not make assumptions about the distributions of survival estimates. In
the absence of censorship (e.g. loss to follow up, alive at end of study) the methods
reduce to a Mann-Whitney (two sample Wilcoxon) test for two groups of survival times
and a Kruskal-Wallis test for more than two groups of survival times. This directly
links to the nonparametric tests implemented for the continuous case, as shown in [79].
Peto’s log-rank test is generally the most appropriate method for censored outcome,
hence our choice [94]. Log-rank is more sensitive than the Wilcoxon test to differences
between groups in later points in time. But the Prentice modified Wilcoxon test is
more sensitive when the ratio of hazards is higher at early survival times than at late
ones [59]. This is important when insensible results are obtained with an MBMDR run
for survival data without correction for main effects. Perhaps the assumption that the
ratio of hazards is not higher at early survival times than at late ones may be violated.

The log-rank test statistic compares estimates of the hazard functions of the two
groups at each observed event time . It is constructed by computing the observed and
expected number of events in one of the groups at each observed event time and then
adding these to obtain an overall summary across all time points where there is an event
[17]. More precisely, the following procedure is used: find out the different observed
event times from either group and sort them. For each event time j = 1, . . . , J , let
N1j and N2j be the number of subjects in group 1 and 2 respectively, which did not
experience the event yet or are censored, at the start of the period j. Let O1j and
O2j be the observed events in group 1 and 2 respectively, occurring precisely at time
j. Compute Nj = N1j +N2j and Oj = O1j +O2j. The logrank statistic compares each
O1j to its expectation E1j under the null hypothesis that the two groups have identical
survival and hazard functions:

Z =

J∑
j=1

(O1j − E1j)√
J∑
j=1

Vj

(2.30)

where E1j and Vj are computed by taking into account the fact that under the
null, Oj events are supposed to happen across both groups at time j, so that O1j

follows an hypergeometric distribution with parameters Nj, N1j and Oj. Therefore,
the aforementioned expectation and variance are given by

E1j =
Oj

Nj

N1j (2.31)

and

Vj =
Oj

N1j

Nj
(1− N1j

Nj
)(Nj −Oj)

Nj − 1
(2.32)

40

Chapter 2 2.4 Censored traits

From a programming point of view, some care needs to be taken to reach a fast
implementation. First, in order to avoid the computation of the square root from
equation 2.30, Z2 is computed instead of Z. Second, when the data is read at the
start of the program, the subjects are sorted once for all in increasing event times.
Third, the matrices represented in Figure 2.9 should be stored as vectors, the group
index being obtained in the same way as for binary and continuous traits. Figure 2.10
sketches the computation of a statistic t2j representing the strength of the association
between the pair [SNP lj, SNP rj] and the trait T .

Time Censoring SNPlj SNPrj

ti1 c1 g1lj g1rj

ti2 c2 g2lj g2rj

… … … …

tiS cS gSlj gSrj

T00 … T0(N2-1) Time Censoring Group

… … … vti1 vc1 vg1

T(N1-1)0 … T(N1-1)(N2-1) vti2 vc2 vg2

… … …

vtiSg vcSg vgSg

R00 … R0(N2-1)

… … …

R(N1-1)0 … R(N1-1)(N2-1)

subject-pheno vectoramount-matrix

HLO matrix

tj2

Figure 2.10: Computation of an MB-MDR statistic for a survival trait, without
correction for main effects. Input: tis is the event time of subject s, cs its censoring
and gslj and gsrj its genotypes for SNP lj and SNP rj respectively. The computation
can be decomposed in three steps. First, the amount-matrix and subject-pheno
vector are constructed. Tmn is the number of subjects whose genotype is gslj = m
and gsrj = n. subject-pheno is a vector sorted by increasing event times, containing
the time, censoring and group index gslj ∗ N2 + gsrj of the subjects. Second, the
HLO matrix is constructed. Rmn is either “H” if the subjects whose genotype is m
for SNP lj and n for SNP rj have a high statistical risk of disease, “L” if they have
a low statistical risk and “O” if there is no statistical evidence. Third, the final t2j
value is computed from the objects constructed at steps 1 and 2.

41

Chapter 2 2.4 Censored traits

The three steps of the computation of the number t2j capturing the degree of asso-
ciation between the pair [SNP lj, SNP rj] and the trait T are as follows:

1) Generation of the amount-matrix T (coded as vector for efficiency reasons) and
subject-pheno vector V . The former is created with a size of N1×N2 and initial-
ized with zero values, the latter is created empty. Since the subjects are sorted in
increasing event times, we can assume that ∀a < b we have tia ≤ tib. This allows
to construct the two objects in linear time. Perform a loop over the subjects
of the dataset: for s = 1, . . . S, if no value is missing for subject s, increment
Tgslj×N2+gsrj by one and add an object containing tis, cs and gslj ∗ N2 + gsrj at
the back of vector V . At the end of this process, the size of the latter is equal
to the amount Sg of subjects without missing values and the vector is sorted,
i.e. ∀a < b we have vtia ≤ vtib. Note that empty groups are not removed from
T , because doing so would require an update of all the group indexes stored in
vector V .

2) Generation of the HLO-matrix from the two objects generated at step 1, but again
coded as vector. The value of each Rh elements depends on a logrank test between
the group of subjects having a genotype satisfying (SNP lj×N2 +SNP rj = h) and
the group composed of all other subjects. As already mentioned, the actual value
to compute is the square of equation 2.30. The algorithm is based on a loop,
computing the two sums in the numerator and denominator of this equation,
using variables called numZ and denZ respectively, initialized to zero. Variable
N1j is initialized to Th and variable Nj to Sg. If N1j is below a threshold that is a
parameter of the program (default value 10) then Z2 is not computed at all, since
the logrank test would not be statistically significant. In this case the value of
Rh is automatically set to “O”. Otherwise, for s = 1, . . . Sg, find out the amount
k of subjects having the exact same event time as subject s and the group they
belong to. Compute the O1j and Oj values. If Oj ≥ 1, update numZ and denZ
as defined in equation 2.30. Before starting the next iteration8, update N1j and
Nj. When the final computed Z2

obs value is below the critical value9 (based on a
liberal significance threshold of 0.1) Z2

crit = 2, 705543, the value of Rh is set to “O”,
to indicate that we cannot reject the independence hypothesis. Otherwise, Rh is
set to either “H” if numZ > 0, to indicate that the population whose genotype
satisfies (SNP lj ×N2 + SNP rj = h) has a high risk of having the trait, or to “L”
to indicate a low risk for this event.

3) Computation of tj from the three objects generated at steps 1 and 2. It consists
in performing two logrank tests and returning the maximum of both. The first
one compares the subjects belonging to the “H” category versus those belonging
to the “L” or “O” category. The second one compares the subjects belonging to
the “L” category versus those belonging to the “H” or “O” category. Computing
this can be easily achieved in a similar way as in step 2. Note that in many case,
there are only cells associated to the “O” category and t2j is readily equal to zero.

The detailed algorithm computing the t2j statistic is reported in Box 2.11.

8 Note that when k 6= 0, k + 1 subjects are handled at once and the next iteration is at s+ 1 + k.
9 90th percentile of the χ2 distribution with 1 degree of freedom

42

Chapter 2 2.4 Censored traits

Box 2.11. Survival MB-MDR statistic computing (no 1st order correction)

(1) Create a vector T of size dim = N1 × N2 and vector V empty. Fill T with
0’s. Define Z2

crit = 2, 705543.

(2) For s = 1, . . . , S: if gslj and gsrj are not missing do Tgslj×N2+gsrj++ and add
an object with values (tis, cs, gslj ∗N2 + gsrj) at the back of V . Let Sg be the
final size of vector V . For facility, we note vtik, vck and vgk respectively the
time, censoring and group index of the kth element of V .

(3) Create HLO vector R of size dim. For h = 0, . . . , dim− 1:

(a) If (Th < 10) set Rh = “O” and skip steps (b), (c), and (d).

(b) Define n1 = Th, nt = Sg and numZ = denZ = k = 0.

(c) While k < Sg do

i. Define tnow = vtik, o1 = ot = m1 = 0 and ik = k.
ii. While (k < Sg and vtik = tnow) do

A. if (vck is not censored) do {ot++ ; if (vgk = h) do o1++}
B. if (vgk = h) do m1++
C. k++

iii. Execute numZ += o1 − ot n1

nt
and denZ += n1

nt
(1− n1

nt
)nt−ot
nt−1

iv. Compute n1 = n1 −m1 and nt = nt − (k − ik).

(d) If (denz ≤ 0) set Rmn = “O”. Else compute Z2
obs =

num2
Z

denZ
.

(e) If Z2
obs < Z2

crit set Rmn = “O”, else if numZ > 0 set Rmn = “H”, else set
Rmn = “L”.

(4) If there is no “H” and no “L” in the R matrix, return t2j = 0.

(5) If there is at least one “H”:

(a) Initialize n1 = 0, nt = Sg, numZ = denZ = k = 0.

(b) For h = 0, . . . , dim− 1: if Rh = “H” do n1+=Th.

(c) While k < Sg do

i. Define tnow = vtik, o1 = o2 = m1 = m2 = 0.
ii. While (k < Sg and vtik = tnow) do

A. If (Rvgk = “H”) do {m1++ ; if (vck is not censored) do o1++},
else do {m2++ ; if (vck is not censored) do o2++}.

B. Execute k++.
iii. Compute ot = o1 + o2

iv. Execute numZ += o1 − ot n1

nt
and denZ += n1

nt
(1− n1

nt
)nt−ot
nt−1

v. Compute n1 = n1 −m1 and nt = nt − (m1 +m2).

(d) If (denZ > 0) compute Z2
HvsLO =

num2
Z

denZ
, else set it equal to zero.

43

Chapter 2 2.4 Censored traits

(6) If there is at least one “L”:

(a) Initialize n1 = 0, nt = Sg, numZ = denZ = k = 0.

(b) For h = 0, . . . , dim− 1: if Rh = “L” do n1+=Th.

(c) While k < Sg do

i. Define tnow = vtik, o1 = o2 = m1 = m2 = 0.
ii. While (k < Sg and vtik = tnow) do

A. If (Rvgk = “L”) do {m1++ ; if (vck is not censored) do o1++},
else do {m2++ ; if (vck is not censored) do o2++}.

B. Execute k++.
iii. Compute ot = o1 + o2.
iv. Execute numZ += o1 − ot n1

nt
and denZ += n1

nt
(1− n1

nt
)nt−ot
nt−1

v. Compute n1 = n1 −m1 and nt = nt − (m1 +m2).

(d) If (denZ > 0) compute Z2
LvsHO =

num2
Z

denZ
, else set it equal to zero.

(7) Return t2j = max(Z2
HvsLO, Z

2
LvsHO).

2.4.2 With correction for main effects

For survival data, the correction for main effects is based on the Cox proportional
hazards model [23]. The latter links the time that passes before the event to covariates,
in our case the two SNPs and/or environmental variables. The assumption behind the
Cox proportional hazards model is that the effect of a covariate is multiplicative with
respect to the hazard rate. For instance, smoking may double the hazard rate for a
lung cancer to occur.

More precisely, the model can be seen as consisting of two parts: the hazard function
λ0(t) and the effect parameters. The former defines how the risk of event changes over
time (per time unit) at baseline levels of covariates and the latter defines the hazard
variation in response to explanatory covariates [28]. In our context, the covariates are
discrete ones, i.e. they are coded 0, 1, . . . , N1 − 1 and 0, 1, . . . , N2 − 1 respectively.
Covariates expressed on a continuous scale are handled in Chapter 4, but note already
that in such a case it is usually assumed that the hazards responds logarithmically. In
this document, we present the Cox model in the classical way: first, by ignoring the
issue of ties (i.e. several subjects experiencing an event at the exact same time) and
second, by showing how to adapt the equations to take it into account.

Let Yi be the observed time (censoring time or event time) and Ci the right censoring
value (1 if the event occurred and 0 if it is censored) for subject i. The hazard function
at time t for covariates SNP lj and SNP rj is given by

λ0(t|SNP lj, SNP rj) = λ0(t)eβ1SNP lj+β2SNPrj (2.33)

where β1 and β2 are the parameters to fit.

44

Chapter 2 2.4 Censored traits

Let β be a vector containing the latter two values and X the covariate matrix (rows
correspond to individuals, the first column contains their values for SNP lj and the
second for SNP rj). A partial likelihood can be constructed by taking into account all
possible t times[23] and is given by

L(β) =
∏
i:Ci=1

θi∑
j:Yj≥Yi θj

(2.34)

where θj = eXjβ. The corresponding log partial likelihood is given by

l(β) =
∑
i:Ci=1

(Xiβ
′ − log

∑
j:Yj≥Yi

θj) (2.35)

The model parameters are then best estimated by maximizing equation 2.35 over
β. This maximization can be obtained using the Newton-Raphson algorithm [19]. The
score function is as usual the derivative of the log partial likelihood [9]:

l′(β) =
∑
i:Ci=1

(Xi −
∑

j:Yj≥Yi θjXj∑
j:Yj≥Yi θj

) (2.36)

For the regression coefficients, approximate standard errors are needed. These can
be produced from the variance-covariance matrix. The latter can be approximated by
the inverse of the Hessian matrix. The Hessian matrix itself can as usual be obtained
by computing the second derivative of the log partial likelihood:

l′′(β) = −
∑
i:Ci=1

(

∑
j:Yj≥Yi θjXjX

′
j∑

j:Yj≥Yi θj
−

∑
j:Yj≥Yi θjXj ×

∑
j:Yj≥Yi θjX

′
j

[
∑

j:Yj≥Yi θj]
2

) (2.37)

This procedure works well in practice, but is know to lead to sub-optimal results
in the case of ties, where Efron’s approach should be preferred [28]. Let tj represent
the unique times and Hj the set of indexes i such that Yi = tj and Ci = 1. Let mj be
the number of events at time j. Efron’s method consists in maximizing the following
partial likelihood:

L(β) =
∏
j

∏
i∈Hj θi∏m−1

l=0 (
∑

i:Yi≥tj θi −
l
m

∑
i∈Hj θi)

(2.38)

The corresponding log partial likelihood can be computed as

l(β) =
∑
j

(
∑
i∈Hj

Xiβ
′ −

m−1∑
l=0

log(
∑
i:Yi≥tj

θi −
l

m

∑
i∈Hj

θi)) (2.39)

This leads to a score function used for the Newton-Raphson method given by

l′(β) =
∑
j

(
∑
i∈Hj

Xi −
m−1∑
l=0

∑
i:Yi≥tj θiXi − l

m

∑
i∈Hj θiXi∑

i:Yi≥tj θi −
l
m

∑
i∈Hj θi

) (2.40)

45

Chapter 2 2.4 Censored traits

and a Hessian matrix defined by

l′′(β) =
∑
j

∑
l=0

m− 1(

∑
i:Yi≥tj θiXiX

′
i − l

m

∑
i∈Hj θiXiX

′
i

φj,l,m
−
Zj,l,mZ

′
j,l,m

φ2
j,l,m

) (2.41)

where

φj,l,m =
∑
i:Yi≥tj

θi −
l

m

∑
i∈Hj

θi (2.42)

Zj,l,m =
∑
i:Yi≥tj

θiXi −
l

m

∑
i∈Hj

θiXi (2.43)

In this thesis, speed of the software is the major issue. For this reason, most of
the source code has been written from scratch, in order to be able to customize every
single operation and win orders of magnitude of precious computing time. However,
the Cox model is by far more complex to implement than all the methods that have
been presented so far in this chapter. For this reason, I was advocated by my promotor
to avoid reinventing the wheel here and try instead to take advantage of the fact that
the (open) source code of the R function coxfit6 is in fact written in C. This function
is well established, has been highly tested by many users and is close to what we need.

As already mentioned earlier, calling an R function from mbmdr-4.4.1.out would
lead to an important slow down of the software and force the user to install R on his
machine. This would imply that mbmdr-4.4.1.out would not be a standalone software
anymore, requiring all users to install R, even those who are not interested in a survival
data analysis. Furthermore, since different versions of R uses different internal survival
routines, the user having R already installed, may have to install an older/newer version
than the one that they are using. To avoid this issue, our solution is to take the open
source C code of the coxfit6 function, remove all the parts that are related to R (for
instance conversions to S-PLUS format) and keep this purified code as a customized
library in our software. In this way, we avoid calling R from C++, which would
imply data conversions in C++ to call R, which itself would convert it back to call
its own source code written in C. Obviously, this would lead to an important waste of
computing time (and in practice also sometimes to conversion problems).

Note that the work consisting in making a standalone library from the C source
code of an R function from the survival package is far from trivial. Indeed, the C code
is usually relying on some R functions, whose source code is also written in C. The
latter code is itself relying on further R functions, actually implemented in C and so
on. Fortunately, this cascade does end pretty fast in the case of coxfit6 and only five
C source code of R functions had to be customized! At the end of this procedure, we
end up with a coxfit6 function that can be called within our C++ software:

coxfit6(time, censoring, covar)⇒ [β, l(β)]

This function takes as arguments the time and censoring status of the subjects
(sorted in increasing time order) and the covariate matrix (containing one line per
individual and one column per covariate). It returns the aforementioned β vector and
the log likelihood l(β).

46

Chapter 2 2.4 Censored traits

Partial likelihood ratio test

To make use of the fitted model, simple logrank tests can no longer be used as in steps
(3), (5) and (6) of Box 2.11. In each of these three steps, the idea was to compare
a selection of subjects S1 versus the others S0. At step (3), the subjects with one
particular genotype versus the rest. At step (5) (respectively 6), the subjects belonging
to the “H” (respectively “L”) category versus the rest. These comparisons should now
take account of the main effects and of the group belongings simultaneously. To achieve
this, the model is extended by adding a column at the back of matrix X, whose value
is 1 if the subject belongs to S1 and 0 otherwise.

A partial likelihood ratio test enables to test if the precision of the model gets
statistically significantly better by adding the extra column or not. The log partial
likelihood is computed by coxfit6 in both scenarios. To avoid confusion, we note l(β)main
the one without the extra column (taking only into account the main effects) and
l(β)main+ the one with the group-belongings column. The test-statistic is defined by

D = 2(l(β)main+ − l(β)main) (2.44)

This test statistic follows a χ2
1 distribution. Significance is assessed by comparing

the final computed Dobs value to the critical value10 (based on a liberal significance
threshold of 0.1) Dcrit = 2, 705543. When a significant group is found during the HLO
matrix construction, it is assigned to the “H” category when the β value corresponding
to the extra column is positive and to “L” otherwise.

Algorithm

This section describes the algorithm computing a number tj, capturing the degree of
association between the pair [SNP lj, SNP rj] and the trait T , adjusted for the main
effects of the two SNPs (or environmental variables), using either a codominant or an
additive coding scheme. The variables N1 and N2 still define the number of possible
values for SNP lj and SNP rj respectively. Categorical environment variables can again
be handled, as long as they are coded 0, 1, . . . , N1 − 1, resp. 0, 1, . . . , N2 − 1. The
computation follows again the general strategy of Figure 2.10, except that the subject-
pheno vector no longer stores the group indexes and is here split into two different
vectors Vt and Vc (storing respectively the time and censoring values of the individuals).
The three steps are now as follows:

1) Generation of the amount-matrix T (coded as usual as a vector for efficiency
reasons), time vector Vt, censoring vector Vc and covariate matrix X. The vector
T is created with a size of N1×N2 and initialized with 0’s and the other objects
are created empty. Matrix X is composed of two columns in case of an additive
coding scheme and N1 +N2−2 columns in case of a codominant one. All objects
are build up by performing a loop over the subjects. For s = 1, . . . S: if no
value is missing for subject s: increment the cell of T whose index is given by
gslj×N2 +gsrj, add tis at the back of Vt, add cs at the back of Vc and insert a new
row at the end of X. In the case of additive coding, gslj is put on the first column

10 90th percentile of the χ2 distribution with 1 degree of freedom

47

Chapter 2 2.4 Censored traits

of the new row and gsrj in the second one. Indeed, in the additive case, the
coding is defined by the number of minor alleles, which is readily the code that
has been used in this software to code the genotypes. In the case of codominant
coding, N1 − 1 columns are used to code gslj and N2 − 1 to code gsrj. The first
column is equal to 1 if gslj = 1 and 0 otherwise, the second column is equal to
1 if gslj = 2 and 0 otherwise, etc. In other words, the first column indicates if
the subject has a single minor allele for the SNP lj or not, the second column if
the subject has two minor alleles for SNP lj or not and so on. The first column
coming after the columns that have already been filled is equal to 1 if gsrj = 1
and 0 otherwise, the second one is equal to 1 if gsrj = 2 and 0 otherwise, etc.
The codominant coding obviously allows coxfit6 to build a more precise model,
since more variable are available to fit it.

2) The second step still consists in generating the HLO-matrix, but again coded
in vector format. First, the model taking into account only the main effects is
fitted using coxfit6 and the corresponding log likelihood l(β)main is stored. Then,
a column containing only 0’s is added to X and a loop is performed over the
different genotype groups. For h = 1, . . . , dim − 1, if the hth element of the
amount-matrix is less than 10, set the hth element of the HLO-vector to “O”, to
indicate the absence of evidence that the subset of individuals with multilocus
genotype satisfying SNP lj × N2 + SNP rj = h has neither a high nor a low risk
for disease. Otherwise, overwrite the last column of X with 0’s, except for rows
corresponding to subjects belonging to the group under investigation (i.e. those
whose genotype satisfies gslj × N2 + gsrj = h) which are set to 1. Then fit the
new model with coxfit6, obtain the corresponding β vector and log likelihood
l(β)main+ value and compute Dobs = 2(l(β)main+ − l(β)main). When this value is
below the critical value Dcrit = 2, 705543, set the hth element of the HLO-vector
to “O”. Otherwise, set it to either “H” if the last element of the β vector is greater
than zero, to indicate a high risk for the disease, or to “L” to indicate a low risk
for the disease.

3) If there are neither “H” nor “L” values in the HLO vector, return 0. Otherwise,
compute the following DHvsLO and DLvsHO values and return the maximum.
First, overwrite the last column ofX with 0’s, except for the subjects belonging to
a genotype group whose corresponding HLO-vector cell is equal to “H”, which are
set to 1. Then fit the new model with coxfit6, obtain the corresponding β vector
and log likelihood l(β)main+ value and computeDHvsLO = 2(l(β)main+−l(β)main).
Second, do exactly the same except that the elements set to 1 are now those
corresponding to a “L” value, to obtain DLvsHO = 2(l(β)main+ − l(β)main). Of
course, if there are no “H” (“L”) values, the first (second) number is not computed
and the function readily returns the second (first) one.

The detailed algorithm computing the tj statistic representing the strength of the
association between the pair [SNP lj, SNP rj] and the trait, corrected for the main effects
of the SNPs, is reported in Box 2.12.

48

Chapter 2 2.4 Censored traits

Box 2.12. Survival MB-MDR statistic computing (with 1st order correction)

(1) Create a vector T of size dim = N1 × N2 and fill it with 0’s. Create empty
vectors Vt and Vc. Create empty matrix X consisting of 2 columns in case of
additive coding and N1 +N2 − 2 columns in case of codominant coding.

(2) For s = 1, . . . , S: if gslj and gsrj are not missing do Tgslj×N2+gsrj++, add tis
at the back of Vt, cs at the back of Vc and insert a new row at the end of X:

(a) If additive coding: put gslj in the 1st column and gslj in the 2nd.
(b) If codominant coding: perform two loops. For a = 1, . . . , N1 − 1:

if (a = gslj) put 1 in the ath column, otherwise 0. For b = 1, . . . , N2− 1:
if (b = gsrj) put 1 to the (N1 + b)th column, otherwise 0.

(3) Call coxfit6(Vt, Vc, X). Let loglikmain be the returned log likelihood.

(4) Insert a new column at the end of X filled with 0’s. Define Dcrit = 2, 705543.

(5) Create HLO vector R of size dim. For h = 0, . . . , dim− 1:

(a) If (Th < 10) set Rh =“O” and skips step (b), (c), and (d).
(b) Initialize a = 0. Overwrite the last column of X. For s = 1, . . . , S:

if gslj and gsrj are not missing: do (if (gslj × N2 + gsrj = h) overwrite
the ath element with 1, else with 0) and a++.

(c) Call coxfit6(Vt, Vc, X). Let β and loglikmain+ be the returned objects.
(d) Compute Dobs = 2(loglikmain+ − loglikmain).
(e) If (Dobs < Dcrit) set Rmn = “O”, else if the last element of the β vector

is greater than zero set Rmn = “H”, else set Rmn = “L”.

(6) If there is no “H” and no “L” in the R matrix, return tj = 0.

(7) If there is at least one “H”:

(a) Initialize a = 0. Overwrite the last column of X. For s = 1, . . . , S:
if Rgslj×N2+gsrj = “H”) overwrite the ath element with 1, else with 0) and
a++.

(b) Call coxfit6(Vt, Vc, X). Let loglikHvsLO be the returned log likelihood.
(c) Compute DHvsLO = 2(loglikHvsLO − loglikmain).

(8) If there is at least one “L”:

(a) Initialize a = 0. Overwrite the last column of X. For s = 1, . . . , S:
if Rgslj×N2+gsrj = “L”) overwrite the ath element with 1, else with 0) and
a++.

(b) Call coxfit6(Vt, Vc, X). Let loglikLvsHO be the returned log likelihood.
(c) Compute DLvsHO = 2(loglikLvsHO − loglikmain).

(9) Return tj = max(DHvsLO, DLvsHO).

49

Chapter 2 2.4 Censored traits

Most of the options for customizing the analysis that were proposed in the case
of a trait expressed on a binary scale and on a continuous scale are also available for
survival studies. An option that is specific for survival trait allows users to specify a
different input format as the one used in this thesis. Indeed, many datasets contain the
time value first and then the censoring one, but this convention is not always followed.
The option -if ISALIVE allows users to specify that the input format contains the
censoring variable first (coded as 0 if the time is censored and 1 otherwise) and the
time value just after that. Adapting the code introduced in the previous two sections
for main effects analysis or three-order interactions can be done in a similar way as for
a continuous trait. It is just a degeneration/generalization of the existing algorithms.

50

Chapter 2 2.5 Discussion

2.5 Discussion

In this chapter, we first discussed the reasons that lead us to select a different type
of statistic to correct for the main effects of the SNPs in Section 2.2.2 than the one
selected in Section 2.3.2. Indeed, score statistics were computed in the former case
(binary traits) and Wald statistics in the latter one (continuous traits). The score and
Wald tests are asymptotically equivalent tests of the likelihood ratio (lr) one, i.e. as
the sample size become infinitely large, the values of all these test-statistics becomes
increasingly close to each other. “In finite samples, the three will tend to generate
somewhat different test statistics, but will generally come to the same conclusion”
[54]. In fact, the three tests address the same research question: does constraining
a parameter to a particular value (zero in our case, i.e. leaving out this predictor
variable) reduce the fit of the model? The difference between the tests is that they use
different strategies to answer this question, as illustrated in Figure 2.11.

Source: http://www.ats.ucla.edu/stat/mult_pkg/faq/general/nested_tests.htm

Figure 2.11: In this Figure, the x-axis contains possible values of a parameter a and
the y-axis the log likelihood corresponding to these values. The lr test compares
the log likelihoods of a model for which a has a fixed value (zero in the case of
MB-MDR) to a model where it is freely estimated. Graphically, this corresponds
to comparing the height of the likelihoods for the two models. The Wald test
compares the value a − hat leading to the highest log likelihood to the value a0

under the null (in MB-MDR a = 0). Graphically, the distance between a−hat and
a0 indicates if freely estimating a significantly improves model fit or not. The score
test is based on the slope of the log likelihood at a0. Graphically, this corresponds
to looking at how quickly the likelihood is changing at the null hypothesized value.

51

Chapter 2 2.5 Discussion

The advantage of the Wald and score tests over the lr one, is that they require only
one model to be estimated and not two as for the lr test. An interesting relationship
exists between the three tests when the model is linear: Wald ≥ lr ≥ score [57]. For
a typical simple random sample, the Pearson chi-squared statistic is widely used and
can be shown to equal the score test statistic for testing independence in an J × K
contingency table with row and column variables that are jointly multinomial [75]. It is
also equal to the score test statistic for no row (column) covariate effect in a multinomial
logistic regression where the column (row) variable is considered the outcome. This
motivates the choice of a chi-squared test in MB-MDR for binary traits (most often
used). Since we cannot necessarily rely on asymptotic equivalence properties as we
may have sparse pooled cells, having a test that is stable enough for smaller samples
is advocated. Note that we are also using a score test when a correction is made for
predictors other than the main effects of the SNPs, as shown in Chapter 4. Here, the
main motivation is to obtain more stability in parameter estimations, when a large
number of predictor variables are included in the analysis, for instance gender, age,
body mass index (BMI), smoking habits, etc.

For continuous traits, we preferred the Wald statistic over the score one. Indeed,
the Wald test can be used to test multiple parameters simultaneously. It is hence com-
monly used to perform multiple degrees of freedom tests to model categorical predictor
variables in regression. As a consequence, it is more flexible than the score test in this
sense. The advantage of the score test is that it can be used to search for omitted
variables when the number of candidate variables is large. But we do not expect to
have such large numbers of candidate variables, as our focus is on the interaction be-
tween two categorical variables only. When there are issues with small samples in our
9 cells or in two groups to be compared within MB-MDR, possibly jeopardizing the
large sample distribution assumption of the Wald test statistic, then we have shown
that we can always turn to non-parametric tests [79].

Another interesting subject discussed in this chapter is that even if MB-MDR is a
non-parametric method (no assumptions are made about genetic modes of inheritance),
this does not mean that the internal tests used for labeling the 9 cells have to be non-
parametric too. Recall that a non-parametric test of statistical significance does by
definition not make assumptions about the nature of the underlying distributions from
which samples have been drawn, as opposed to a parametric test. In fact, for binary
traits the default in mbmdr-4.4.1.out is a non-parametric test and for continuous traits
a parametric one. For binary traits, we have already discussed above the benefits of
choosing the non-parametric chi-square test.

For continuous traits, the test is a parametric student’s t-test, assuming normality
of the mean and variances of the trait values. This condition is usually met, leading to
better results than with a non-parametric method, as it is well known that parametric
methods have improved statistical power over non-parametric ones when all parametric
assumptions are valid [35]. However, when the normality assumption is suspected not
to be met, we recommend to rank-transform traits to normality prior MB-MDR analysis
[79]. Note that even when non-parametric methods are selected, some issues may need
to be checked. For instance, the Cox model used in Section 2.4.2 is non-parametric to
the extent that no assumptions are made about form of the baseline hazard. However,
two key assumptions need to be checked.

52

Chapter 2 2.5 Discussion

First and foremost, the issue of non-informative censoring. To satisfy this assump-
tion, the design of the underlying study must ensure that the mechanisms giving rise
to censoring of individual subjects are not related to the probability of an event occur-
ring. For example, in clinical studies, care must be taken to ensure that continuation
of follow-up does not depend on the participant’s medical conditions. Violation of this
assumption can invalidate just about any sort of survival analysis.

The second key assumption in the Cox model is that of proportional hazards. In a
regression type setting this means that the survival curves for two strata (determined
by the particular choices of values for the x-variables) must have hazard functions that
are proportional over time (i.e. constant relative hazard). In that situation, and also
for the Cox model, there are tests that can be applied to test proportionality.

The next discussion concerns an idea that has been brushed in Section 2.2.1. We
have shown how to compute a statistic tj representing the strength of the association
between the pair [SNP lj, SNP rj] and a trait T expressed on a binary scale, but have
indicated that information theory proposes a more direct and natural way to discover
the strength of this association, i.e. by computing their mutual information [18] defined
by

tj = I(SNP lj, SNP rj; T) (2.45)

An obvious asset of this choice, is that it is easy and fast to compute. It can be
obtained in different ways and a particularly intuitive one is

I(SNP lj, SNP rj; T) = H(SNP lj, SNP rj) +H(T)−H(SNP lj, SNP rj, T) (2.46)

Indeed, adding the entropy of the pair of SNPs to the entropy of the trait leads to
counting the intersection between these quantities twice, as illustrated in Figure 2.12.
Removing the overall entropy (the entropy of the pair of SNPs and the trait) leaves us
thus just with exactly what we are searching for: the intersection counted once.

Figure 2.12: The mutual information between the pair [SNP lj, SNP rj] and the trait
T can be seen as the intersection between their entropies.

53

Chapter 2 2.5 Discussion

A nice property of the definition given in equation 2.46 is that it is “optimal” from an
information theory point of view. Indeed, the principle of data processing inequality
shows that if we take any function f to transform the information provided by the
SNPs, we cannot gain information on the trait [22], i.e. that we have

∀f : I(SNP lj, SNP rj; T) ≥ I(f(SNP lj, SNP rj); T) (2.47)

This approach was successfully applied in AMBIANCE and SYMPHONY, two
information-theoretic method for gene–gene and gene–environment interaction analysis
of disease syndromes and complex phenotypes [18, 64]. However, these methods are
dedicated to binary traits. In general, adapting such methods to other type of traits is
far from trivial and many such software focuses on one type of trait only, as opposed
to mbmdr-4.4.1.out.

An alternative to the mutual information, is to work with the multiple mutual
information defined by

I(SNP lj; SNP rj; T) = H(SNP lj) +H(SNP rj) +H(T)−H(SNP lj, SNP rj)

−H(SNP lj, T)−H(SNP rj, T) +H(SNP lj, SNP rj, T)
(2.48)

Graphically, this corresponds to the surface at the intersection of the three entropies
of SNP lj, SNP rj and T , as could easily be shown by sketching a figure similar to Figure
2.12. This measure is similar to the bivariate synergy introduced in [129]:

Syn(SNP lj, SNP rj; T) = I(SNP lj, SNP rj; T)− I(SNP lj, T)− I(SNP rj, T) (2.49)

In fact, straightforward manipulations shows that the multiple mutual information
equals to the bivariate synergy apart from a sign change. This approach has been
investigated in [11] and describes the synergy as “the additional contribution provided
by the whole compared with contributions provided by the constituents”. Furthermore,
they propose to normalize the metric by dividing it by H(T), such that its values are
between -1 and 1. This metric can either be used as a measure of direct association
between SNP pairs and the trait, or as a measure of association between the trait and
multilocus genotype combinations pooled in two groups. In both cases, the caveats is
again that an implementation dedicated to binary traits requires more work to adapt
to other trait types. Note that it should also be possible to define conditional synergies,
i.e. joint explications of the pairs of SNPs over their singular effects, in the presence
of another variable.

We have seen that information-theoretic software usually comes at the cost of some
flexibility loss. Therefore, in this work, we have decided to propose methods based on
the MB-MDR methodology, to compute a number capturing the degree of association
between a SNP pair and the trait. These methods depends on the type of trait and the
fact that the user opts to correct for main effects or not. In the latter case, codominant
correction should be the default choice, because on average this leads to the best
practical results, in terms of balance between power and type I error. However, not
correcting for main effects is the fastest method and a relative comparison of its speed
compared to the other two approaches (additive and codominant corrections) should
be done. Indeed, a dataset solved within a day without correction for main effects,
may require weeks when the slow down represents one or several orders of magnitude.

54

Chapter 2 2.5 Discussion

When the trait is either expressed on a binary or a continuous scale, all the code
has been written from scratch and every single operation optimized to avoid doing the
same computations twice. The matrix operations have been kept to a minimum. As a
consequence, the slow down is acceptable. In the case of a binary trait, the computing
time observed when no correction is performed is approximately multiplied by three
when an additive correction is selected and by four in case of a codominant one. In the
case of a continuous trait, the computing time obtained without correction for main
effects is about multiplied by two and a half when an additive correction is performed
and by three and a half in case of a codominant one. For this reason, codominant
correction is the default option in the software for these type of traits.

In the case of a survival datasets, the main effects correction relies on the C source
code of the coxfit6 function from R. In Box 2.12, this function is called several times
(in the bi-allelic case for instance, 12 times) and some computations are the same every
time! Indeed, only the last column of the X matrix changes from one call to another.
This can unfortunately not be avoided as long as this function is used as a library,
leading to a slow down of about one order of magnitude. Trying to call R functions
directly from the software (as I was advocated to do many times in this thesis) would
even amplify this problem, since in addition to the aforementioned issue, unnecessary
data conversions would take place. Another difference between the survival case and
the binary and continuous cases is the size of the X matrix. In the case of a trait
expressed on a binary or continuous scale, this matrix is very small (in the bi-allelic case
for instance, it consists of up to 9 rows). However, in the case of a survival datasets, it
consists of as many rows as subjects, i.e. usually hundreds or even thousands of rows.
As a consequence, the model fitting is at least one order of magnitude slower than
before. As an example, a very small dataset composed of 400 subjects and 20 SNPs
is solved within 9 seconds by mbmdr-4.4.1.out when no correction for main effects is
performed, but takes 9 minutes 25 seconds in case of additive correction and 32 minutes
21 seconds in case of codominant correction. The fact that the latter is significantly
slower than additive correction is not a surprise. Indeed, in the bi-allelic case, the
X matrix consists of two columns when additive correction is performed and four
when codominant correction is chosen. Since fitting the model involves a lot of matrix
multiplications, the computing time is therefore approximately multiplied by four. For
this reason, not correcting for main effects is the default choice in the case of a survival
dataset, to avoid that users starts very long analysis without realizing it.

In summary, the fact that almost all the C++ code of mbmdr-4.4.1.out has been
written from scratch and optimized was worth it. Without this work, reaching GWAIs
would have been impossible in practice. This demonstrate that writing a dedicated
software for the task was a necessary work. A simple R program relying on general R
functions would have been orders of magnitude slower and could therefore not be used
to analyze large-scale datasets. Our approach allows to solve three-order interaction
problems, which has been shown to be useful in practice in the context of pulmonary
tuberculosis [21]. Note that the biology of complex diseases is often very complex
and the odds are high that higher-order interactions are taking place. However, these
higher-order interactions can be seen as a big network to be discovered, but impossible
to find directly by testing for all possible combination of nodes. For this reason, finding
edges between two nodes or link between three nodes can already be a good starting
point. That is a foreseen usage of our software, actually.

55

Chapter 3

Multiple-Testing correction

3.1 Outline

In Chapter 2, we have shown different methods for computing a statistic tj representing
the strength of the association between a pair [SNP lj, SNP rj] and the trait T . This
enables to sort the m pairs of SNPs by decreasing tj values. However, these numbers
are difficult to interpret. Is the highest value much higher than what would be ex-
pected by chance? If yes, how much values are significantly higher than what would
be obtained fortuitously? The purpose of this chapter is to make it possible to answer
such questions in a proper mathematical way. Ideally, the pairs of SNPs discovered by
our software would then be validated in independent samples (gold standard in genetic
association studies) and/or by a biologist in the lab as illustrated in Figure 3.1 and the
pharmaceutical industry would produce drugs targeting the identified SNPs.

Source: http://www.ouestfrance-emploi.com/metiers/biologiste-medical

Figure 3.1: The aim of mbmdr-4.4.1.out is to discover pairs of SNPs having high
statistical chances to be linked to the disease. Such findings could be investigated
by a biologist. Being able to find out which pairs are significant and which not in an
efficient way is the main issue handled in this PhD thesis. In practice, minimizing
the work of the biologist in the lab is essential, since his task is expensive and time
consuming. Furthermore, biologists would soon lose interest in a software that
tends to suggest wrong hypothesis too often.

56

Chapter 3 3.1 Outline

A first attempt to find out if a pair of SNPs is significantly associated with the
disease or not is to make a simple hypothesis test. The null hypothesis H0 is that the
pair is not associated to the trait. The goal is to compute the probability of obtaining
an MB-MDR statistic equal to or more extreme than the observed tj value, under the
null. Such a probability is called a p-value. The latter can then be compared to a liberal
significance threshold α, usually 5%. If below, the null hypothesis can be rejected, i.e.
intuitively one can say that finding such a high tj value would be very surprising if the
null hypothesis would be true. Otherwise, the null hypothesis cannot be rejected and
in practice the corresponding pair of SNPs is not kept in the set of interesting pairs to
be investigated further. Note that this procedure is not a mathematical demonstration,
one cannot prove that the null hypothesis is true or false in this way, just get a strong
indication. Two types of errors can be made in such tests, as illustrated in Table 3.1.
First, a false positive, or type I error, occurs when a pair of SNPs is declared to be
linked to the disease, when it is not in reality. Second, a false negative, or type II error,
occurs when the hypothesis test fails to identify a pair of SNPs that is in fact truly
linked to the disease.

Table 3.1: Type I and type II errors in GWAIs

H0 not rejected H0 rejected
Pair of SNPs not linked to the disease TYPE I
Pair of SNPs truly linked to the disease TYPE II

The problem of the naive approach presented so far is that it does not take into
account the fact that a lot of such tests are performed simultaneously. Let’s note
p1, ..., pm the p-values corresponding to the m hypothesis tests performed, M0 the
unknown subset of true null hypotheses and m0 the unknown size of this subset (in
practice, most of the investigated pairs of SNPs of a GWAIs are not linked to the
disease and m0 is close to m). Intuitively, since every test fromM0 has a 5% chance to
lead to a rejection and sincem0 ≈ m, about 5% of all performed tests lead to a rejection
wrongly. Since our software is meant to investigate billions of pairs of SNPs, we cannot
afford making a mistake for 5% of them! This is called the multiple-testing problem
and is the core business of this PhD thesis. A lot of papers have been dedicated to this
subject, but GWAIs is a challenging area of application for multiple testing procedures
because of the huge amount of computations involved.

Most solutions to the multiple-testing problem from the literature aim either at
controlling the family-wise error rate (FWER) or the false-discovery rate (FDR). The
former is defined as the probability of at least one type I error across the m hypothesis
tests, the latter as the expected proportion of type I errors among the rejected null
hypotheses. It can easily be shown that FDR ≤ FWER. The latter is thus the most
difficult to keep low and as a consequence the most interesting one regarding our aim
to minimize the amount of false-positives. In this thesis, our goal is therefore to control
the FWER at 5%. It is important to note that in order to control the FWER exactly,
it would be necessary to know M0. Since this cannot be the case, we introduce the
notions of weak and strong control. The former controls the FWER under the complete
null hypothesis, i.e. the scenario where all null hypothesis are true (m0 = m). The
latter controls the FWER for every possible choice of M0. Obviously, strong control
implies exact and weak control.

57

Chapter 3 3.2 Bonferroni correction

3.2 Bonferroni correction

An easy way to reach strong control of the FWER is to use the Bonferroni correction
[26]. The idea is to divide the significance threshold of all performed tests by the
amount of tests, i.e to use α

m
as threshold. It is straightforward to prove that the

Bonferroni correction guarantees a FWER below α = 5% using Boole’s inequality [36]:

FWER = P (∪j∈M0(pj ≤
α

m
)) ≤

∑
j∈M0

(P (pj ≤
α

m
)) ≤ m0

α

m
≤ m

α

m
= α (3.1)

Implementing the Bonferroni correction requires to estimate the p1, . . . , pm values.
Indeed, computing the exact value would require to know the exact distribution of
the t1, . . . , tm statistics under the null, i.e. under the assumption that the observed
trait values have been assigned randomly to the S subjects. Finding out the exact
distribution would imply to generate the S! possible permutations of the subject’s
trait values, which is in practice not feasible since typical datasets involves hundreds
or thousands of patients. As a consequence, the pj values are estimated based on
the observed data and a random subset of B = 999 permutations (default value), as
illustrated in Figure 3.2 in the particular case of a trait expressed on a binary scale.

Real Data …

…

Permut. 1 t1,1 … t1,m

… … … …

Permut. B tB,1 … tB,m

…

p-values p1 … pm

SNP
l1

SNP
r1

t
1

SNP
lm

SNP
rm

t
m

Figure 3.2: To estimate the pj values (j = 1, . . . ,m), B random permutations of
the trait values of the subjects are generated. Each time, the original tj value is
compared to the ti,j values obtained on the permuted data (i = 1, . . . , B) and pj is
estimated by aj+1

B+1
, where aj is the amount of ti,j ≥ tj values. The null hypothesis

is rejected for the SNP pairs for which pj ≤ α
m
.

58

Chapter 3 3.2 Bonferroni correction

3.2.1 Classical implementation

A straightforward way to implement the Bonferroni correction algorithm can be de-
composed into the following three steps:

1) Generation of the Real Data vector R. This vector is created empty with a
preallocated size of m and filled by performing a loop over the pairs of SNPs.
For j = 1, . . . ,m: compute the test-statistic tj corresponding to the jth pair of
SNPs1 and store an object containing the computed test-statistic and the names
of the corresponding SNPs in Rj.

2) Generation of the test-statistics Permutation vectors T1, . . . , TB. These vectors
are created empty with a preallocated size of m and filled one by one. For i =
1, . . . , B: permute randomly the trait values of the subjects, without modifying
their genotypes and perform a nested loop over the pairs of SNPs. For j =
1, . . . ,m: compute the test-statistic ti,j corresponding to the jth pair of SNPs
and store it at the jth index of the Ti vector.

3) Generation of the p-values vector P. This vector is again created empty with a
preallocated size of m and filled by performing a loop over the pairs of SNPs.
For j = 1, . . . ,m: compute the amount aj of ti,j ≥ tj values (i = 1, . . . , B) and
store the estimated p-value aj+1

B+1
at the jth index of vector P . For j = 1, . . . ,m:

if Pj ≤ α
m
, reject the null hypothesis for the jth pair of SNPs.

Three remarks are in place:
First, the +1 terms at the numerator and denominator of the computation of the

estimated p-value are introduced to ensure a strictly positive result. Indeed, since a
p-value represents the probability to obtain a test-statistic value at least as extreme
as the observed one, it cannot be equal to zero: the observed value itself has been
witnessed and has thus a non-zero probability of occurrence2. As a consequence, the
minimal p-value that can be obtained is 1

B+1
. Hence the choice of a default value of

B = 999, to obtain p-values that are multiples of 1
1000

.
Second, the method that was proposed so far is not optimal from a memory point

of view, since it implies to store all Permutation vectors of Figure 3.2 in memory.
This requires O(Bm) memory, whereas O(m) can be achieved by adopting a different
approach. The idea is that the aj values computed at step 3, can already be calculated
on-the-fly. A vector a-values is created from scratch and initialized with 1’s. Step
1 does not change, still requiring O(m) memory. Then, at each iteration of step 2
(i = 1, . . . , B), the trait values are still permuted randomly and a loop is performed over
the pairs of SNPs. However, this loop does not store test-statistics in a vector anymore,
but readily updates the a-values vector by incrementing the aj values corresponding to
the ti,j ≥ tj by one. Finally, steps 3 becomes trivial: dividing the a-values vector by
B + 1 readily leads to the final p-values vector.

1 The computation of such a test-statistic has been described in full details in Chapter 2 and depends
for instance on the scale on which the trait is expressed, the type of correction for main effects, ...

2 The classical way to present Bonferroni is to add a vector Permutation 0 coinciding with the Real
Data vector to the set of Permutation vectors. The number of such vectors is now B + 1 and the
p-value is estimated by aj

B+1 , where aj is the amount of ti,j ≥ tj values including the artificial
permutation coinciding with the observed data (i = 0, . . . , B), ensuring that aj ≥ 1. The version
described above is slightly more efficient, avoiding a comparison whose outcome is already known.

59

Chapter 3 3.2 Bonferroni correction

Third, note that the trait values can be permuted in-place at step 2, without harm-
ing the algorithm. Indeed, after step 1, the observed trait values are no longer of any
use and loosing them has no drawback. Furthermore, the Permutation vectors of Fig-
ure 3.2 are filled row by row. Therefore, once a vector is filled, the trait values are
again not of any use anymore. As a consequence, O(S) memory is enough to handle
the permutations of the trait values (recall that S is the number of subjects).

3.2.2 mbmdr-4.4.1.out’s implementation

Performing a GWAIs with the classical implementation of Bonferroni generates about
1012 p-values. Producing a file containing so much results is pointless, no one can read
them all. mbmdr-4.4.1.out’s implementation (see Box 3.1) proposes to produce only
the n = 1000 (default) lowest p-values, sorted in increasing order. To achieve this, the
main idea of the Sorting by insertion algorithm [65] can be recycled. First, n p-values
are computed and stored (with the names of the corresponding SNPs) in a vector P .
After that, P is sorted in increasing p-values order using the quicksort algorithm [65].
Then, at each iteration, the next p-value is computed and compared with the highest
p-value in P . If greater or equal, nothing is done. Otherwise, the highest value is
removed and the current one inserted (with the names of the corresponding SNPs) at
the right place in order to preserve the sorting. This insertion requires n

2
operations

on average. This method works particularly well when m >> n. Intuitively, the
probability of having to insert decreases at each iteration and tends to zero because
the vector contains lower and lower p-values. This algorithm requires O(m) computing
time on average, but could degenerate in O(nm). A benefit of this approach is that
vector P requires only a memory of O(n) instead of O(m), dividing the memory usage
by about 109 in the case of a GWAIs! A drawback is that the ti,j values from Figure
3.2 are now computed column by column, making in-place permutation of the trait
values impossible, requiring a memory of O(BS) instead of O(S), i.e. 103 times more.

Box 3.1. mbmdr-4.4.1.out’s implementation of Bonferroni
(1) Generate B permutations of the trait values and store them in memory.

(2) If m < n set n = m. Create empty vector P of size n. For j = 1, . . . , n:

(a) Set the trait value to the original ones and compute tj.
(b) Define aj = 1. For i = 1, . . . , B: set the trait values to the ones of the

ith permutation, compute ti,j and if (ti,j ≥ tj) do aj++.
(c) Store an object (aj, SNP lj, SNP rj) in Pj. We note (Pj)1 the 1st element.

(3) Sort P by increasing aj values. After that, for j = n+ 1, . . . ,m do:

(a) Set the trait values to the original trait ones and compute tj.
(b) Define aj = 1. For i = 1, . . . , B: set the trait values to the ones of the

ith permutation, compute ti,j and if (ti,j ≥ tj) do aj++.
(c) If aj < (Pn)1 do {k = n ; while (k > 0 and aj < (Pk−1)1) do Pk = Pk−1

and k−− ; store an object (aj, SNP lj, SNP rj) in Pk.}

(4) For j = 1, . . . , n: divide (Pj)1 by B+1 to obtain the p-value to compare to α
m
.

60

Chapter 3 3.2 Bonferroni correction

!"#$$%&#"''

%()"*(*+,#-.+'

(/(012343454.6,7$'

%()"*(*+,#-.+'

'8'

9:8'888'

:88'888'

;:8'888'

5888'888'

'8' '588' '988' '<88' '388' ':88' '=88' ';88' '>88' '?88' 5'888'

Amount
SNPs

Amount test-statistic values stored in memory

Figure 3.3: Memory usage comparison of classical Bonferroni implementation versus
mbmdr-4.4.1.out’s one. The memory usage of the former raises quadratically with
the number of SNPs, whereas the memory usage of the latter is independent from
the number of SNPs.

The fact that so much memory can be saved for a GWAIs is in fact just a con-
sequence of the following observation. The main benefit of mbmdr-4.4.1.out’s imple-
mentation of Bonferroni is to make the memory usage independent from the amount
Mof SNPs! Indeed, only objects of size n are stored. The classical implementation
on the other hand implies to store test-statistics for all m = M(M−1)

2
pairs of SNPs.

It raises thus quadratically in terms of SNPs as illustrated in Figure 3.3. A GWAIS
would require several Terabytes of memory with the classical implementation!

Note that this algorithm is trivial to adapt for users interested in performing a main
effects analysis. The implementation from Box 3.1 needs only a minuscule adaptation:
at steps (2)(c) and (3)(c), an object (aj, SNPj) should now be stored instead of the
(aj, SNP lj, SNP rj) one. It comes without saying that the variable m represents the
number of SNPs here and not the number of pairs anymore. Similarly, the code of Box
3.1 is easy to adapt for three-order interactions: at step (2)(c) and (3)(c), an object
(aj, SNP lj, SNPmj, SNP rj) should be stored instead of the (aj, SNP lj, SNP rj) one
and m now represents the number of triplets of SNPs.

The Bonferroni correction is a popular method because of its simplicity. However,
this method is know to be very conservative. In other words, it controls the FWER
so strongly, that the type II error rate increases. The art in writing multiple-testing
correction algorithms is to achieve a good balance between type I and type II errors.
The purpose of the methods presented in the next sections, is to achieve a higher power
than the Bonferroni correction, while still controlling the FWER at 5%.

61

Chapter 3 3.3 MaxT

3.3 MaxT

The single-step and step-down maxT adjusted p-values are two algorithms introduced
by Westfall & Young to handle the multiple-testing problem [136]. Since the former
tends to be conservative for the control of the FWER, we focus on the latter in this
thesis and call it simply maxT. In the previous section, the p1, . . . , pm values have been
computed without taking care of the multiple-testing issue and only after that action
was taken, i.e. by adapting the thresholds of the hypothesis tests. In this section the
idea is the opposite: the thresholds stay at α = 5%, while the p-values are adjusted
for the fact that multiple-testings are performed. To avoid confusion in the rest of
this document, we call marginal empirical p-value the traditional (unadjusted) p-value
associated with a single hypothesis test and adjusted p-value the adjusted ones.

In the context of this PhD thesis, I was often in the situation of explaining maxT to
a broad audience. I found out that starting with an intuitive explanation works best.
Beforehand, note that the maxT algorithm naturally starts by computing test-statistics
for all pairs of SNPs and sorting them in decreasing order. Without loss of general-
ity, let’s note t1 ≥ t2 ≥ . . . ≥ tm these sorted test-statistics and (SNPl1, SNPr1), . . . ,
(SNPlm, SNPrm) the corresponding pairs of SNPs. Intuitively, to estimate the proba-
bility of observing a maximum value that is at least as extreme as t1 under the null, t1
should not be compared to the statistics t1,1, . . . , tB,1 as was the case for the Bonferroni
correction in Figure 3.2. Instead, it should be compared to the test-statistics that are
also the highest just by chance, for each permutation i = 1, . . . , B, as in Figure 3.4.

Real Data …

…

Permut. 1 t1,1 …………………………….. t1,m

… ……………………………………………….....…………..

Permut. B tB,1 …………………………….. tB,m

…

p1 … pmadjusted p-values

SNPl1
SNPr1
t1

SNPlm
SNPrm
tm

t1,max

ti,max

tB,max

Figure 3.4: The intuitive idea for estimating p1 in maxT, is that t1 should be
compared to its alter egos, i.e. the maximums t1,max, . . . , tB,max of each row.

62

Chapter 3 3.3 MaxT

First, suppose that the complete null hypothesis is true, i.e. that no pair of SNPs
is linked to the disease. In this scenario, t1 is the highest value just by chance3.
Comparing t1 to its alter egos, i.e. the maximums of each rows in Figure 3.4, comes
down to looking where t1 lies in an approximation of the distribution of the maximums
under the null. As a consequence, comparing p1 to α =5% is sound, since t1 has
obviously a probability of 5% to land by chance in the top 5% of that distribution
under the null.

Once p1 has been computed, an intuitive way to understand how p2 is calculated is to
imagine that since the case of the pair (SNPl1, SNPr1) is closed, it is now removed from
the dataset, regardless of the fact that p1 is below α = 5% or not. As a consequence,
(SNPl2, SNPr2) is here the pair leading to the highest test-statistic and the whole
procedure can be repeated to compute p2. This idea can be extended to successively
compute p3, . . . , pm. From a programming point of view, implementing it like this
would be dramatically inefficient.

To avoid it, the actual implementation of maxT is based on the following three
observations. First, note that the ti,m value is guaranteed to be useful: when pm is
computed, (SNPlm, SNPrm) is the only pair remaining in the dataset and ti,m is readily
the maximum. Second, note that the value ti,m−1 is useful if and only if it is higher
than ti,m. Indeed, if it is higher it is at least the maximum in the computation of pm−1,
but if it is lower it cannot be the maximum in any computation. For this reason, in
the latter case, the value of ti,m−1 is overwritten by the value of ti,m, without harming
the algorithm. Third, note that this reasoning can be carried on for ti,m−2, . . . , ti,1.
After this procedure, the permutation vectors contains decreasing values. This allows
to compute any pj value easily, by using the t1,j, . . . , tB,j values readily4. By the
way, observe that the values on the left of t1,max, . . . , tB,max are now all equal to the
t1,max, . . . , tB,max values themselves. As a final remark, note that a p2 value lower than
p1 would be too optimistic, i.e. the p-value of a less significant pair should not be
lower than the one of a more significant pair. For this reason, whenever p2 < p1, maxT
replaces p2 by p1 and so on for p3, . . . , pm. Figure 3.5 illustrates this whole procedure.

So far, we have supposed that the complete null hypothesis is true. In this case, we
have shown that the probability that p1 is less or equal than 5% is actually equal to 5%.
Furthermore, we just imposed that p1 ≤ p2 ≤ . . . ≤ pm. This implies that 95% of the
time, there is no adjusted p-value below 5%. In other words, we have proved that maxT
controls the FWER weakly at 5%. When the complete null hypothesis is not true, a
lot of scenario are possible depending on how many pairs of SNPs are truly linked
to the disease. Nevertheless, Westfall & Young have proved that in any case, maxT
guarantees strong control of the FWER under the subset pivotality hypothesis [136].
By definition, the latter is true if for all subsets K of {1, . . . ,m} the joint distributions
of the sub-vecor {pi : i ∈ K} are identical under the restrictions HK = ∩i∈K{Hi = 0}
and HM = ∩mi=1{Hi = 0} [39].

3 To be very accurate, note that the probability of landing on top is not always distributed uni-
formly among the pair of SNPs. Some may have a particular structure increasing/decreasing this
probability. However, the maxT algorithm is constructed to take this fact into account.

4 They are now guaranteed to be greater or equal than the values on their right in Figure 3.4.
Furthermore, we can still imagine that the values on the left have been removed, but we don’t
actually need to remove them to make the algorithm work.

63

Chapter 3 3.3 MaxT

A lot has been made of this subset pivotality condition, that has been portrayed
in the literature as too stringent [103]. However, Westfall & Troendle have shown
that this condition is hardly restrictive [135]. Note that a drawback of maxT, is that
when the test statistics are not identically distributed unbalanced adjustments can be
observed because not all tests contribute equally to the computed adjusted p-values
[80]. If this is an issue for a particular experiment, then users can turn to the minP
algorithm presented in Section 3.5. This can for instance be very useful when there
are a lof of SNPs with a low minor allele frequencies (MAF). However, the drawback
is that minP is significantly slower than maxT and more memory demanding.

3.3.1 Classical implementation

Real Data …

…

Permut. 1 t1,1 … t1,m

… … … …

Permut. B tB,1 … tB,m

…

p1 … pmadjusted p-values

SNP
l1

SNP
r1

t
1

SNP
lm

SNP
rm

t
m

!"#$#!"#$#

!"#$#

!"#$#!"#$#

!"#$#

Figure 3.5: Classical maxT implementation. First, test-statistics are computed
for all pairs of SNPs and stored with the corresponding SNP names in the sorted
Real data vector. We can assume that tj ≥ tj+1,∀j = 1, . . . ,m − 1. Then, B
permutations of the trait values are generated and ti,j values are computed and
stored in the Permutation vectors, ∀i = 1, . . . , B, ∀j = 1, . . . ,m. Then, ti,j is
overwritten by ti,j+1 whenever ti,j+1 > ti,j,∀i = 1, . . . , B,∀j = m− 1, . . . , 1. Then,
the adjusted pj values are estimated by aj+1

B+1
, where aj is the amount of ti,j ≥ tj

values. Finally, pj+1 is overwritten by pj whenever pj > pj+1,∀j = 1, . . . ,m− 1.

The different steps of the classical maxT algorithm can be decomposed as follows:

64

Chapter 3 3.3 MaxT

1) Generation of the sorted Real Data vector R. This vector is created empty
with a preallocated size of m and filled by performing a loop over the pairs of
SNPs. For j = 1, . . . ,m: compute the test-statistic tj corresponding to the
jth pair of SNPs and store an object containing the computed test-statistic
and the names of the corresponding SNPs in Rj. After this loop, sort the
vector in decreasing test-statistic order using the quicksort algorithm. With-
out loss of generality, let’s note t1 ≥ t2 ≥ . . . ≥ tm these test-statistics and
(SNPl1, SNPr1), . . . , (SNPlm, SNPrm) the corresponding pairs of SNPs.

2) Generation of the test-statistics Permutation vectors T1, . . . , TB. These vectors
are created empty with a preallocated size of m and filled one by one. For i =
1, . . . , B: permute randomly the trait values of the subjects, without modifying
their genotypes and perform a nested loop over the pairs of SNPs. For j =
1, . . . ,m: compute the test-statistic ti,j corresponding to the jth pair of SNPs
and store it at the jth index of the Ti vector. Force the monotonicity of the rows:
for j = m− 1, . . . , 1 replace Ti,j by Ti,j+1 if Ti,j < Ti,j+1.

3) Generation of the adjusted p-values vector P . This vector is again created empty
with a preallocated size of m and filled by performing a loop over the pairs of
SNPs. For j = 1, . . . ,m: compute the amount aj of Ti,j ≥ tj values (i = 1, . . . , B)
and store the value aj+1

B+1
at the jth index of vector P . Force the monotonicity of

vector P : for j = 1, . . . ,m− 1 replace Pj+1 by Pj if Pj+1 < Pj.

Three remarks are in place:
First, the +1 terms at the numerator and denominator of the computation of the

estimated adjusted p-value are again introduced to ensure a strictly positive result.
Indeed, observing a test-statistic at least as extreme as the observed one cannot have
a probability of zero since the observed one has been witnessed.

Second, from a memory point of view, it is again best to implement the aforemen-
tioned algorithm in a slightly different way. The classical implementation implies all
Permutation vectors of Figure 3.5 to be in memory at the same time, requiring O(Bm)
memory. A memory of O(m) can be achieved by adopting a similar approach as in
Section 3.2 (Bonferroni correction). A vector P of all aj values can be created from
scratch and initialized with 1’s. In this way, the elements of the P vector can be up-
dated at the end of each iteration i = 1, . . . , B of step 2 by incrementing the Pj values
corresponding to the Ti,j ≥ tj by one. As a consequence, all ith ti,j values are no longer
of any use at the end of the ith iteration and can be overwritten. Hence, only a single
test-statistics Permutation vector T whose values are overwritten at each iteration can
be used instead of B ones. After that, step 3 comes down to dividing all elements of
P by B + 1 and performing the aforementioned monotonicity enforcing procedure.

Third, note that the trait values can again be permuted in-place at step 2. Indeed,
losing the observed trait values after step 1 has no drawback, since they are no longer
of any use after that step. Furthermore, once a Permutation vector of Figure 3.5 has
been filled (in practice de P vector as mentioned above), the corresponding permuted
trait values used in the computation are again not of any use anymore and can be lost
without harming the algorithm. As a consequence, if S is the number of subjects, O(S)
memory is enough to handle the permutations of the trait values.

65

Chapter 3 3.3 MaxT

3.3.2 Van Lishout’s implementation

To avoid producing a file with about 1012 results when performing a GWAIs, we propose
Van Lishout’s implementation of maxT. This important contribution has been accepted
for oral presentation at the BBC 2011 conference in Luxembourg [122] and published
in BMC Bioinformatics in 2013 [125]. The main benefit of this algorithm is to save
memory, but significant computing time is also saved. Figure 3.6 illustrates the idea.

Real Data … … …

… … …

Permut. 1 t1,1 … t1,n t1,n+1 … t1,m t1,1 … t1,n M1

… … … … … … … … … … …

Permut. B tB,1 … tB,n tB,n+1 … tB,m tB,1 … tB,n MB

… … …

p-values (*) p1 … pn pn+1 … pm p1 … pn

(a) classical maxT (b) Van Lishout's maxT

 (*) adjusted for m hypothesis tests

SNPi1
SNPj1
t1

SNPin+1
SNPjn+1
tn+1

SNPim
SNPjm
tm

SNPin
SNPjn
tn

SNPi1
SNPj1
t1

SNPin
SNPjn
tn

!"#$#

!"#$#!"#$#

!"#$#

!"#$#

!"#$#

!"#$#

!"#$# !"#$#

!"#$#!"#$#

!"#$#!"#$#

!"#$#

!"#$#

!"#$#

!"#$# !"#$# !"#$# !"#$# !"#$#!"#$#

Figure 3.6: Classical implementation of maxT versus Van Lishout’s one. In the
classical case, test-statistics are computed for all pairs of SNPs and stored with the
SNP names in the sorted Real data vector (tj ≥ tj+1,∀j = 1, . . . ,m − 1). In Van
Lishout’s implementation, the same computations are performed, but only the top
n test-statistics and corresponding SNP names are stored. In the classical imple-
mentation, all ti,j values are computed and stored ∀i = 1 . . . B, ∀j = 1 . . .m. In Van
Lishout’s maxT, all these ti,j values are still computed, but only the [ti,1, . . . , ti,n]
values are stored and the maximum Mi of the [ti,n+1, . . . , ti,m] ones. In the classical
implementation, ti,j is overwritten by ti,j+1 whenever ti,j+1 > ti,j, ∀j = m− 1 . . . 1.
In Van Lishout’s implementation, ti,n is overwritten by Mi if Mi > ti,n and ti,j
is overwritten by ti,j+1 whenever ti,j+1 > ti,j, ∀j = n − 1 . . . 1. Finally, pj+1 is
overwritten by pj whenever pj > pj + 1, ∀j = 1 . . .m − 1 in the classical case and
∀j = 1 . . . n− 1 in Van Lishout’s implementation. It is easy to prove that the final
p1, . . . , pn adjusted p-values are the same in both cases.

The essence of the MB-MDR methodology is to identify sets of gene-gene interac-
tions via a series of association tests, which may or may not be fully non-parametric,
while reducing dimensionality. In practical applications, there is an abundance of ad-
justed p-values close or equal to 1 and only a few adjusted p-values points towards
interesting multi-locus genotype combination to pursue. With this in mind, we adapt
the maxT algorithm so that it still calculates the test-statistics for all SNP pairs, but
only calculates the adjusted p-values of the n best pairs, i.e. the ones with the n lowest
p-values. We show that our method produces the exact same top n adjusted p-values
as with the original maxT implementation, however using many fewer resources. In
other words, despite the fact that only n adjusted p-values are produced, they are still
adjusted at the overall level, i.e. for the m association tests.

66

Chapter 3 3.3 MaxT

When interaction signals are expected to be strong in the light of an improved
study design (for instance, an increased sample size, a pathway-driven study design,
the use of expression traits derived from co-expression networks) or in the context of
replicating earlier epistasis findings, the value of n should be set sufficiently large by
the user, in order not to lose signals in the final output. However, when epistasis is
tested for in a hypotheses-free way, it is highly unlikely that more than 1000 significant
epistatic pairs can be identified (n = 1000, default value).

Van Lishout’s implementation of maxT exploits all ideas presented so far and in
particular the three remarks of Section 3.3.1. The different steps are given by:

1) Generation of the sorted Real Data vector R. This vector is created empty with a
preallocated size of n and initialized by performing a loop over the first n pairs of
SNPs. For j = 1, . . . , n: compute the test-statistic tj corresponding to the jth pair
of SNPs and store an object containing tj and the names of the corresponding
SNPs in Rj. After this loop, sort the vector in decreasing test-statistic order
using the quicksort algorithm. Then, perform a loop over the remaining m − n
pairs of SNPs. For j = n+ 1, . . . ,m: compute the test-statistic tj corresponding
to the jth pair of SNPs. If it is higher than the test-statistic value stored in Rn,
overwrite Rn with Rn−1. If it is also higher than the test-statistic value stored
in Rn−1, overwrite Rn−1 with Rn−2. Continue this process until a higher value
than tj is reached (or the beginning of R). Then create a new object containing
tj and the corresponding SNP names and store it in the one but last visited cell
of the R vector (or the first one). Let’s note t1 ≥ t2 ≥ . . . ≥ tm the test-statistics
obtained at the end of the loop and (SNPl1, SNPr1), . . . , (SNPlm, SNPrm) the
corresponding pairs of SNPs.

2) Generation of the test-statistics Permutation vector T and the adjusted p-values
vector P . These vector are created with a preallocated size of n. The T vector
is created empty and the P one initialized with 1’s. For i = 1, . . . , B: permute
randomly the trait values of the subjects, without modifying their genotypes and
perform four loops. First, loop over the top n pairs of SNPs. For j = 1, . . . , n:
compute ti,j and store it in Tj. Second, initialize Mi to 0 and loop over the
remaining m − n pairs of SNPs. For j = n + 1, . . . ,m: compute ti,j and if it is
higher than Mi overwrite Mi with ti,j. If the final Mi is higher than Tn, replace
Tn by Mi. Third, force the monotonicity of vector T : for j = n− 1, . . . , 1 replace
Tj by Tj+1 if Tj < Tj+1. Fourth, update vector P : for j = 1, . . . , n: if Tj ≥ tj
increment Pj by 1.

3) Finalization of the adjusted p-values vector. For j = 1, . . . , n: divide Pj by B+1.
Force monotonicity: for j = 1, . . . , n− 1: if Pj+1 < Pj overwrite Pj+1 by Pj.

Three remarks are in place:
First, note that at the first step, instead of saving the names of the SNPs in the

Real Data vector, we store their indexes, i.e. 1 for the first SNP appearing in the input
file, 2 for the second one and so on5. This obviously saves spaces but more importantly
allows to access quicker to the SNPs values when computing a test-statistic value.

5 Recall that in the actual implementation of the software, we use zero-based numbering for efficiency
reasons, i.e. assigning index 0 to the initial element of a sequence.

67

Chapter 3 3.3 MaxT

Second, note that the ti,j values are filled row-by-row and not column-by-column
as in Section 3.2.2. This allows in-place permutation of the trait values, requiring a
memory of O(S) instead of O(BS) (S is the number of subject). The modern version of
the Fisher-Yale shuffle algorithm [31], introduced by Durstenfeld [27] and popularized
by Knuth [65], enables to permute the trait values in-place in linear time. A simple
loop permutes the values of the trait vector6 randomly. For g = 2, . . . , S, get a random
integer a such that 1 ≥ a ≥ g and exchange the ath and gth elements of the vector. It
is easy to prove that if we pick any cell of the trait values vector, at the end of the
loop, any element has a probability of 1

S
to land in that cell.

Three, note that the renaming of the test-statistics at the end of step 1 implies
a subtlety that has been hidden so far, to avoid making the core presentation of the
algorithm unnecessary complicate. At the first step, the pairs of SNPs are browsed in
an order dictated by the input file, whereas at the second step, they are browsed in
decreasing test-statistics order. In the classical implementation, this is not an issue.
The sorted Real Data vector can be used at step 2, to find out the indexes of the
SNPs for which a test-statistic value should be computed. However, in Van Lishout’s
implementation, the sorted Real Data vector contains only the names of the top n
SNPs7. To solve this issue, we create a hash table containing the names of the SNPs
belonging to the top n and their corresponding rankings, resolving collision by separate
chaining [65]. In this way, at step 2, the pairs can be browsed in the same order as at
step 1 and at each iteration, the hash table is used to decide (almost instantaneously)
if the current value corresponds to one of the n best pairs or not and act accordingly,
i.e. either store the value in T or update Mi.

The main benefit of this new implementation is the same one as for mbmdr-4.4.1.out’s
implementation of Bonferroni. Indeed, since only objects of size n are again stored, the
new implementation makes the memory usage independent from the number of SNPs,
whereas the classical implementation raises quadratically with that amount. The il-
lustration of Figure 3.3 still holds here. A GWAIS would require several Terabytes of
memory with the classical implementation! Note that Figure 3.3 may be misleading,
since it only represents the memory required by Van Lishout’s implementation of maxT
itself. This does not mean that the memory usage is independent from the number of
SNPs globally. Indeed, the dataset itself has to be read at the start of the analysis
and stored in memory. This implies a memory proportional to the number of SNPs.
For a GWAis with thousands of subjects, this usually represents several Gigabytes.
Compared to that, the memory usage required by Van Lishout’s implementation of
maxT is negligible. In short, one can say that the memory needed by our software is
roughly equal to the size of the dataset. As a consequence, the remaining concern is
now computing time. At this point, it is thus necessary to construct synthetic data in
order to estimate the computing time, for different dataset sizes and try to see whether
a GWAIs is already realistic or not. Otherwise, more advanced methods needs to be
put in place.

The final implementation of Van Lishout’s maxT is reported in Box 3.2.

6 Whose elements are indexed 1, . . . , S.
7 As already mentioned, in practice, instead of saving the names, we save the indexes of the SNPs

68

Chapter 3 3.3 MaxT

Box 3.2. Van Lishout’s implementation of maxT

(1) If m < n set n = m. Create empty vector R of size n.

(a) For j = 1, . . . , n: compute tj and store object (tj, SNP lj, SNP rj) in Rj.

(b) Sort R in decreasing test-statistics order using the quicksort algorithm.

(c) For j = n+ 1, . . . ,m: compute tj and if tj > (Rn)1 do

i. Set k=n. While (k > 0 and tj > (Rk−1)1) do {Rk = Rk−1 ; k−−}.
ii. Store an object (tj, SNP lj, SNP rj) in Rk.

(d) Create a hash table containing an entry for each element of R, enclosing
the indexes of the corresponding SNPs and the ranking.

(2) Create empty vectors T and P of size n. Fill P with 1’s. For i = 1, . . . , B:

(a) For g = 2, . . . , S: compute a= modulo(rand(), g+1) and exchange the
ath and gth elements of the trait values vector.

(b) Set Mi = 0. For j = 1, . . . ,m: compute ti,j. Search if the jth pair of
SNPs is in the hash table. If found, retrieve the ranking r and store ti,j
in Tr. If not found, overwrite Mi by ti,j if Mi < ti,j.

(c) Replace Tn by Mi if Tn < Mi.

(d) For j = n− 1, . . . , 1: replace Tj by Tj+1 if Tj < Tj+1.

(e) For j = 1, . . . , n: increment Pj by one if Tj ≥ tj.

(3) For j = 1, . . . , n: divide Pj by B + 1. For j = 1, . . . , n − 1: replace Pj+1 by
Pj if Pj+1 < Pj.

Note that this algorithm is trivial to adapt for users interested in performing a main
effects analysis. The implementation from Box 3.2 needs only a minuscule adaptation:
at steps (1)(a) and (1)(c)(ii), an object (tj, SNPj) should now be stored instead of the
(tj, SNP lj, SNP rj) one. It comes without saying that the variable m represents the
number of SNPs here (not the number of pairs anymore) and that single SNP indexes
are stored in the hash table (instead of pairs). Similarly, the code of Box 3.2 is easy
to adapt for three-order interactions by using an object (tj, SNP lj, SNPmj, SNP rj) at
steps (1)(a) and (1)(c)(ii) instead of the (tj, SNP lj, SNP rj) one. Obviously, m now
represents the number of triplets of SNPs an the hash tables stores the three SNP
indexes.

Performances

In order to assess the speed performances we create 4 different datasets with 1,000
individuals each, of respectively 10 SNPs, 100 SNPs, 1,000 SNPS and 10,000 SNPs.
To assess significance, the number of permutations is set to the default B = 999
value. Each dataset is constructed to contain a strong signal for the functional pair
[SNP5, SNP10]. Table 3.2 states the two-locus penetrance table used to generate the
data.

69

Chapter 3 3.3 MaxT

Table 3.2: Two-locus penetrance table used to create the simulated data

AA Aa aa
BB 0 0.1 0
Bb 0.1 0 0.1
bb 0 0.1 0

A balanced number of cases and controls is sampled. The minor allele frequencies of
the functional SNPs are fixed at 0.5 and those of the non-functional SNPs are generated
randomly from a uniform distribution on [0.05, 0.5]. This corresponds to the first of
six purely epistatic models discussed in [101]. All experiments are performed on an
Intel Xeon CPU E5520@2.27 GHz 5.81 GT/s.

Before this thesis, the only available software implementing the MB-MDR method-
ology was an R-package based on the classical implementation of maxT [12]. In the
context of the accepted oral presentation at the BBC 2011 conference in Luxembourg,
we compared the computing times of this R package with mbmdr-2.6.2.out, one of the
earliest versions of our software containing Van Lishout’s implementation of maxT.
This comparison does obviously cover more than the fact that the R version is based
on the classical implementation of maxT and our software on Van Lishout’s imple-
mentation of maxT. Other major differences includes the fact that the former is in R
whereas the latter in C++ and the fact that the computation of the test-statistics in
the R version are based on general R functions, whereas in mbmdr-2.6.2.out they are
customized as explained in full details in Chapter 2. Table 3.3 summarizes the results.

Table 3.3: Execution times of R package and mbmdr-2.6.2.out

SNPs pairs of SNPs R-package mbmdr-2.6.2.out
10 45 1 h 2 min 1 sec
102 4,950 4 days 3h 1 min 3 sec
103 499,500 ≈ 1.1 year 1 hour 43 min
104 49,995,000 ≈ 110 years ≈ 7 days 4h

All tests are performed on an Intel Xeon CPU E5520@2.27 GHz 5.81 GT/s. The results prefixed by
the symbol “≈” are extrapolated.

One can see that mbmdr-2.6.2.out is approximately 5,500 times faster than its R
counterparts. This is in part a consequence of the new algorithm but probably more
importantly a repercussion of the fact that the C++ implementation is customized
for its task (as also demonstrated in Chapter 2). The fact that C++ is a compiled
language does of course also play an important role, since a lot of optimizations could
be done while compiling. A benefit of this approach is that the software is standalone.
The user does not need to install (and potentially learn) R before starting to use the
program. Another conclusion that can be made from Table 3.3 is that this version is
very far from being able to perform a GWAIs. A further extrapolation of the computing
times shows that a GWAIs would take about 200 years to finish! The purpose of the
next subsection is to show how to parallelize the algorithm, in order to save significant
computing time.

70

Chapter 3 3.3 MaxT

3.3.3 Parallel version of Van Lishout’s implementation

This contribution is also part of the accepted oral presentation at the BBC 2011 con-
ference in Luxembourg [122] and of the BMC Bioinformatics 2013 paper [125]. Since
all iterations of step 2 of Box 3.2 are independent from each other, it is possible to
simultaneously run the computations of the permutations on different machines, as
illustrated in Figure 3.7.

!"#$%&%'%(
%)#*+,&%'%(

&&&(

#,-.$%/(

01)"2&%'%(

#,-.$%/

01)"3&%'%(
&&&(

)$%#$%&%'%(

Figure 3.7: Parallel workflow of Van Lishout’s implementation of maxT. Step 1
is first performed on the input file on a single machine. This produces the file
topfile.txt, containing the ranked top pairs of SNPs and their corresponding test-
statistics. Then, the computation of the permutations is split between the Z avail-
able machines. Finally, the produced permutation_x.txt files are read and the
final output file is created.

To avoid communication between the machines, which would have as a consequence
to slow down the execution, we run several instances of the software and each of them
produces partial results that are written in short files. In this way, we avoid having to
actually use parallel programming, with multiple threading and such advanced meth-
ods. Since the purpose of this implementation is to run on a cluster, on which the
different jobs are queued, this choice is perfectly fine.

71

Chapter 3 3.3 MaxT

The three steps of the parallel workflow that we use to solve large-scale problems
are the following:

1) Compute the test-statistics for all pairs on one machine and save the n highest
ones into a file topfile.txt. This file should be saved at a location on which each
machine has read access. Its purpose is to save the information of the Real Data
vector of Figure 3.6. The file is thus tiny, i.e. it has a size that is O(n).

2) Split the computation of the permutations homogeneously between the Z ma-
chines. On each machine z = 1 . . . Z, perform the following operations:

(a) Read the file topfile.txt

(b) Initialize a vector P of size n with 0’s.

(c) Execute step 2 (a), (b), (c), (d) and (e) of Van Lishout’s implementation of
maxT for each permutation assigned to z.

(d) Save the P vector into a file permutationz.txt.

3) When all machines have terminated their work, sum all vectors of the files
permutation1.txt . . . permutationZ .txt and add 1, to obtain the final P vector.
Perform step 3 of Van Lishout’s implementation of maxT on this vector.

Performances

In order to assess the speed performances of the parallel workflow, we construct 4 dif-
ferent datasets with 1,000 individuals in the same way in Section 3.3.2, except that they
contain 100 SNPs, 1,000 SNPS, 10,000 SNPs and 100,000 SNPs respectively here. This
experiment was done in the context of the BMC Bioinformatics 2013 paper [125] with
mbmdr-3.0.3.out. A similar strategy was used to construct another set of 4 datasets,
containing the same number of individuals and SNPs as before, but expressing the trait
on a continuous scale instead of a binary one. The software finds again the strong signal
in all datasets. Table 3.4 gives the execution times, using either the sequential version
of Van Lishout’s implementation of maxT on a single core of a cluster composed of 10
blades containing each four Quad-Core AMD Opteron(tm) Processor 2352 2.1 GHz or
the parallel workflow on all the available cores. In the latter case, the computation of
the permutations is split homogeneously between 10× 4× 4 = 160 cores.

Table 3.4: Execution times of the sequential and parallel versions of mbmdr-3.0.3.out

Sequential version Sequential version Parallel workflow Parallel workflow
SNPs Binary trait Continuous trait Binary trait Continuous trait
102 45 sec 1 min 35 sec <1sec <1sec
103 1 hour 16 min 2 hours 39 min 38 sec 1 min 17 sec
104 5 days 13 hours 11 days 19 hours 1 hour 3 min 2 hours 14 min
105 ≈ 1.5 year ≈ 3 years 4 days 9 hours ≈ 9 days

The parallel workflow was tested on a cluster composed of 10 blades, containing each four
Quad-Core AMD Opteron(tm) Processor 2352 2.1 GHz. The sequential executions were performed
on a single core of this cluster. The results prefixed by the symbol “≈” are extrapolated.

72

Chapter 3 3.3 MaxT

Table 3.4 shows that our software is about twice faster for solving datasets for
which the trait is expressed on a binary scale, compared to datasets where the trait is
expressed on a continuous one. Furthermore, the table also shows that the execution
time is approximately multiplied by 100 when the number of SNPs is multiplied by
10. This is logical, since the computation time mainly depends on how many test-
statistics are computed, which in turn depends on the quantity of pairs of SNPs, itself
proportional to the squared number of SNPs.

If we further extrapolate the times, we can conclude that for a trait expressed on
a binary scale, a GWAIs analysis would take about one year. For a trait expressed on
a continuous scale, about two years. This is a big improvement compared to Section
3.3.2, but still not enough to make a GWAIs possible in practice. The purpose of the
next subsection, is to find out the main weakness of Van Lishout’s implementation of
maxT, in order to open the door for a new algorithm speeding up the computations.

Bottleneck

Van Lishout’s implementation of maxT still leaves room for improvement. In what
follows, we identify its main bottlenecks, in order to improve the overall performance
on large-scale data. In Table 3.5 we report the number of test-statistics computed
within the different steps of Van Lishout’s implementation of maxT (with the default
parameters of the software n = 1000 and B = 999) on a dataset containing 1000
subjects and 106 SNPs, which is equivalent to m ≈ 5x1011 pairs of SNPs.

Table 3.5: Number of test-statistics computed within the different steps of Van
Lishout’s implementation of MaxT on a dataset containing 103 subjects and 106 SNPs.

theoretical value numerical value
Step 1 (a) O(n) 1 000
Step 1 (b) O(n log n) 9 966
Step 1 (c) O(m) 499 999 500 000
Step 1 (d) O(n) 1 000
Step 2 (a) O(BS) 999 000
Step 2 (b) O(Bm) 499 499 500 500 000
Step 2 (c) O(B) 999
Step 2 (d) O(Bn) 999 000
Step 2 (e) O(Bn) 999 000
Step 3 O(n) 1 000

Since step 1 (a) consists in computing only n test-statistics, it takes obviously a
time proportional to n. Step 1 (b) can be executed using the quicksort algorithm,
which is known to lead to a computing time proportional to n log n [65]. Step 1 (c)
is the most demanding part of step 1: it implies as many elementary computations
as there are pairs of SNPs to test. This is easy to show. First, note that the loop
involves m − n iterations and since m >> n, this is approximately equivalent to m.
Furthermore, steps 1 (c) i. and ii. are executed only when tj is greater than the lowest
test-statistic value in R. Intuitively, the probability of having to insert decreases at
each iteration and tends to zero because the vector contains higher and higher values.
As a consequence, this algorithm requires O(m) computing time on average, but could
degenerate in O(nm). Step 1 (d) consists in n insertions in the hash table.

73

Chapter 3 3.3 MaxT

Since step 2 is performed B times, all computing times are multiplied by B. Step 2
(a) consists in S very quick operations and is not problematic. Step 2 (b) is the most
demanding part of step 2: it implies m test-statistic computations. Step 2 (c) is trivial.
Steps 2 (d) and (e) both involve a loop consisting of about n quick operations. Step
3 is performed only once and implies two loops consisting of about n iterations. This
leads to a computing time proportional to n.

In summary, steps 1 (c) and 2 (b) are the two most demanding steps. Although
significance assessment can be based on fewer SNP pairs, this first step of computing
the original test-statistics cannot be avoided nor simplified. For this reason, we focus on
step 2 (b). With 106 inputted SNPs, the number of elementary computations required
is proportional to 1014! Therefore, any improvement at this stage leads to better overall
performances. In the next section, we introduce a novel algorithm for multiple testing,
based on the idea of changing step 2(b) of Van Lishout’s implementation of maxT and
keeping the rest as it is. This algorithm, called gammaMAXT, is implemented in the
software mbmdr-4.4.1.out and resolves remaining concerns about computation time in
GWAIs using the MB-MDR framework. A detailed explanation of how we perform
such an improvement is the subject of the next section.

74

Chapter 3 3.4 GammaMAXT

3.4 GammaMAXT

This work is the main contribution of this PhD thesis. It has been accepted for oral
presentation at the ERCIM 2014 conference in Pisa [123] and published in BioData
Mining in 2015 [124]. The core idea of gammaMAXT is that the Mi value computed
at step 2 (c) should now be estimated from a sample from [ti,n+1, . . . , ti,m] rather than
calculated exactly, as illustrated in Figure 3.8.

Real Data … … …

… … …

Permut. 1 t1,1 … t1,n t1,n+1 … t1,m t1,1 … t1,n M1

… … … … … … … … … … …

Permut. B tB,1 … tB,n tB,n+1 … tB,m tB,1 … tB,n MB

… … …

p-values (*) p1 … pn pn+1 … pm p1 … pn

(a) classical maxT (b) gammaMAXT

 (*) adjusted for m hypothesis tests

SNPi1
SNPj1
t1

SNPin+1
SNPjn+1
tn+1

SNPim
SNPjm
tm

SNPin
SNPjn
tn

SNPi1
SNPj1
t1

SNPin
SNPjn
tn

!"#$#

!"#$#!"#$#

!"#$#

!"#$#

!"#$#

!"#$#

!"#$# !"#$#

!"#$#!"#$#

!"#$#!"#$#

!"#$#

!"#$#

!"#$#

!"#$# !"#$# !"#$# !"#$# !"#$#!"#$#

Figure 3.8: Classical implementation of maxT versus gammaMAXT. In the classical
implementation, test-statistics are computed for all pairs of SNPs and stored with
the corresponding SNP names in the sorted Real data vector. In gammaMAXT
the same computations are performed, but only the top n test-statistics and cor-
responding SNP names are stored. In the classical implementation, all ti,j values
are computed and stored ∀i = 1 . . . B, ∀j = 1 . . .m. In gammaMAXT, the maxi-
mum Mi of [ti,n+1, . . . , ti,m] is estimated from a sample from [ti,n+1, . . . , ti,m] rather
than calculated exactly. In the classical implementation, ti,j is overwritten by ti,j+1

whenever ti,j+1 > ti,j, ∀j = m− 1 . . . 1. In gammaMAXT ti,n is overwritten by Mi

if Mi > ti,n and ti,j is overwritten by ti,j+1 whenever ti,j+1 > ti,j, ∀j = n − 1 . . . 1.
Finally, pj+1 is overwritten by pj whenever pj > pj + 1, ∀j = 1 . . .m − 1 in the
classical case and ∀j = 1 . . . n− 1 in gammaMAXT.

This idea emerged from the intuition that computing all the numbers in [ti,n+1, . . . , ti,m]
to keep just one, the maximumMi, implies a huge computing time that could probably
be invested better than this. This represents about 1011 test-statistics computations
in the context of a GWAIs. In fact, the ti,n+1, . . . , ti,m numbers follow an unknown
distribution and basically what we are doing is fitting this distribution very precisely.
Actually, more precisely than intuitively needed and that’s the starting point of the
concept. The distribution has been fit so precisely that instead of searching the maxi-
mum in [ti,n+1, . . . , ti,m] directly, we could almost predict it from the fitted distribution.
Even better, we actually do not need to compute so much numbers to fit the distribu-
tion, a sample of size A = 106 of non-zero values should suffice. This size is a tradeoff
between computing time and precision of the prediction. The main remaining question
is therefore which probability distribution to fit and is addressed in the next section.

75

Chapter 3 3.4 GammaMAXT

3.4.1 Distributational assumptions

We have indicated before that MB-MDR offers a flexible framework to test for SNP-
SNP interactions. The software in which the framework is implemented has a modular
built-up that allows a flexible choice of association test, depending on the input data.
For instance, for quantitative traits, t-tests or non-parametric equivalents can be carried
out. For binary traits, chi-squared test of independence can be chosen. The association
test that best reflects the data at hand is used in both stage 1 and stage 2 of the MB-
MDR framework [16, 82]. After the data manipulation of combining cells using trait
information, MB-MDR’s final test statistic no longer follows the theoretical sample
distribution of the initially chosen test statistic. In fact, earlier work has shown that
such sequential pooling may lead to permutation-based distributions of MB-MDR test-
statistics that depend on the number of multi-locus genotype cells pooled [11] or on
the minor allele frequencies (MAFs) of the SNP pair under consideration [79].

Rather than looking at the null distribution of the test statistic linked to a SNP-
pair, we are now interested in the distribution of a number of test values over several
SNP-pairs, from which to derive the maximum value Mi. We hypothesize that test
values in [ti,n+1, . . . , ti,m], follow a mixture distribution of a shifted gamma distribution
[67] and a point mass at zero. Note that zero test values are induced by scenarios for
which the MB-MDR test statistic cannot be computed. We have seen in Chapter 2 that
whenever a group of subjects (e.g., in a 2-SNP interaction study, those subjects having
two copies of the minor allele at each locus) is compared to the remaining subjects with
respect to the trait under study and by using an appropriate association test statistic,
this group can either be associated to a higher “risk” (“H” category), a lower “risk”
(“L” category) or indecisive “risk” (nor “H”, nor “L”; “O” category) for the trait. Here,
“risk” is used loosely. For instance for continuous traits, the “risk” categories above may
rather refer to increased (“H” category), decreased (“L” category) mean trait values.
Also, in the MB-MDR methodology, risk scales can be refined to incorporate multiple
risk categories [16]. It is important to realize that if all subjects are assigned the same
label (in this scenario, most probably the “O” label), then MB-MDR returns an exact
zero. It is not surprising that lack of power of GWAIs (which depends on sample size
but also true effect size) induces such technical zeros for a significant proportion of the
tested SNP pairs.

In order to take this important amount of zeros into account, we use the approach
described in [49]. We assign a discrete probability mass to the exact zero value. Hence,
if Xi is a random variable returning a random value from [ti,n+1, . . . , ti,m], we can define
the probabilities π = P (Xi > 0) and 1 − π = P (Xi = 0). Therefore, the distribution
of Xi is semi-continuous with a discontinuity at zero. This implies that the probability
density function is

fXi(x) = (1− π)δ(x) + πgXi(x)1(x>0) (3.2)

where δ(x) is a point probability mass at x = 0, gXi(x) is the distribution of the strictly
positive values and 1(x>0) is an indicator function taking the value 1 if x > 0 and 0
otherwise. The parameter π depends on the data at hand and can be estimated with
the Maximum Likelihood Estimation (MLE) method [7] from the observed frequency
in a sample from [ti,n+1, ..., ti,m].

76

Chapter 3 3.4 GammaMAXT

Due to the fact that our main goal consists in predicting a maximum, we are not
particularly interested in fitting the distribution of gXi(x) on the entire set of strictly
positive values. As a matter of fact, fitting the tail of gXi(x) should suffice. We
show in the next section that focusing on the top 10% strictly positive values is an
acceptable practical choice. We consider this a good tradeoff between fitting on a large
and a smaller range of positive values. The former might lead to a poor fit of the tail,
because many samples might not belong to that range. The latter might lead to a poor
fit of the tail due to an insufficient number of samples. The amount of values belonging
to the top 10% strictly positive values in [ti,n+1, . . . , ti,m] is given by q = (m−n)π

10
.

Assumption 1

We assume that the shifted gamma distribution is a good fit to the tail of gXi(x).
Hence, if Yi is a random variable returning a value from the aforementioned top 10% of
strictly positive values, we postulate that its cumulative distribution function (CDF)
is given by

FYi(y) =
γ(k, y−y0

θ
)

Γ(k)
(3.3)

where γ is the lower incomplete gamma function, y0 is the location parameter, k is
the shape parameter and θ the scale parameter. Some authors discourage the use of
the gamma distribution for model fitting due to the difficulty of parameter estimation
[2]. However, in the specific case of fitting the tail of the distribution of the MB-MDR
statistics, we believe that simpler models would be consistently inaccurate. Moreover,
the lack of knowledge regarding the shape of a plausible distribution and the diversity of
the data we are performing our computations on, make a versatile distribution function
like the gamma, a reasonable assumption. Note that the choice of shifting the gamma
distribution comes naturally due to the fact that the smallest strictly positive value
should not be in the neighborhood of zero. Indeed, a small value would represent a
low-significant association between the interaction of the two loci and the phenotype.
As previously mentioned, this would lead to the “O” category for all subjects and an
exact zero. The CDF of the random variable Zi returning the maximum of the q values
belonging to the top 10% strictly positive values in [ti,n+1, . . . , ti,m] is given by

FZi(z) = [
γ(k, z−y0

θ
)

Γ(k)
]q (3.4)

Indeed, if we take q independent and identically distributed (i.i.d.) values y1, y2, ..., yq,
then P [(y1 ≤ yt) ∧ (y2 ≤ yt) ∧ ... ∧ (yq ≤ yt)] = [FYi(yt)]

q = FZi(z).

Assumption 2

We postulate that the parameters π, y0, k and θ are stable from one permutation to
another. This assumption is a plausible one, given the results in Table 3.7, which show
low variance of these parameters across 999 permutations. An analogous observation
has been noticed in a similar work [92], based on hypothesis testing with an extreme
value distribution. In order to reduce the computational burden of the fitting, we
estimate the parameters once every 20 permutations. We consider this a compromise
between robustness and performance.

77

Chapter 3 3.4 GammaMAXT

Simulations supporting assumption 1

In this section, we investigate the hypothesis that the tail of gXi(x) follows a shifted
gamma distribution and that fitting the top 10% of strictly positive values is an ac-
ceptable choice. We use the following datasets for this experiment:

• A simulated dataset D1 expressed on a binary scale, composed of 1000 SNPs
and 1000 individuals. Table 3.6 states the two-locus penetrance table used to
generate it. A balanced number of cases and controls is sampled. The minor
allele frequencies of the functional SNPs are fixed at 0.5 and those of the non-
functional SNPs are randomly generated from a uniform distribution on [0.05,
0.5]. This corresponds to the first of six purely epistatic models discussed in [101].
Furthermore, any value in the dataset had a 5% chance to be missing.

• A simulated dataset D2, with the same properties as D1, except that the trait is
expressed on a continuous scale.

• A simulated dataset D3, with the same properties as D1, except that the MAF’s
are on average lower, i.e. the non-functional SNPs were randomly generated from
a uniform distribution on [0.05, 0.1].

• A real-life dataset D4 on Crohn’s disease, for which the trait is expressed on a
binary scale [73, 5], reduced to 12471 SNPs and 1687 subjects as in [125].

Table 3.6: Two-locus penetrance table used to create the simulated datasets D1, D2

and D3

AA Aa aa
BB 0 0.1 0
Bb 0.1 0 0.1
bb 0 0.1 0

For each of the aforementioned datasets, we first carry out the original Van Lishout’s
implementation of maxT based on 104 permutations to generate a reference distribution
for Mi. We second execute step (2)(b) of the gammaMAXT algorithm based on 104

permutations, with different values for the internal parameter defining the percentage
of strictly positive values belonging to the tail of gXi(x). Figure 3.9 is generated in R
and shows the results for dataset D1. We observe that focusing on respectively 25%,
20%, 15%, 5% and 1% of the strictly positive values leads to a good fit, but that
10% is the optimal alternative. The curves of subfigure (d) are indeed close and the
Kolmogorov-Smirnov (KS) distance is the lowest among these choices. This supports
the hypothesis that the gammaMAXT algorithm produces accurate predictions of the
Mi values. Figures 3.10, 3.11 and 3.12 show that 10% is consistently a good option,
although not always the most optimal one.

78

Chapter 3 3.4 GammaMAXT

Figure 3.9: Theoretical (green) versus predicted Mi values for dataset D1. The
curve in Grey, corresponding to 10% is the optimal choice, leading to the lowest
Kolmogorov-Smirnov distance.

79

Chapter 3 3.4 GammaMAXT

Figure 3.10: Theoretical (green) versus predicted Mi values for dataset D2. The
curve in Grey, corresponding to 10% is the optimal choice, leading to the lowest
Kolmogorov-Smirnov distance.

80

Chapter 3 3.4 GammaMAXT

Figure 3.11: Theoretical (green) versus predicted Mi values for dataset D3. The
pink curve, corresponding to 20% is the optimal choice, but the curve in grey
corresponding to 10% still leads to a low Kolmogorov-smirnov distance and remains
a good practical choice.

81

Chapter 3 3.4 GammaMAXT

Figure 3.12: Theoretical (green) versus predicted Mi values for dataset D4. The
curve in Grey, corresponding to 10% is the optimal choice, leading to the lowest
Kolmogorov-Smirnov distance.

82

Chapter 3 3.4 GammaMAXT

Simulations supporting assumption 2

In this section, we show results indicating that the parameters π, y0, k and θ are stable
across permutations. We perform analyzes on datasets D1 to D4, using the default
settings. For this experiment, we modified the gammaMAXT algorithm such that
it fits new parameters for each of the 999 permutations (not only once every 20 as
previously mentioned) and saves these into a file. We report their means and variances
in Table 3.7. We observe that the variances are very low across all scenarios.

Table 3.7: Mean and variance of the fitted parameters for datasets D1 −D4

D1 D1 D2 D2 D3 D3 D4 D4

Mean Var Mean Var Mean Var Mean Var
π 0.337 1.247x10−6 0.335 3.815x10−6 0.137 4.948x10−7 0.366 9.356x10−7

y0 7.742 5.566x10−4 7.825 8.778x10−4 6.189 6.472x10−4 7.788 3.805x10−4

k 1.017 2.612x10−4 1.012 2.534x10−4 0.990 3.580x10−4 1.017 1.725x10−4

θ 1.917 1.462x10−3 1.974 1.532x10−3 1.694 1.829x10−3 1.917 9.695x10−4

3.4.2 Implementation

As mentioned earlier, the gammaMAXT algorithm only differs from Van Lishout’s im-
plementation of maxT (Box 3.2) with respect to step 2(b). In the novel implementation
the maximumMi is estimated from a sample of size A = 106 of strictly positives values
in [ti,n+1, . . . , ti,m] rather than calculated directly. The parameter π is estimated on the
fly using a variable z, counting the number of zeros encountered during the sampling
process. The new step 2(b), described in Box 3.3, assumes that m >> n.

Box 3.3. Step 2(b) of gammaMAXT
(1) For j = 1, . . . , n: compute the test-statistic value corresponding to the pair

stored in Rj and save it in Tj.

(2) If (i modulo 20 = 1) estimate π, y0, k and θ: (otherwise use the latest estimates)

(a) Set z = 0. Create empty vector V of size A=106.
(b) Randomly select an integer r in [1,m]. If the rth pair of SNPs is in the

hash table, restart this step.
(c) Compute test-statistic ti,r. If ti,r = 0 do z=z+1, else store ti,r in V .
(d) Repeat steps (b) and (c) until V is full.
(e) Sort V . Remove the 90% lowest values. The new size of V is N = A

10
.

(f) Estimate π = A
z+A

.
(g) Estimate y0 by the minimum of V .
(h) Estimate k: see below.

(i) Estimate θ = 1
kN

N∑
i=1

(Vi − y0).

(3) Sample Mi from the distribution of the maximum, whose CDF is given by

FZ〉(z) = [
γ(k,

z−y0
θ

)

Γ(k)
]
(m−n)π

10 . The detailed procedure is described in Box 3.4.

83

Chapter 3 3.4 GammaMAXT

First, note that the probability of restarting step (2) (b) of this procedure is very
low. Indeed, since m >> n, the numbers in [1, . . . ,m] are almost all indexes of SNPs
that do not belong to the top n, i.e. are not in the hash table. As a consequence, this
step cannot loop infinitely in practice. As an example, for a GWAIs, the probability
that this step restarts ten times or more is approximately equal to 10−80.

Second, note that whereas estimates in steps (2)(f), (2)(g) and (2)(i) are obtained
via Maximum Likelihood, the estimation of the parameter k requires more elaboration.
According to [86], an acceptable initial guess being within 1,5% of the correct value is

k =
3− s+

√
(s− 3)2 + 24s

12s
(3.5)

with

s = ln(
1

N

N∑
i=1

(v[i]− y0))− 1

N

N∑
i=1

ln(v[i]− y0) (3.6)

This initial guess is updated iteratively via the Newton-Raphson method [19]. In
particular, in every iteration, k is updated as

k = k − ln(k)− ψ(k)− s
1
k
− ψ′(k)

(3.7)

until the difference between the new and the old value of k is lower than the desired pre-
cision (default: 0.000001). ψ(k) and ψ′(k) are respectively the digamma and trigamma
functions.

Finally, Box 3.4 describes the procedure used at step (3) to obtain the final Mi

estimation. Note that it is important to sample in the distribution of the maximum,
rather than take the expectation of the maximum. This is the proper way to mimic the
original maxT algorithm correctly. Indeed, taking the expectation would lead to about
the same predicted maximum for each of the B permutations, so that most p-values
would be equal to either 1

B
or 1 (the observed maximum is compared to about the

same value each time and is thus either always lower or always bigger). By sampling,
we intuitively give back to maxT what it needs: several maximum values from which
it can approximate the distribution of the maximums to compare the observed one to.
The idea of the sampling method of Box 3.4 is to take a random p-value and search
the corresponding maximum value in the CDF using a Newton-Raphson strategy.

Box 3.4. Algorithm for sampling Mi when CDF is given by FZi(z)

(a) Take a too high initial guess of Mi (default: 1000). Initialize variable b to
half of this value.

(b) Randomly select a real number rn ∈ [0, 1].

(c) If FZi(Mi) is lower than rn doMi = Mi+b, otherwise doMi = Mi−b. Divide
b by 2.

(d) Repeat step (c) until b is below the desired precision (default: 0.000001).

84

Chapter 3 3.4 GammaMAXT

3.4.3 Parallel version

We have presented a parallel workflow for Van Lishout’s implementation of maxT in
Section 3.3.3. The idea was to parallelize only the computations related to the permuted
data, not those on the observed data, as illustrated in Figure 3.7. This did make perfect
sense: we have seen in Table 3.5 that for a GWAIs, most of the computation time is
spent on permuted data rather than observed one (1014 versus 1011 computations). In
Van Lishout’s maxT, running the computations related to the observed data in parallel
would not make a big difference on the global computing time. This is totally different
for gammaMAXT, since step (2)(b) has been reduced to about 107 computations here.
As a consequence, the bottleneck is now the computation of the Real Data vector, which
should be split between all available cores. The computations of the permutations can
anyway happen in parallel since it still takes significant time in practice. The final
parallel workflow is illustrated in Figure 3.13.

!!! !!!

" "

#$%&'!'(')

'*%+!'(')

'*%,!'(')

*&'%&'!'(')

'*%-#./!'(')

%/01&'+!'(')

%/01&',!'(')

Figure 3.13: First, each cluster node performs a fair proportion of the t1, . . . , tm
values computations from Figure 3.8 and saves the n highest into file top_c.txt.
Second, a node aggregates all top_c.txt files and retrieves the overall n highest
values, saved in topfile.txt. Third, each cluster node reads topfile.txt and performs
an equitable fraction of the B permutations of Figure 3.8, saving results into file
permut_c.txt. Finally, a cluster node aggregates all permut_c.txt and produces the
final output file.

85

Chapter 3 3.4 GammaMAXT

The four steps of the parallel workflow used to perform GWAIs are the following:

1) Each cluster node c = 1 . . . C performs an equitable fraction of the computations
of the t1, . . . , tm values from Figure 3.8. The n highest values (and corresponding
SNP pair indexes) from each node are saved into file top_c.txt.

2) Upon termination of all computations at the previous step, a cluster node ag-
gregates all top_c.txt files and retrieves the overall n highest values (and corre-
sponding SNP pair indexes). Results are saved into topfile.txt.

3) Each cluster node reads topfile.txt, creates an empty vector T of size n and a
vector P of size n filled with 0’s and performs an equitable fraction of the B
permutations of Figure 3.8. For each permutation i attributed to node c:

(a) Generate a random permutation of the trait column.

(b) Execute step (2)(b) of the gammaMAXT algorithm.

(c) Replace Tn by Mi if Tn < Mi.

(d) For j = n− 1, . . . , 1: replace Tj by Tj+1 if Tj < Tj+1.

(e) For j = 1, . . . , n: increment Pj by one if Tj ≥ tj.

Upon completion of all computations on node c, save P into file permut_c.txt.

4) A cluster node sums all vectors from the permut_c.txt files to obtain the final
vector P . All elements of P are incremented by 1 and divided by B + 1. The
monotonicity is forced: for j = 1, . . . , n− 1, replace Pj+1 by Pj if Pj+1 < Pj.

Performances

In order to assess the speed performances of the parallel workflow, we create 4 different
datasets with 1000 individuals each, of respectively 103, 104, 105 and 106 SNPs. This
experiment was done in the context of the BioData Mining 2015 publication [124]
with mbmdr-4.2.2.out, the first public version based on gammaMAXT. All datasets
were generated using GAMETES, a fast, direct algorithm for generating pure epistatic
models with random architectures [120]. Another set of 4 datasets, containing the same
number of individuals and SNPs, but expressing the trait on a continuous scale, was
created using a similar strategy as for D2 in Section 3.4.1. Table 3.8 shows the results.

Table 3.8: Execution times of the sequential and parallel versions of mbmdr-4.2.2.out

Sequential version Parallel workflow Sequential version Parallel workflow
SNPs Binary trait Binary trait Continuous trait Continuous trait
103 13 min 33 sec 20 sec 13 min 18 sec 18 sec
104 52 min 15 sec 1 min 05 sec 56 min 14 sec 53 sec
105 64 hours 35 min 22 min 15 sec 70 hours 03 min 20 min 28 sec
106 ≈ 270 days 25 hours 12 min ≈ 290 days 24 hours 06 min

The parallel workflow was tested on a 256-core computer cluster (Intel L5420 2.5 GHz 1333 MHz
FSB). The sequential executions were performed on a single core of this cluster. The results prefixed
by the symbol “≈” are extrapolated.

86

Chapter 3 3.4 GammaMAXT

We observe that mbmdr-4.2.2.out outperforms the computing times of mbmdr-
3.0.3.out from Section 3.3.3 reported in Table 3.4. For instance, solving a continuous
dataset of 104 SNPs on a single core takes about 56 minutes with mbmdr-4.2.2.out and
almost 12 days with mbmdr-3.0.3.out, i.e. about 300 times less. Solving a continuous
dataset of 106 SNPs on a 256-core cluster takes about one day with mbmdr-4.2.2.out
and would take about 104 longer with mbmdr-3.0.3.out.

Note that the computing times reported in Table 3.4 are based on runs without any
correction for the main effects of the SNPS. In this case, the times corresponding to a
binary trait are about twice faster than those based on a continuous case. In Table 3.8,
a codominant correction for the main effects of the SNPs has been performed, implying
a regression framework. Since the latter is comparable in the binary and continuous
case, we logically observe similar computing times.

The theoretical computing time of step (2)(b), which wasO(Bm) with Van Lishout’s
implementation of maxT according to Table 3.5, is now independent from m. Indeed,
once every 20 permutations, this step requires A = 106 computations to fit the shifted
gamma distribution and 19 times out of 20 no computations at all since the previously
computed parameters are reused. When the default parameter B = 999 is used, pa-
rameters are estimated 50 times and the total number of test-statistics computed is
therefore about 107. When this algorithm is used in the context of a GWAIs, step
(2)(b) becomes negligible compared to step 1, which requires about 1011 computations
according to Table 3.5. In this context, the global computing time is therefore O(m),
a big improvement compared to O(Bm) (winning three orders of magnitude!).

When m gets smaller, the computing time spent at step 1 goes down, while the
computing time spent at step (2)(b) does not change. This means that at some point,
the latter becomes the most demanding one. This is why the parallel workflow executes
both of this steps in parallel, so that the user does not need to investigate which
step is the most demanding one in his particular case. Note that if m gets very
small, at some point Van Lishout’s implementation of maxT gets even faster than the
gammaMAXT algorithm. For this reason, our software automatically executes the
former instead of the latter in such scenarios. In practice, the software turns to Van
Lishout’s implementation when m < 15000 or when m < 3n. The former condition
is the result of speed tests showing that this is about the threshold for which both
algorithm reaches approximately the same speed. The latter condition ensures that
step (2) (b) of Box 3.3 does not loop too long (recall that Box 3.3 should only be used
when m >> n to ensure that this step is quick). By the way, the m < 3n condition
can only apply if the user did select a higher n value than the default one (n = 1000).
The intuition behind these two conditions is that estimating the Mi values rather than
computing them exactly does not make sense when the computing time that is saved
is small or that the algorithm becomes even smaller!

We have demonstrated that the execution time of mbmdr-4.2.2.out is significantly
lower than the one of mbmdr-3.0.3.out in the context of a large-scale analysis. In
the next section, we investigate whether this speed increase comes at the cost of a
significant increase/decrease of the FWER/power or not.

87

Chapter 3 3.4 GammaMAXT

3.4.4 FWER and power analysis

FWER

To study the control of the FWER, we run mbmdr-4.2.2.out on four sets of datasets:

• A set S1 of 1000 datasets, each composed of 1000 SNPs and 1000 individuals,
containing null data generated randomly from a uniform distribution on [0.05,
0.5]. A balanced number of cases and controls is sampled.

• A set S2 with the same properties as S1, except that the trait is expressed on a
continuous scale.

• A set S3 of 200 datasets, each composed of 104 SNPs and 1000 individuals,
constructed in the same way as S1.

• A set S4 with the same properties as S3, except that the trait is expressed on a
continuous scale.

We report the observed false-positive rates in Table 3.9.

Table 3.9: Observed FWER of mbmdr-4.2.2.out

set amount datasets observed FWER
S1 1000 4.5%
S2 1000 6.2%
S3 200 7%
S4 200 6.5%

In practice, these are computed as the percentage of datasets containing at least
one pair of SNPs that gave rise to an adjusted p-value below 5%. On each set, we
note that the estimated rates are within the interval [2, 5%− 7, 5%] and satisfies thus
Bradley’s liberal criterion of robustness for the significance level α = 5% [8]. This
criterion specifies that the FWER are controlled for any significance level α, if the
empirical rate α̂ is contained in the interval 0.5α ≤ α̂ ≤ 1.5α. Now that we have
shown that the gammaMAXT algorithm still controls the FWER at 5% in practice,
using it instead of Van Lishout’s implementation of maxT can only have one drawback:
power. The purpose of the next experiment is to study how strongly the power has
been affected by the fact that the Mi values are now estimated rather than computed.

Power

To evaluate the power, we create nine sets of data with GAMETES. Each set consists
in 1000 datasets, all composed of 1000 individuals (500 cases and 500 controls) and
200 SNPs (out of which exactly one pair is linked to the trait). The heritability varies
across the datasets from 0.03 to 0.01. In this way, we provide a range of decreasing
effect sizes showing the power reduction. Table 3.10 indicates the percentage of time
that the pair linked to the trait gave rise to an adjusted p-value below 5%.

88

Chapter 3 3.4 GammaMAXT

Table 3.10: Power comparison between the gammaMAXT and the MaxT algorithms

heritability gammaMAXT MaxT
0.0100 3.7% 4.2%
0.0125 17.9% 19.4%
0.0150 50.3% 51.5%
0.0175 67.0% 68.7%
0.0200 86.6% 87.9%
0.0225 94.3% 94.7%
0.0250 97.5% 97.8%
0.0275 99.2% 99.3%
0.0300 99.6% 99.6%

We observe that the original MaxT and the new gammaMAXT algorithm lead to
very similar values for the power. By predicting the Mi values instead of computing
them explicitly, we can of course not win power, so that the power of the gammaMAXT
algorithm is obviously equal or lower than the one of MaxT. However, we observe that
the difference is small, the largest power reduction being of 1,7%. We conclude that
the huge computing time that is saved by gammaMAXT versus Van Lishout’s maxT
is worth giving up a very small power percentage.

Note that a drawback of maxT, is that when the test statistics are not identically
distributed, unbalanced adjustments can be observed because not all tests contribute
equally to the computed adjusted p-values. If this is an issue for a particular experi-
ment, then users can turn to the minP algorithm presented in the next section. This
can for instance be very useful when there are a lot of SNPs with a low MAF.

89

Chapter 3 3.5 MinP

3.5 MinP

The single-step and step-down minP adjusted p-values are two algorithms introduced
by Westfall & Young to handle the multiple-testing problem [136]. Since the former
tends to be conservative for the control of the FWER, we focus on the latter in this
thesis and call it simply minP in this document.

3.5.1 Classical implementation

In Section 3.3, we have shown that the first step of maxT consists in computing test-
statistics for all pairs of SNPs and sorting them in decreasing order. In minP, these
test-statistics are still computed but not sorted anymore. What is done is computing
the corresponding marginal empirical p-values (computed in the exact same way as
in the Bonferroni case, as described in Section 3.2.1) and sort these. Without loss
of generality, let’s note them p∗1 ≤ p∗2 ≤ . . . ≤ p∗m. The sorting occurs of course
in increasing order, since the top results are the lowest marginal empirical p-values in
minP, rather than the highest test-statistics in maxT, hence the names of the methods.

In maxT, the adjusted p-value p1 is given by the probability of observing a maximum
value that is at least as extreme as the observed maximum t1. By symmetry, in minP,
the adjusted p-value p1 is given by the probability of observing a minimum marginal
empirical p-value that is at most as extreme as the observed one p∗1. In maxT, t1 is
compared to the highest test-statistic t1,max, . . . , tB,max obtained on B permutation of
the trait values (see Figure 3.4). In minP, p∗1 is compared to the smallest marginal
empirical p-values p∗1,min, . . . , p∗B,min obtained on B permutations of the trait values.
As a consequence, in the traditional implementation of minP, two sets of permutations
are used: one for computing the marginal empirical p-values p∗1, . . . , p∗m and one for
computing the adjusted ones p1, . . . , pm.

To compute p2, the intuitive idea from Section 3.3 can be recycled: one can imagine
that the case of (SNPl1, SNPr1) is closed and that this pair has been removed from
the dataset. As a consequence, (SNPl2, SNPr2) is now the pair leading to the lowest
marginal empirical p-value and the whole procedure can be restarted. This reasoning
can be extended for p3, . . . , pm. Again, this would be a waste of time and the actual
procedure is illustrated in Figure 3.14. This implementation is based on the following
three observations. First, note that the mth marginal empirical p-value is guaranteed
to be useful: when pm is computed, (SNPlm, SNPrm) is the only pair remaining in
the dataset and this value is readily the minimum. Second, note that the (m − 1)th

marginal empirical p-value is useful if and only if it is lower than the mth one. Indeed,
if it is lower it is at least the minimum in the computation of pm−1, but if it is higher
it cannot be the minimum in any computation. For this reason, in the latter case, the
(m − 1)th marginal empirical p-value is overwritten by the mth one, without harming
the algorithm. Third, note that this reasoning can be carry on for the remaining
(m− 2)th, . . . , 1st marginal empirical p-values. After this procedure, the second set of
permutation vectors contains increasing values. This allows to compute any pj value
easily, by using the corresponding p∗1,j, . . . , p∗B,j marginal empirical p-values readily. As
a final remark, note that a p2 value lower than p1 would be too optimistic, i.e. the
p-value of a less significant pair should not be lower than the one of a more significant
pair. For this reason, whenever p2 < p1, minP replaces p2 by p1 and so on for p3, . . . , pm.

90

Chapter 3 3.5 MinP

Real Data …

…

Permut. 1 t1,1 … t1,m

… … … …

Permut. B tB,1 … tB,m

…

p*1 … p*m

…

Permut. B+1 p*1,1 … p*1,m

… … … …

Permut. 2B p*B,1 … p*B,m

…

p1 … pmadjusted p-values

marginal empirical p-values

SNP
l1

SNP
r1

t
1

SNP
lm

SNP
rm

t
m

!"#$#!"#$#

!"#$# !"#$#

!"#%#!"#%#

&&&# &&&#

&&&# &&&#

Figure 3.14: Classical minP. The estimation of the raw p∗j values (j = 1, . . . ,m)
is based on B random permutations of the trait values (i = 1, . . . , B). Each time,
the original tj is compared to the ti,j values obtained on the permuted data and p∗j
estimated by aj+1

B+1
, with aj the amount of ti,j ≥ tj. Without loss of generality, we

can assume p∗1 ≤ p∗2 ≤ . . . p∗m (the data can easily be reorganized). Another set of B
random permutations of the trait values (k = 1, . . . , B) is used to estimate the raw
p∗k,j values. Each time, a new tk,j value is computed (not represented in the figure),
a temporary set of B permutations is generated (l = 1, . . . , B), temporary tl,j are
computed and p∗k,j estimated by bj+1

B+1
, where bj is the amount of tl,j ≥ tk,j. Then, p∗k,j

is overwritten by p∗k,j+1 whenever p∗k,j+1 < p∗k,j, ∀k = 1, . . . , B,∀j = m − 1, . . . , 1.
Then, the adjusted pj values are estimated by cj+1

B+1
, where cj is the amount of

p∗k,j ≤ p∗j . Finally, pj+1 is overwritten by pj whenever pj > pj+1,∀j = 1, . . . ,m− 1.

A straightforward implementation of minP is given by the following five steps:

91

Chapter 3 3.5 MinP

1) Generation of the Real Data vector R. This vector is created empty with a
preallocated size of m and filled by performing a loop over the pairs of SNPs. For
j = 1, . . . ,m: compute the test-statistic tj corresponding to the jth pair of SNPs
and store an object containing the computed test-statistic and the names of the
corresponding SNPs in Rj.

2) Generation of the test-statistics Permutation vectors T1, . . . , TB. These vectors
are created empty with a preallocated size of m and filled one by one. For i =
1, . . . , B: permute randomly the trait values of the subjects, without modifying
their genotypes and perform a nested loop over the pairs of SNPs. For j =
1, . . . ,m: compute the test-statistic ti,j corresponding to the jth pair of SNPs
and store it at the jth index of the Ti vector.

3) Generation of the Raw p-values vector W. This vector is created empty with a
preallocated size of m and filled by performing a loop over the pairs of SNPs. For
j = 1, . . . ,m: compute the amount aj of ti,j ≥ tj values (i = 1, . . . , B) and store
the estimated p-value aj+1

B+1
at the jth index of vector W . Finally, sort vector W

and ensure that vectors R, T1, . . . Tm are rearranged accordingly.

4) Generation of the marginal empirical p-values Permutation vectors V1, . . . , VB.
These vectors are created empty with a preallocated size of m and filled one by
one. For k = 1, . . . , B: permute randomly the trait values of the subjects and
perform a nested loop over the pairs of SNPs. For j = 1, . . . ,m: compute the
test-statistic tk,j corresponding to the jth pair of SNPs, for l = 1, . . . ,m permute
randomly the trait values of the subjects and compute the corresponding tl,j val-
ues, compute the amount bj of tl,j ≥ tk,j values and store the estimated marginal
empirical p-value bj+1

B+1
at the jth index of vector Vk. Force the monotonicity: Vk,j

is overwritten by Vk,j+1 whenever Vk,j+1 < Vk,j,∀k = 1, . . . , B,∀j = m− 1, . . . , 1.

5) Generation of the adjusted p-values vector P . This vector is again created empty
with a preallocated size of m and filled by performing a loop over the pairs
of SNPs. For j = 1, . . . ,m: compute the amount cj of Vk,j ≤ Wj values
(k = 1, . . . , B) and store the value cj+1

B+1
at the jth index of vector P . Force the

monotonicity of vector P : for j = 1, . . . ,m− 1 replace Pj+1 by Pj if Pj+1 < Pj.

Note that from a memory point of view, it is again best to implement the aforemen-
tioned algorithm in a slightly different way. The straightforward implementation im-
plies all Permutation vectors of Figure 3.14 to be in memory at the same time, requiring
O(Bm) memory. A memory of O(m) can be achieved by working columns by columns
in Figure 3.14 instead of rows by rows. This idea has been refined by Ge et al [39] to
avoid the double permutation procedure described above and make the algorithm faster.
The complexity of the classical implementation is indeed given by O(mB2 +m logm),
whereas the one of Ge’s implementation is given by O(mB logB+m logm). The draw-
back of working columns-by-columns is obviously that in-place permutation of the trait
values is not possible anymore.

92

Chapter 3 3.5 MinP

3.5.2 Ge’s implementation

The idea of this implementation is to avoid producing the embedded temporary sets
of B permutations (l = 1, . . . , B) from Figure 3.14 and as a consequence sidestep the
computation of the temporary tl,j values which is at the origin of the O(mB2) factor
in the complexity of the algorithm. To do so, the concept is to fill the Permutation
vectors B + 1, . . . , 2B from Figure 3.14 column by column instead of row by row and
use a single set t1,j, . . . , tB,j of test-statistics to estimate all p∗1,j, . . . , p∗B,j values of a
column, instead of B sets of test-statistics values as before.

This scheme does not on its own reduce the complexity, since it still implies B
comparisons to compute the amount bj of tl,j ≥ tk,j values in order to asses the mB raw
p∗k,j values, i.e. still O(mB2) operations. However, the idea can be refined by sorting
the t1,j, . . . , tB,j values, which takes only O(B logB) operations using the quicksort
algorithm. Let’s note ts1,j ≥ . . . ≥ tsB,j the result, which is obviously different from
one column to the other. From a programming point of view, working like this implies
to keep track of the actual index before sorting, to be able to tell which tsi,j value
corresponds to which permutation.

When there are no ties, the marginal empirical p-values are readily given by

p∗si,j =
i

B
∀i = 1, . . . , B (3.8)

When there are ties, the situation is a bit more complicated. Let’s organized the
values as follows:

ts11,j = . . . = ts1k1 ,j > ts21,j = . . . = ts2k2 ,j > . . . > tsA1,j = . . . = tsAkA ,j (3.9)

where A is the total amount of different values, k1 the amount of equals top values,
k2 the amount of equals second highest values and so on. In this case, the marginal
empirical p-values can be obtained by

p∗sa1,j = . . . = p∗saka,j =

∑a
x=1 kx
B

∀a = 1, . . . , A (3.10)

The detailed implementation can be found in [39] and also optimizes the memory
usage, to reach a space complexity of O(m + B). However, this algorithm would
produce a file with about 1012 results when performing a GWAIs. For this reason, we
propose Van Lishout’s implementation of minP, presented in the next section. This
algorithm is based on the now usual idea to compute only the top n adjusted p-
values, while still correcting for the m hypothesis tests performed. It can also be
considered as a single permutation version of minP, since it recycles the idea of Ge’s
implementation avoiding the double permutation algorithm. The main benefit of this
novelty is to reduce the memory usage, while the computing time complexity is still
given by O(mB logB +m logm).

93

Chapter 3 3.5 MinP

3.5.3 Van Lishout’s implementation

To save memory and also improve the computing time slightly, we propose Van Lishout’s
implementation of minP. It adapts Ge’s implementation of minP to produce only the
top n results. This contribution has not been published yet. Indeed, since maxT is
known to be faster than minP, our attention was focused on the former in this thesis
and finally lead to the new gammaMAXT algorithm. The following implementation
is basically just the result of applying the core idea of Van Lishout’s implementation
of maxT to the case of minP. Anyway, recycling the ideas of Ge’s implementation into
this algorithm requires some additional care and this is certainly worth describing in
details. Figure 3.15 illustrates the idea.

Real Data … … …

… … …

Permut. B+1 p*1,1 … p*1,n p*1,n+1 … p*1,m p*1,1 … p*1,n M1

… … … … … … … … … … …

Permut. 2B p*B,1 … p*B,n p*B,n+1 … p*B,m p*B,1 … p*B,n MB

… … …

p-values (*) p1 … pn pn+1 … pm p1 … pn

(a) Ge's minP (b) Van Lishout's minP

 (*) adjusted for m hypothesis tests

SNPi1
SNPj1
p*1

SNPin+1
SNPjn+1
p*n+1

SNPim
SNPjm
p*m

SNPin
SNPjn
p*n

SNPi1
SNPj1
p*1

SNPin
SNPjn
p*n

!"#$#

!"#$#!"#$#

!"#$#

!"#$#

!"#$#

!"#$#

!"#$# !"#$#

!"#$#!"#$#

!"#$#!"#$#

!"#$#

!"#$#

!"#$#

!"#%# !"#%# !"#%# !"#%# !"#%#!"#%#

Figure 3.15: Ge’s implementation of minP versus Van Lishout’s one. In Ge’s case,
marginal empirical p-values are computed for all pairs of SNPs (in the same way as
in Figure 3.2) and stored with the SNP names in the sorted Real data vector (p∗j ≤
p∗j+1,∀j = 1, . . . ,m− 1). In Van Lishout’s implementation, the same computations
are performed, but only the top n marginal empirical p-values and corresponding
SNP names are stored. In Ge’s implementation, the p∗i,j values are computed column
by column, from right to left, ∀j = m, . . . , 1. Each time, the p∗i,j values that are
smaller than the p∗i,j+1 ones are overwritten by the latter ∀i = 1, . . . , B and the
adjusted p-value pj is computed by aj+1

B+1
, where aj is the amount of p∗i,j ≤ p∗j

values. Note that the p∗1,j+1, . . . , p
∗
B,j+1 values can be removed from memory once

pj has been computed, ∀j = m − 1, . . . , 1. There are thus at most two columns
in memory at the same time. In Van Lishout’s implementation, in order to be
able to recycle Ge’s core idea, the p∗i,j values are also computed column by column,
from right to left ∀j = m, . . . , 1. However, each time, only the minimum Mi of the
[p∗i,n+1, . . . , p

∗
i,m] is computed and stored, ∀i = 1, . . . , B. Then, p∗i,n is replaced by

Mi whenever Mi < p∗i,n and again p∗i,j replaced by p∗i,j+1 whenever p∗i,j+1 < p∗i,j, ∀j =
n−1, . . . , 1. Finally, pj+1 is overwritten by pj whenever pj > pj+1, ∀j = 1 . . .m−1
in the classical case and ∀j = 1 . . . n − 1 in Van Lishout’s implementation. It is
easy to prove that the final p1, . . . , pn adjusted p-values are the same with both
implementations of minP.

94

Chapter 3 3.5 MinP

Van Lishout’s implementation of minP exploits ideas from the maxT section and
Ge’s idea to avoid the double permutation algorithm. The different steps are given by:

1) Generation of the sorted Real Data vector R. Beforehand, store B permutations
of the trait values. The R vector is created empty with a preallocated size of n and
initialized by performing a loop over the first n pairs of SNPs. For j = 1, . . . , n:
compute the marginal empirical p-value p∗j corresponding to the jth pair of SNPs8
and store an object containing p∗j and the names of the corresponding SNPs in Rj.
After this loop, use quicksort to sort the vector in increasing marginal empirical
p-values order. Then, perform a loop over the remainingm−n pairs of SNPs. For
j = n + 1, . . . ,m: compute the marginal empirical p-value p∗j corresponding to
the jth pair of SNPs. If it is lower than the value stored in Rn, overwrite Rn with
Rn−1. If it is also lower than the value stored in Rn−1, overwrite Rn−1 with Rn−2.
Continue this process until a lower value than p∗j is reached (or the beginning of
R). Then create a new object containing p∗j and the corresponding SNP names
and store it in the one but last visited cell of the R vector (or the first). Let’s
note p∗1 ≤ p∗2 ≤ . . . ≤ p∗m the marginal empirical p-values obtained after the loop
and (SNPl1, SNPr1), . . . , (SNPlm, SNPrm) the corresponding pairs of SNPs.

2) Generation of the Minimum vectorM . This vector is created with a preallocated
size of B + 1, initialized with 1’s9 and build up by performing a loop over the
pair of SNPs not belonging to the top n. For j = n+ 1, . . . ,m: create a vector T
of size B + 1 and construct it in three steps. First, for i = 1, . . . , B: set the trait
values to the ones of the ith permutation, compute the test-statistic value ti,j and
store an object (ti,j, i) in Ti. Second, compute the test-statistic tj corresponding
to the real data and store an object (tj, B + 1) in TB+1. Third, sort vector T in
decreasing test-statistics order using the quicksort algorithm. Once T has been
constructed, Ge’s idea from equations 3.8 and 3.10 can be recycled to update M .
First suppose that there are no ties. In this case, the marginal empirical p-value
associated to any element Tc is readily given by c

B+1
. The index i stored in Tc

gives us the element of M to which this marginal empirical p-value should be
compared to. If c

B+1
< Mi a new minimum has been found and Mi needs to

be overwritten by that minimum. Second, suppose that there are ties. In this
case, the marginal empirical p-value associated to any element Tc is given by c′

B+1
,

where c′ is the highest number for which the test-statistics stored in Tc and Tc′ are
equals. Since in practice, ties are possible, the best way to implement the update
of M in linear time is to loop over the element of T from the right to the left. In
this way, a variable can be initialized to B+1 and set to the index of the currently
visited cell of T if and only if this cell contains an higher test-statistic value than
its right neighbor. In this way, the variable always contains the correct numerator
of the marginal empirical p-value corresponding to the currently visited cell of T .

8 To obtain p∗j proceed in three steps. First, compute the test-statistic value tj corresponding to the
jth pair of SNPs on the real data and initialize a variable aj to 1. Second, for i = 1, . . . , B: set the
trait values to the ones of the ith permutation, compute ti,j and if ti,j ≥ tj increment the variable
aj by one. Third, divide aj by B + 1 to obtain p∗j . Note that in practice, for efficiency reasons, the
division does actually occur at the end of the algorithm. Conceptually, we wrote that it occurs here
in order to be able to call the content a (correctly defined) probability.

9 Note that in practice it is filled with B + 1 values, since the aforementioned division by B + 1 has
been postponed to the end of the algorithm.

95

Chapter 3 3.5 MinP

3) Generation of the adjusted p-values vector P . This vector is created empty with
a preallocated size of n. For j = n, . . . , 1: create a vector T of size B + 1 and
construct it in the exact same way as at step 2. Update the Minimum vector M
as in step 2. After that, count the amount aj of elements of M lower or equal
than Rj. The jth adjusted p-value is readily given by aj

B+1
. Finally, enforce the

monotonicity of P . For j = 1, . . . , n− 1: if Pj+1 < Pj overwrite Pj+1 by Pj.

Box 3.5. Van Lishout’s implementation of minP

(1) Generate B permutations of the trait values and store them in memory.

(2) If m < n set n = m. Create empty vector R of size n. For j = 1, . . . , n:

(a) Set the trait value to the original trait ones and compute tj.
(b) Define aj = 1. For i = 1, . . . , B: set the trait values to the ones of the

ith permutation, compute ti,j and if (ti,j ≥ tj) do aj++.
(c) Store an object (aj, SNP lj, SNP rj) in Rj. We note (Rj)1 the 1st element.

(3) Sort R by increasing aj values. After that, for j = n+ 1, . . . ,m do:

(a) Set the trait values to the original ones and compute tj.
(b) Define aj = 1. For i = 1, . . . , B: set the trait values to the ones of the

ith permutation, compute ti,j and if (ti,j ≥ tj) do aj++.
(c) If aj < (Rn)1 do {k = n ; while (k > 0 and aj < (Rk−1)1) do Rk = Rk−1

and k−− ; store an object (aj, SNP lj, SNP rj) in Rk.}

(4) Create a hash table containing an entry for each element of R.

(5) Create a vectorM of size B+1. Initialize it with (B+1)’s. For j = 1, . . . ,m:

(a) If the jth pair of SNPs is in the hash table, ignore steps (b) and (c).
(b) Create a vector T of size B + 1. For i = 1, . . . , B: set the trait values to

the ones of the ith permutation, compute ti,j and store an object (ti,j, i)
in Ti. Set the trait to the original values, compute tj and store an object
(tj, B+1) in TB+1. Sort T in decreasing test-statistics order.

(c) Set c = B+1. For p = B−1, . . . , 0: do {if ((Tp)1 6= (Tp+1)1) do c=p+1 ;
if (M(Tp)2 > c) do M(Tp)2 = c}.

(6) Create empty vector P of size n. For j = n, . . . , 1:

(a) Create a vector T of size B + 1. For i = 1, . . . , B: set the trait values to
the ones of the ith permutation, compute ti,j and store an object (ti,j, i)
in Ti. Set the trait to the original values, compute tj and store an object
(tj, B+1) in TB+1. Sort T in decreasing test-statistics order.

(b) Set c = B+1. For p = B−1, . . . , 0: do {if ((Tp)1 6= (Tp+1)1) do c=p+1 ;
if (M(Tp)2 > c) do M(Tp)2 = c}.

(c) Set aj = 0. For p = 1, . . . , B: if ((Mp)1 ≤ (Rj)1) do aj++. Set Pj = aj.

(7) For j = 1, . . . , n: divide Pj by B + 1. For j = 1, . . . , n − 1: replace Pj+1 by
Pj if Pj+1 < Pj.

96

Chapter 3 3.5 MinP

The final algorithm is given in Box 3.5 and is trivial to adapt for users interested
in performing a main effects analysis. This implementation needs only a minuscule
adaptation: at steps (2)(c) and (3)(c), an object (aj, SNPj) should now be stored
instead of the (aj, SNP lj, SNP rj) one. It comes without saying that the variable m
represents the number of SNPs here and not the number of pairs anymore. Similarly,
the code of Box 3.5 is easy to adapt for three-order interactions: at step (2)(c) and
(3)(c), an object (aj, SNP lj, SNPmj, SNP rj) should be stored instead of the (aj, SNP lj,
SNP rj) one and m now represents the number of triplets of SNPs.

97

Chapter 3 3.6 Discussion

3.6 Discussion

This chapter contains the two main contributions of this PhD thesis: Van Lishout’s im-
plementation of maxT and gammaMAXT. The figures from this chapter are not taken
from the literature, they are all original10. All algorithms have been described in the
context of GWAIs. However, the proposed algorithms and especially gammaMAXT,
offer a general significance assessment and multiple testing approach, applicable to any
context that requires performing hundreds of thousands of tests. It offers new per-
spectives for fast and efficient permutation-based significance assessment in large-scale
(integrated) omics studies.

The reader may be wondering why there is no gammaMINP contribution, similar
to the gammaMAXT one. There are several issues in adapting the gammaMAXT idea
to the minP case. The probably most obvious one is that the minimum cannot follow a
gamma distribution. Indeed, in the context of maxT, test-statistic values are sampled
and supposed to follow a mixture distribution whose tail is modeled by a shifted gamma
distribution. This idea works well because the test-statistic are expressed on continuous
scale. In the case of minP, the sampled values would be the marginal empirical p-values
instead of test-statistics. Since marginal empirical p-values are expressed as multiples
of 1

B+1
, there are in fact only B+ 1 possible values and the scale is now a discrete one.

This obviously requires a different approach than what was done in the context of the
gammaMAXT algorithm.

In Chapters 2 and 3, mbmdr-4.4.1.out is mostly presented in a basic setting, where
the user investigates all available pairs of SNPs. However, the software also contains
nice options to do customized analysis:

• The -f option allows users to restrain the attention to the pairs composed of
exactly one marker from the given comma-separated list of marker names and
one marker that is not in this list. This option is particularly useful for instance
if the users wants to perform a GxE analysis. By passing the names of the
environmental factors as argument to this option, the software automatically
investigates all possible combination of one SNP and one environmental factor.

• The -F option is similar to the -f one, except that the markers are split into two
input files. The software analyzes only the pairs composed of exactly one marker
from the first input file and one marker from the second one. This option is
useful for instance when we test SNPs from two different genes, we usually need
to assess only intragenic associations and do not need intergenic ones.

• The -e and -E options allows to ignore some markers in the analysis, by either
passing their names in a comma-separated list (-e option) or a file containing
one marker name per line (-E option). This enables users to work with one big
file containing all the available information and remove some information when
doing some particular analysis. For instance, ignore the environmental factors
for a while.

10 Except Figure 3.1 which is obviously just an illustrative picture

98

Chapter 3 3.6 Discussion

• The -k and -K options are the mirror options from the -E and -E ones. This time,
the users indicates the markers that he wants to keep instead of the ones he ones
to get rid of. This option is not necessary from a conceptual point of view, but
useful in practice to avoid long comma-separated lists in some scenarios.

• The -s option allows to perform the second stage of a two-stage analysis. The
idea is to run a first analysis as usual without taking care of the fact that a second
stage is planned. Then, once this first analysis is finished, use the output file that
has been obtained as a list of interesting pairs of SNPs to investigate in the second
round. The second stage can then be performed on another dataset, enclosing the
same SNPs and environmental factors as at stage one, but containing data that is
independent from the first file (for instance data coming from another hospital).
This strategy is in fact called a discovery-replication analysis and is described in
more details in Chapter 4. The -s option allows to pass the output file from the
first stage as argument when performing the second stage. At stage two, only the
pairs of SNPs included in the output file from stage one are investigated. Since
the amount of pairs of SNPs remaining at stage two is typically very low, this
stage is very quick from a computing time point of view, allowing to use more
advanced algorithms like the ones presented in the next chapter.

Note also that the software contains automatic procedures to control the data in-
tegrity and if necessary correct it. For instance, a SNP with no variation at all could
lead to a degenerated HLO matrix containing only a single group of individuals. To
avoid this, such SNPs are detected just after the reading of the data is done and
removed from the list of SNPs to investigate. Indeed, a variable with no variation
at all cannot provide any information on the disease. Removing such variables from
scratch allows to consider in the rest of the software that such a scenario cannot occur,
facilitating the optimization of the source code.

99

Chapter 4

Population stratification and covariate
adjustment

4.1 Outline

The algorithms proposed so far have been evaluated and discussed in the absence of
population stratification. The latter refers to genetic similarities between individuals on
the basis of shared genetic ancestry. This leads to a situation in which the population
of interest includes subgroups of individuals that are on average more related to each
other than to other members of the wider population [4]. Population stratification is
in fact just a particular case of a confounding factor, as illustrated in Figure 4.1.

!"#$"%#&'() *+,'-,')

./0",%(')"$)+#1'(',1)

Figure 4.1: A confounder is correlated with the exposure of interest and is a risk
factor even for the people that are not exposed by the exposure of interest. In
the case of population stratification, the exposure of interest is the genotype. It is
correlated with the confounder because both are correlated with ethnicity. If noth-
ing is done to correct for population stratification, the genotype can be incorrectly
regarded as associated with risk of disease.

The three conditions for a factor to be a confounder are the following:

• The confounder should associate with exposure, i.e. it should have imbalance
distribution between the exposed and the non-exposed groups. For instance, age
is a confounder if the distribution of age differs between exposed and non-exposed
subjects.

• The confounding variable should be an independent risk factor for disease of
interest. This inherent association must be present in both the exposed and the
non-exposed groups.

100

Chapter 4 4.1 Outline

• The association of confounder and disease should not be resulted via exposure,
i.e. this association should not be an intermediate pathway relation between
exposure and outcome.

If any of these three conditions is not satisfied, the mixing effect with exposure will
not occur and the third variable is no longer a confounder. Figure 4.2 gives an example
of how ignoring this issue can create an association between genetics and disease, even
on simulated data clearly containing no such association.

AA Aa aa AA Aa aa

BB BB

Bb Bb

bb bb

SNPlj

S
N
P
r
j

SNPlj

S
N
P
r
j

subjects having an odd subjects having an even

amount of minor alleles amount of minor alleles

!"#$

#%%$

!"#$

&"$

#'$

!"#$

()($

)##$

%"#$
"*+$

#+*$ &&#$

'()*+*(,-.+/0

'()*+*(,-.+/$!$

12134$

5$

667"#$ 087"#$

"#'$"%%$ &9#$ ##%$#%"$ &9#$

"97"#$ &87"#$

Figure 4.2: Suppose that a particular pair of SNPs has truly no effect on a disease,
but that the latter is more prevalent in subpopulation 1 than 2 (49% of the people
from subpopulation 1 are affected vs 25% in subpopulation 2, regardless of the
genotype). Suppose that the rate of people having an odd amount of minor alleles
is significantly lower in subpopulation 1 than 2 (59,5% vs 88,5%). Not taking the
confounder into account would wrongly lead to conclude that having an odd amount
of minor alleles decreases susceptibility to disease, since this is what is observed
globally (35% of the people having an odd amount of minor alleles are affected in
the dataset vs 44% for the people having an even amount).

101

Chapter 4 4.1 Outline

This example is in fact an instance of Simpson’s paradox [107]. In the context of
GWAS, robust methods exists to correct for population stratification [51, 4, 76, 119].
Furthermore, confounding can potentially be dealt with by choosing another design
than for instance case/control. Family-based strategies such as TDT (transmission
disequilibrium test) [111], SDT (sibship disequilibrium test) [52] and FBAT (family
based association test) [53] naturally guard against population stratification. In gen-
eral, the effect of population stratification is well understood in the context of main
effects, but not yet in the context of interactions [43]. In this prospect, mixed designs is
a particularly interesting path to investigate, for instance in multi-center studies that
selected different study designs [139].

In this thesis, we propose a new viewpoint. In Section 4.2, we introduce two new
algorithms called STRAT1 and STRAT2 to automatically correct for population strat-
ification in GWAIs. These algorithms are in fact more general, since they also correct
for any other unmeasured confounding factors. In Section 4.3, we propose methods to
handle known covariates (for instance age, gender, body mass index, ...) that may or
may not be linked with the disease (or outcome).

In Chapter 3, the performances of the different algorithms have been evaluated
on simulated data. In this chapter, taking the same approach would be problematic.
Indeed, there is an increasing evidence that populations can be differentiated from each
other by non-linear (rather than linear alone) genetic patterns [1]. Generating realistic
synthetic data is far from trivial, since inducing the situation of confounding implies
creating scenarios in which non-linear patterns are distributed differently between the
populations and at the same time generating different disease prevalence between the
populations. To our knowledge, no such tool exist and creating a simulation tool
ourselves would represent a research on its own, out of the scope of this PhD thesis.
Note that a method outside of the classic regression framework has been proposed in
[90], in the context of gene-gene interactions. However, the data is simulated based on
singular SNPs and differential genotype distributions (at a singular SNP level) between
populations. Hence, it does not take into account joint SNP patterns and multilocus
genotype distributions that may be different between populations.

For this reason, we validate the methods presented in this chapter on a real-life
dataset that we have already used intensively in our research group. Since the data
is well-known, sensible or insensible results should immediately be spotted. We use
extensive data of the international Inflammatory Bowel Disease Genetic Consortium
(IIBDGC) from 15 European countries typed on Immunochip. Inflammatory Bowel
Disease describes a group of disorders in which the intestines become inflamed, affecting
about 1 in 250 persons in Western Europe, North America and Australia. The data is
described in more details in Section 4.2.2.

102

Chapter 4 4.2 Correcting for unmeasured confounding factors

4.2 Correcting for unmeasured confounding factors

The root idea of the methods of this section is to adapt the maxT algorithm, to take
account of the fact that an association between some pairs of SNPs and the trait
may be confounded by unmeasured factors. As an example, suppose that no SNP
pair is truly linked with the disease (complete null hypothesis) and that some SNP
pairs are concerned with population stratification. The latter pairs will follow another
distribution on the observed data than on the permuted one (permuting the trait
values cuts the link between the confounder and the disease). As a consequence, the
test-statistics corresponding to the SNP pairs concerned with population stratification
will be higher on average on the observed data than on the permuted one, leading to
lower p-values than it should and an important increase of the FWER. A classical way
to handle such a situation in GWAs is to define an inflation factor λ, by which the
observed test statistics can be adjusted [25]. The inflation factor is test dependent and
defined by the ratio of the median of the empirically observed distribution of the test
statistic to the expected median in case of a 2df test[4, 141]. This idea can be adapted
to GWAIs and leads to the STRAT1 algorithm, which we describe in the next section.

4.2.1 STRAT1 algorithm

STRAT1 is a simple algorithm for correcting automatically for unmeasured confounding
factors. The basic idea is illustrated in Figure 4.3 and can be decomposed as:

1) Generation of the sorted Real Data vector R. This vector is created empty
with a preallocated size of m and filled by performing a loop over the pairs of
SNPs. For j = 1, . . . ,m: compute the test-statistic tj corresponding to the
jth pair of SNPs and store an object containing the computed test-statistic
and the names of the corresponding SNPs in Rj. After this loop, sort the
vector in decreasing test-statistic order using the quicksort algorithm. With-
out loss of generality, let’s note t1 ≥ t2 ≥ . . . ≥ tm these test-statistics and
(SNPl1, SNPr1), . . . , (SNPlm, SNPrm) the corresponding pairs of SNPs. Com-
pute the median M1 of the test-statistics stored in R.

2) Generation of the test-statistics Permutation vectors T1, . . . , TB, created empty
with a preallocated size of m and filled one by one. For i = 1, . . . , B: permute
randomly the trait values, without modifying the genotypes and perform a nested
loop over the pairs of SNPs. For j = 1, . . . ,m: compute the test-statistic ti,j
corresponding to the jth pair of SNPs and store it at the jth index of the Ti
vector. Compute the median M2 of all the numbers stored in T1, . . . , TB. Force
the monotonicity of the rows: for i = 1, . . . , B perform a nested loop over the
pairs of SNPs. For j = m− 1, . . . , 1 replace Ti,j by Ti,j+1 if Ti,j < Ti,j+1.

3) Inflation of the values of the Real Data vector R. Compute the inflation factor
λ = M1

M2
. For j = 1, . . . ,m: divide the test-statistic value tj stored in Rj by λ.

4) Generation of the adjusted p-values vector P . This vector is again created empty
with a preallocated size of m and filled by performing a loop over the pairs of
SNPs. For j = 1, . . . ,m: compute the amount aj of Ti,j ≥ tj values (i = 1, . . . , B)
and store the value aj+1

B+1
at the jth index of vector P . Force the monotonicity of

vector P : for j = 1, . . . ,m− 1 replace Pj+1 by Pj if Pj+1 < Pj.

103

Chapter 4 4.2 Correcting for unmeasured confounding factors

Real Data …

…

Permut. 1 t1,1 … t1,m

… … … …

Permut. B tB,1 … tB,m

…

p1 … pmadjusted p-values

SNP
l1

SNP
r1

t
1
/λ

SNP
lm

SNP
rm

t
m
/λ

!"#$#!"#$#

!"#$#

!"#$#!"#$#

!"#$#

Figure 4.3: The basic idea of STRAT1 is the same as the one of the maxT algorithm
described in Figure 3.5, except that the observed test-statistic values from the Real
data vector are divided by the inflation factor λ. The latter is computed as M1

M2
,

where M1 is the median of all the observed test-statistic values t1, . . . , tm and M2

the median of all the test values obtained for the B permutations t1,1, . . . , tB,m
(before the monotonicity enforcing step illustrated by green arrows was applied).

This basic idea is very straightforward. Nonetheless, some ameliorations need to
be made to this initial idea, to make it work in practice, as we will motivate next:

1) In the previous chapter, we showed that MB-MDR final test statistics follow a
mixture distribution of a shifted gamma distribution and a point mass at zero.
Furthermore, Table 3.7 has shown that in practice, the parameter π denoting the
proportion of strictly positive values is less than 50%. Hence, the zero values
represent the majority of the test-statistic values. As a consequence, the median
M2 is equal to zero and the inflation factor cannot be defined by M1

M2
, since this

would imply a division by zero. The solution proposed in STRAT1 is to consider
only the strictly positive numbers when computing M1 and M2.

2) The purpose of Van Lishout’s implementation of maxT is mainly to save memory
(to reach a memory usage independent from the number of SNPs instead of
raising quadratically with it). Here, this idea cannot be recycled since all test-
statistic values need to be stored in order to compute the median M2. Analyzing
a dataset composed of ten thousand SNPs would for instance require hundreds
of Gigabytes. The solution proposed in STRAT1 is to use the algorithm for fast
estimation of the median in linear time and constant space, as proposed in [30].
This algorithm is given in box 4.1.

104

Chapter 4 4.2 Correcting for unmeasured confounding factors

Box 4.1. Fast Algorithm for Median Estimation

(1) Initialize M2 to the first available value.

(2) Initialize step to M2

2
(or to a predefined minimal initial step b if M2

2
< b)

(3) For each new value v:

i. If M2 > v do (M2 = M2− step) else if M2 < v do (M2 = M2 + step)
ii. If (|M2 − v| < step) do (step = step/2)

3) Computing time is the major issue, as was the case for the classical maxT imple-
mentation on which the basic idea of STRAT1 is based. The solution proposed in
STRAT1 is to restrain our attention to the top one million pairs of SNPs leading
to a strictly positive test-statistic value on the real data (if there are less than
one million, focus on all available such pairs). This idea is similar to filtering the
data, in order to focus on the most promizing pairs of SNPs. The drawback is
that such a filtering increases the false positive rate significantly when the amount
of dropped pairs is important, as discussed in details in the next paragraph.

The final version of STRAT1 is reported in Box 4.2. and illustrated in Figure 4.4.

Box 4.2. STRAT1 algorithm
(1) Create a vector R. For j = 1, . . . ,m: compute tj and if tj > 0 push an object

(tj, SNP lj, SNP rj) at the back of R. We note (Rk)1 the kth test-statistic.

(2) Sort R in decreasing test-statistics order using the quicksort algorithm. Resize
R in order to keep only the top 106 elements. Let f be the final size of R.

(3) Find the median M1. If f is an odd number, M1 is the test-statistic stored
in Rd f

2
e, otherwise the average of the test-statistics stored in R f

2
and R f

2
+1.

(4) Generate B permutations of the trait values and store them in memory.

(5) Find the median M2. For j = 1, . . . , f : do a nested loop over the permuta-
tions. For i = 1, . . . , B: set the trait values to the ones of the ith permutation,
compute ti,j and if ti,j ≥ 0 update M2: if ti,j is the first encountered value
execute steps (1) and (2) of Box 4.1, otherwise step (3).

(6) Define λ = M1

M2
. For j = 1, . . . , f : divide (Rj)1 by λ.

(7) Create empty vectors T and P of size f . Fill P with 1’s. For i = 1, . . . , B:

(a) Set the trait values to the ones of the ith permutation.
(b) For j = 1, . . . , f : compute ti,j and store it in Tj.
(c) For j = f − 1, . . . , 1: replace Tj by Tj+1 if Tj < Tj+1.
(d) For j = 1, . . . , f : increment Pj by one if Tj ≥ (Rj)1.

(8) For j = 1, . . . , f : divide Pj by B + 1. For j = 1, . . . , f − 1: replace Pj+1 by
Pj if Pj+1 < Pj.

105

Chapter 4 4.2 Correcting for unmeasured confounding factors

Real Data … …

…

Permut. 1 t1,1 … t1,f

… … … …

Permut. B tB,1 … tB,f

…

p1 … pfadjusted p-values

SNP
l1

SNP
r1

t
1
/λ

SNP
lf

SNP
rf

t
r
/λ

!"#$#!"#$#

!"#$#

!"#$#!"#$#

!"#$#

SNP
lf+1

SNP
rf+1

SNP
lm

SNP
rm

Figure 4.4: In the practical implementation of STRAT1, test-statistics are com-
puted for all pairs of SNPs, but only the strictly positive ones are stored in the
sorted Real Data vector, whose size is limited to one million elements. Let f be
the final size of the vector. The pairs of SNPs that are given up are not stored and
are represented in red in the Figure. These pairs of SNPs are not considered at all
in the permutation vectors anymore, in opposition to the maxT algorithm.

In maxT and gammaMAXT, the multiple testing problem is handled properly, in
the sense that the test statistics of all SNP pairs are taken into account both while
constructing the Real data vector and each of the Permutation ones (directly or by
prediction). This is also the case for the basic idea of STRAT1, but not for the prac-
tical implementation resulting from the three aforementioned ameliorations, required
to make the algorithm work in practice in our particular context. Indeed, in the latter
case, all pairs of SNPs are still considered while constructing the Real data vector, but
only the ones leading to a strictly positive test-statistic value, limited to a maximum
of one million pairs of SNPs, are kept. The pairs that have been dropped are no longer
considered when constructing the Permutation vectors. As a consequence, when the
complete null hypothesis is true and there are no unmeasured confounding factors, the
maximums of the Permutation vectors may be smaller than the maximum of the Real
data vector, just because the former vectors are smaller than the latter one and all
test-statistics may follow the same distribution. This is expected to lead to an increase
of the false-positive rate. We show in section 4.2.2 that the practical implementation
of the STRAT2 algorithm may also suffer from an increase of the false-positive rate for
similar reasons. A practical way to improve the situation is proposed in Section 4.2.2,
in the real-life data analysis used to validate the STRAT2 algorithm.

106

Chapter 4 4.2 Correcting for unmeasured confounding factors

The work on STRAT1 and STRAT2 has been accepted for poster presentation at
the ASHG 2013 conference in Boston [121]. This work was done just before the work
on the gammaMAXT algorithm started. This is the practical reason why no ideas
from the latter has been injected into STRAT1 and STRAT2, in order to try to speed
up the algorithm while simultaneously controlling the FWER. However, there is also a
theoretical reason. Indeed, the core idea of gammaMAXT is to compute only a small
percentage of the test-statistics and predict what would happen if all were actually
computed, based on the fact that they follow a mixture distribution that can be fitted.
In the context of unmeasured confounding factors, the test-statistics follow different
distributions and the whole idea falls apart.

In STRAT1, the same inflation factor is used for all pairs of SNPs, despite the fact
that they may all follow different distributions. In this sense, STRAT1 is a bit too
basic, consisting simply in increasing all p-values in order to reduce the false-positive
rate, at the cost of some power loss. This algorithm is therefore not interesting to
test on the real-life data, since it would lead to the exact same ranking as the maxT
algorithm (only the p-values would be different). The idea of STRAT2 is to use an
inflation factor that is specific to each pair of SNPs tested for association, a similar
idea as what was done in the context of GWAS [132]. Due to the individual inflation
factors, this algorithm may produce a very different ranking of the pairs of SNPs than
maxT and is thus very interesting to test on real-life data.

4.2.2 STRAT2 algorithm

STRAT2 is an algorithm for correcting automatically for unmeasured confounding
factors, taking into account the fact that the pairs of SNPs may follow different dis-
tributions and require specific inflation factors. The basic idea is illustrated in Figure
4.5 and can be decomposed as:

1) Generation of the sorted Real Data vector R. This vector is created empty
with a preallocated size of m and filled by performing a loop over the pairs of
SNPs. For j = 1, . . . ,m: compute the test-statistic tj corresponding to the
jth pair of SNPs and store an object containing the computed test-statistic
and the names of the corresponding SNPs in Rj. After this loop, sort the
vector in decreasing test-statistic order using the quicksort algorithm. With-
out loss of generality, let’s note t1 ≥ t2 ≥ . . . ≥ tm these test-statistics and
(SNPl1, SNPr1), . . . , (SNPlm, SNPrm) the corresponding pairs of SNPs. Com-
pute the median M1 of the test-statistics stored in R.

2) Generation of the test-statistics Permutation vectors T1, . . . , TB. These vectors
are created empty with a preallocated size of m and filled one by one. For i =
1, . . . , B: permute randomly the trait values of the subjects, without modifying
their genotypes and perform a nested loop over the pairs of SNPs. For j =
1, . . . ,m: compute the test-statistic ti,j corresponding to the jth pair of SNPs and
store it at the jth index of the Ti vector. For j = 1, . . . ,m: compute the median
M2,j of the test-statistics stored in (T1)j, . . . , (TB)j. Force the monotonicity of
the rows: for i = 1, . . . , B perform a nested loop over the pairs of SNPs. For
j = m− 1, . . . , 1 replace Ti,j by Ti,j+1 if Ti,j < Ti,j+1.

107

Chapter 4 4.2 Correcting for unmeasured confounding factors

Real Data …

…

Permut. 1 t1,1 … t1,m

… … … …

Permut. B tB,1 … tB,m

…

p1 … pmadjusted p-values

SNP
l1

SNP
r1

t
1
/λ
1

SNP
lm

SNP
rm

t
m
/λ
m

!"#$#!"#$#

!"#$#

!"#$#!"#$#

!"#$#

Figure 4.5: The basic idea of STRAT2 is the same as the one of STRAT1,
except that the observed test-statistic values from the Real data vector are di-
vided by individual inflation factors λ1, . . . , λm. The latter are obtained by
λj = M1

M2,j
, ∀j = 1 . . .m, where M1 is still the median of all the observed test-

statistic values t1, . . . , tm andM2,j the median of the test-statistic computed on the
jth pair t1,j, . . . , tB,j (before the monotonicity enforcing step illustrated by green
arrows was applied).

3) Inflation of the values of the Real Data vector R. For j = 1, . . . ,m: divide the
test-statistic value tj stored in Rj by λj = M1

M2,j
.

4) Generation of the adjusted p-values vector P . This vector is again created empty
with a preallocated size of m and filled by performing a loop over the pairs of
SNPs. For j = 1, . . . ,m: compute the amount aj of Ti,j ≥ tj values (i = 1, . . . , B)
and store the value aj+1

B+1
at the jth index of vector P . Force the monotonicity of

vector P : for j = 1, . . . ,m− 1 replace Pj+1 by Pj if Pj+1 < Pj.

Several accommodations are again needed to make this algorithm work in practice:

1) Since zero test-statistics represents the majority in practice, the medians M2,j

are all equal to zero and the inflation factors cannot be defined by M1

M2,j
, since this

would imply a division by zero. The solution proposed in STRAT2 is to consider
only the strictly positive numbers when computing the M1 and M2,j values.

108

Chapter 4 4.2 Correcting for unmeasured confounding factors

2) For the same reason as for STRAT1, the ideas of Van Lishout’s implementation
of maxT to save memory cannot be recycled here since all test-statistic values
need to be stored in order to compute the medians M2,j. The solution is again to
use the algorithm for fast estimation of the median in linear time and constant
space proposed in [30] and given in box 4.1.

3) Computing time remains a concern and the solution proposed in STRAT2 is still
to restrain our attention to the top one million pairs of SNPs leading to a strictly
positive test-statistic value on the real data. The drawback is again that such a
filtering may increase the false positive rate. However, this issue is not as strong
as for STRAT1, since the inflation factors are now test specific. This implies that
pairs of SNPs leading to higher test-statistics on average because the median of
their distribution under the null is significantly higher than the average one, are
significantly more inflated. As a consequence, the p-value is higher than before
and the FWER goes down. An important remark is that the final ordering of the
pairs of SNPs is different in STRAT2 than STRAT1. This method has thus the
potential to find hits that not been found by gammaMAXT. STRAT2 is a better
choice to handle unmeasured confounding factors than STRAT1.

The final version of STRAT2 is reported in Box 4.3. and follows the same scheme
as in Figure 4.4, except that individual inflation factors are now used.

Box 4.3. STRAT2 algorithm

(1) Create a vector R. For j = 1, . . . ,m: compute tj and if tj > 0 push an object
(tj, SNP lj, SNP rj) at the back of R. We note (Rk)1 the kth test-statistic.

(2) Sort R in decreasing test-statistics order using the quicksort algorithm. If size
f of R is higher than 106, resize R in order to keep only the top 106 elements.

(3) Find the median M1. If f is an odd number, M1 is the test-statistic stored
in Rd f

2
e, otherwise the average of the test-statistics stored in R f

2
and R f

2
+1.

(4) Generate B permutations of the trait values and store them in memory.

(5) For j = 1, . . . , f : find the median M2,j by doing a nested loop over the
permutations. For i = 1, . . . , B: set the trait values to the ones of the ith
permutation, compute ti,j and if ti,j > 0 update M2,j: if M2,j has not been
initialized yet execute steps (1) and (2) of Box 4.1, otherwise step (3). When
the loop over the permutations is finished, divide (Rj)1 by λj = M1

M2,j
.

(6) Create empty vectors T and P of size f . Fill P with 1’s. For i = 1, . . . , B:

(a) Set the trait values to the ones of the ith permutation.
(b) For j = 1, . . . , f : compute ti,j and store it in Tj.
(c) For j = f − 1, . . . , 1: replace Tj by Tj+1 if Tj < Tj+1.
(d) For j = 1, . . . , f : increment Pj by one if Tj ≥ (Rj)1.

(7) For j = 1, . . . , f : divide Pj by B + 1. For j = 1, . . . , f − 1: replace Pj+1 by
Pj if Pj+1 < Pj.

109

Chapter 4 4.2 Correcting for unmeasured confounding factors

Real-life data analysis

We use extensive data of the international Inflammatory Bowel Disease (IBD) Genetic
Consortium from 15 European countries typed on Immunochip. In this chapter we
focus on case-control data on Crohn’s disease (CD), which is one of the major types of
IBD. For a full description of the data we refer to [44]. In summary, the initial cohort
consists of 52,406 subjects for which 156,499 SNPs are available. The following quality
control (QC) steps have been performed:

1) Removing subjects with missing phenotypes.

2) Keeping only the SNPs satisfying HWE (controls) > 0.0001, MAF>0.05 and call
rate>98%.

3) LD-pruning (SVS 8.3.1): window size of 50 SNPs, window increment 5 SNP, LD
r2 threshold 0.75 except for chromosome 6, where 0.35 is used.

The justification of all the aforementioned data handling is given in [44]. At the end
of this procedure, we end up with 18,277 cases and 34,050 controls, for which 34,486
SNPs are available.

Analyzing this dataset with STRAT2 would take years. In fact, the software auto-
matically prevents users to start runs with STRAT1 or STRAT2 involving more than
one hundred million of SNP pairs1. For this reason, we implemented a two-stage anal-
ysis approach, using a random partition of the initial cohort, hereafter referred to as
discovery and replication datasets. The partition of the data has been generated within
the epistasis working group of the IIBDGC [Zhi Wei - New Jersey Institute of Technol-
ogy, USA - unpublished]. The discovery data consists of 25,787 subjects (9,125 cases
and 16,662 controls) and the replication one of 26,490 persons (9,102 cases and 17,388
controls). The first stage consists of analyzing the former with the parallel workflow
of the gammaMAXT algorithm. This analysis can be performed within a few hours
on a cluster. In this way, we have filtered the pairs of SNPs, i.e. obtained a list of
the thousand most promising ones. At stage two, we use the STRAT2 algorithm on
the replication data, but focus on these thousand SNP pairs only (using the -s option).
The second stage takes about ten minutes.

Note that the fact that the replication dataset contains data that is independent
from the discovery data, guarantees that the multiple-testing problem is handled prop-
erly. Undeniably, using the same datasets at both stages stage would lead to an impor-
tant number of false-positives, since the true null distribution could not been assessed
anymore. Indeed, since the data from stage two would be the same as the one from
stage one, the pairs of SNPs would still be those producing the highest test-statistic
values and would thus only allow to assess the head of the null distribution, not the
whole distribution.

The analysis of the discovery dataset with the parallel workflow of the gamma-
MAXT algorithm at stage one, already leads to a substantial reduction of the SNP
pairs to investigate. Indeed, only 50 SNP pairs lead to a multiple-testing corrected p-
value below 5%, out of the 594 624 855 candidates that were considered. These results
are presented in Table 4.1.

1 The total number of SNP pairs is here equal to 34486×34485
2 = 594 624 855

110

Chapter 4 4.2 Correcting for unmeasured confounding factors

Table 4.1: SNP pairs having a p-value < 0.05 on the discovery data with gammaMAXT

Rank first SNP second SNP stat p-value
1 imm_1_67478162 imm_1_67502643 153.33 0.001
2 imm_1_67476695 imm_1_67502643 141.301 0.001
3 imm_16_49402777 rs6500336 107.753 0.001
4 imm_16_49402274 rs6500336 105.335 0.001
5 imm_16_49317481 imm_16_49380465 96.862 0.001
6 imm_16_49317481 imm_16_49399698 84.014 0.001
7 rs6500336 rs17227589 78.187 0.001
8 imm_1_67453887 imm_1_67476695 72.289 0.001
9 imm_1_67439879 imm_1_67453887 71.721 0.001
10 imm_12_38780396 imm_12_38919755 70.505 0.001
11 rs3093664 rs17207986 69.699 0.001
12 rs3749946 rs17207986 67.751 0.001
13 imm_12_38780396 imm_12_38836591 67.155 0.001
14 imm_5_40528991 imm_5_40654985 65.849 0.001
15 rs3749946 rs3093664 65.563 0.001
16 rs12445755 rs16948451 64.791 0.001
17 rs17207986 rs206018 63.094 0.001
18 rs17207986 rs495089 61.646 0.001
19 imm_1_67441558 imm_1_67453887 60.955 0.001
20 imm_16_49251512 imm_16_49262042 58.909 0.001
21 rs2442719 rs3131621 58.154 0.001
22 imm_16_49399698 rs6500336 57.989 0.001
23 imm_5_150363823 imm_5_150367194 57.626 0.001
24 imm_5_40465299 imm_5_40477475 57.489 0.001
25 imm_16_49317481 imm_16_49400462 57.188 0.001
26 rs2243621 rs17207986 57.101 0.001
27 rs2073048 rs2858332 56.997 0.001
28 imm_12_38780396 imm_12_38887209 56.317 0.001
29 imm_16_49399698 imm_16_49404333 56.214 0.001
30 imm_16_49380465 rs6500336 56.123 0.001
31 imm_1_67399848 imm_1_67439879 54.670 0.001
32 imm_16_49403663 imm_16_49404333 53.623 0.001
33 rs17207986 rs2256594 53.292 0.002
34 imm_5_40438290 imm_5_40477475 52.050 0.004
35 rs2273017 rs2187823 51.657 0.004
36 rs2524082 rs2156875 51.197 0.006
37 rs17207986 rs13207945 51.059 0.006
38 imm_12_38780396 imm_12_38859741 51.047 0.006
39 imm_1_67442201 imm_1_67502643 50.626 0.007
40 rs3130286 rs206018 50.624 0.007
41 imm_20_44041068 imm_20_44044144 50.212 0.007
42 rs9673419 imm_16_49262042 50.189 0.007
43 rs9784876 rs241407 49.947 0.007
44 rs3749946 rs2273017 48.996 0.011
45 rs130075 rs3868078 48.883 0.013
46 rs4386816 rs3130286 48.511 0.021
47 imm_3_46393693 imm_3_46438428 48.439 0.021
48 rs130075 rs6905036 47.593 0.028
49 rs4386816 rs17207986 46.872 0.041
50 imm_12_38780396 imm_12_38850209 46.756 0.048

111

Chapter 4 4.2 Correcting for unmeasured confounding factors

The analysis of the replication dataset with STRAT2, focusing on the top thousand
pairs of SNPs identified at stage one, gives rise to a list of 65 significant SNP pairs,
out of which 21 belong to the aforementioned 50 ones. Table 4.2 tabulates these 21
replicated results. A comparison and discussion of the number of significant pairs of
SNPs observed in the different experiments of this chapter is reported to the discussion
section. The results are indeed easier to interpret, once all figures are available.

Table 4.2: SNP pairs having a p-value < 0.05 on the discovery and replication data,
using gammaMAXT on the discovery data and STRAT2 on the replication one.

Rank first SNP second SNP repl. stat repl. p-value
1 rs2524082 rs2156875 77.613 0.001
2 rs130075 rs3868078 68.289 0.001
3 imm_16_49402777 rs6500336 60.676 0.001
4 imm_1_67476695 imm_1_67502643 58.509 0.001
5 imm_16_49317481 imm_16_49380465 54.236 0.001
6 rs2273017 rs2187823 51.176 0.001
7 imm_16_49251512 imm_16_49262042 49.111 0.001
8 rs9673419 imm_16_49262042 48.630 0.001
9 imm_5_40438290 imm_5_40477475 46.189 0.001
10 imm_1_67478162 imm_1_67502643 43.694 0.001
11 rs3749946 rs3093664 43.305 0.001
12 imm_5_40465299 imm_5_40477475 37.001 0.001
13 imm_12_38780396 imm_12_38887209 36.641 0.001
14 imm_1_67439879 imm_1_67453887 36.213 0.001
15 imm_16_49399698 imm_16_49404333 35.806 0.001
16 imm_16_49317481 imm_16_49400462 34.720 0.001
17 rs9784876 rs241407 28.055 0.001
18 imm_12_38780396 imm_12_38836591 27.973 0.001
19 imm_16_49317481 imm_16_49399698 22.671 0.011
20 imm_16_49399698 rs6500336 21.486 0.017
21 imm_5_40528991 imm_5_40654985 21.014 0.021

Since the IBD data is from a consortium (a compilation of data from different hos-
pitals and institutions in different countries), population structure is bound to occur.
Hence, the fact that an automatic correction for unmeasured confounding factors re-
duces the list of relevant pairs of SNPs (from 50 to 21) is not surprising. Situations
like the one depicted in Figure 4.2 are likely to be present in the dataset.

To investigate the consistency of the method, we perform another experiment. It
consists in performing the exact same two-stage analysis as before, but in the other
direction, i.e. use the gammaMAXT algorithm on the replication dataset and then the
STRAT2 one on the discovery dataset (by focusing on the top thousand SNP pairs
identified by the gammaMAXT). In this case, 216 SNP pairs lead to a multiple-testing
corrected p-value below 5% at stage one (long results not shown, but recall that an
overall interpretation of the number of results in the different analysis of this chapter is
postponed to the discussion section). Note that 31 out of these 216 SNP pairs overlap
with the 50 pairs identified on the discovery data with the gammaMAXT algorithm.

112

Chapter 4 4.2 Correcting for unmeasured confounding factors

The analysis of the discovery dataset with STRAT2, focusing on the top thousand
SNP pairs obtained at stage one, gives rise to a short list of 9 significant SNP pairs.
All these pairs belong to the aforementioned 216 ones and are reported in Table 4.3.

Table 4.3: SNP pairs having a p-value < 0.05 on the discovery and replication data,
using gammaMAXT on the replication data and STRAT2 on the discovery one.

Rank first SNP second SNP repl. stat repl. p-value
1 imm_1_67478162 imm_1_67502643 62.701 0.001
2 imm_1_67476695 imm_1_67502643 58.803 0.001
3 imm_16_49317481 imm_16_49380465 41.963 0.001
4 imm_16_49402777 rs6500336 34.633 0.001
5 imm_16_49317481 imm_16_49399698 28.067 0.002
6 imm_5_40528991 imm_5_40654985 26.973 0.004
7 imm_16_49399698 imm_16_49404333 24.274 0.007
8 imm_12_38780396 imm_12_38887209 23.336 0.010
9 rs2524082 rs2156875 22.879 0.015

These results are particularly interesting. Indeed, all SNP pairs from Table 4.3 are
also in Table 4.2. Furthermore, the SNP pairs appearing in the former table, tend
to reach a high ranking in the latter. These results are therefore very consistent and
interesting to investigate from a biological point of view. In the next section, we propose
methods to correct for covariates, in order to get rid of potential SNP pairs that would
just be driven by the available covariates. Therefore, we postpone the follow up of the
real-life analysis to after the presentation of these methods.

113

Chapter 4 4.3 Correcting for available covariates

4.3 Correcting for available covariates

In GWAS, principal component (PC) on SNPs are used as corrective variables to adjust
genetic association tests for confounding due to genetic ancestry [95]. When aiming to
adjust tests used within MB-MDR for population stratification in this sense, a novel
implementation that allows correcting for known covariates is needed. Obviously, such
an implementation has a wider applicability and not necessarily restricts to confounding
covariates. In the epigenetics context, when it goes beyond ethnicity, then one considers
PCs as continuous axes of genetic information that capture “latent structure” [77]. In
general, the data contains more information about the subjects than just the SNPs and
the outcome, as was initially depicted on Figure 2.2. Standard available covariates are
for instance gender, age of onset and some disease-related attributes (for instance, lung
volume for Infant Respiratory Distress Syndrome). These covariates can be expressed
on a quantitative or qualitative scale. Usually, it is not known if these covariates
are associated to the disease or not. If not, taking them into account or not should
not change the final result significantly. In this thesis, we propose two methods for
correcting for available covariates in MB-MDR: residuals-based correction and on-the-
fly correction. These methods are presented in the next two subsections.

4.3.1 Residuals-based correction

The idea of this method is to compute a new outcome variable r, based on the observed
one y (or the two observed ones in the survival case, i.e. the time and censoring) and
the k covariates x1, . . . , xk and run the analysis as usual on the dataset obtained by
replacing y with r.

Continuous trait

Linear regression [140] is used to fit a model to the data. In our context, when there
are S subjects, the aim is to fit the following model:

yi = β1xi1 + . . .+ βkxik + βk+1 + ε, ∀i = 1, . . . , S (4.1)

Intuitively, the idea is to draw a plane in a (k + 1)-dimensional space and update the
coordinate system according to this it. The residuals are the vertical distances between
the observations and the plane and can be used as a new outcome variable r. Finding
the β1, . . . , βk, βk+1 values that minimize the sum of squared residuals of equation 4.3
is a classical problem. In this thesis, we use the library alglib, containing a speedy
method called lrbuild solving this problem in O(Sk) time. Writing a code from scratch
to solve this task would not make any sense, since this function is called only once and
increases only the final computing time by about one second. The residuals can be
computed as

ri = yi − β1xi1 − . . .− βkxik − βk+1, ∀i = 1, . . . , S (4.2)

Binary trait

In case of a trait expressed on a binary scale, logistic regression leads to more accurate
results than a simple linear regression [35]. Intuitively, the idea is to force the predicted
yi values to be probabilities (i.e. the probability that the ith subjects is a case, given
its covariate values), whereas in classical regression they can take any real value.

114

Chapter 4 4.3 Correcting for available covariates

Mathematically, when there are S subjects, the aim is to fit the following model:

P (yi = 1) =
eβ1xi1+...+βkxik+βk+1

eβ1xi1+...+βkxik+βk+1 + 1
, ∀i = 1, . . . , S (4.3)

In this thesis, we use the function mnltrainh from the aforementioned alglib library
to solve this task quickly. The residuals can be computed as

ri = P (yi = 1)− eβ1xi1+...+βkxik+βk+1

eβ1xi1+...+βkxik+βk+1 + 1
, ∀i = 1, . . . , S (4.4)

Survival data

In the case of a trait expressed on a survival scale, let tj represent the unique times
and Hj the set of indexes i such that Yi = tj and Ci = 1. Let mj be the amount of
events at time j. The idea is to use Efron’s method (described in Section 2.4.2) and
consisting in maximizing the following equation

L(β) =
∏
j

∏
i∈Hj θi∏m−1

l=0 (
∑

i:Yi≥tj θi −
l
m

∑
i∈Hj θi)

(4.5)

where θj = eXjβ. To achieve this maximization, we can use the coxfit6 function
presented in Section 2.4.2. Recall that this function has been obtained by purifying
the C source code of the R function coxfit6, in order to make a customized library
out of it. The final function takes as arguments the time and censoring status of all
subjects (sorted in increasing time order) and the covariate matrix (containing one line
per individual and one column per covariate). It returns in particular the β vector that
maximizes equation 4.5.

In this thesis, we use the martingale residuals of the Cox model [116] as a new
outcome variable. These residuals can be interpreted, at each time t, as the difference
over [0, t] in the observed amount of events minus the expected amount given the Cox
model. The R function coxmart computes the martingale residuals and the source
code is fortunately again written in C. This function was added to our customized
Cox library in a similar way as the coxfit6 one, as described in Section 2.4.2. It takes
as arguments the time and censoring status of all subjects (sorted in increasing time
order), the score vector and some technical arguments. The score vector contains the
score of each individual and can be computed as

eβ1xi1+...+βkxik , ∀i = 1, . . . , S (4.6)

Real-life data analysis

To test the residuals-based correction method, we perform two different experiments.
First, we analyze the discovery and replication datasets from Section 4.2.2 with the
gammaMAXT algorithm, while performing a residuals-based correction of a covari-
ate: gender. Second, we propose an experiment to correct for confounding by shared
ancestry. The first analysis of the first experiment, consisting in analyzing the discov-
ery dataset using gammaMAXT with residuals-based correction of gender, leads to 50
significant SNP pairs, reported in Table 4.4.

115

Chapter 4 4.3 Correcting for available covariates

Table 4.4: SNP pairs having a p-value < 0.05 on the discovery data, using gamma-
MAXT with residuals-based correction of gender.

Rank first SNP second SNP stat p-value in Table 4.1
1 imm_1_67478162 imm_1_67502643 146.171 0.001 yes
2 imm_1_67476695 imm_1_67502643 133.786 0.001 yes
3 imm_16_49402777 rs6500336 113.038 0.001 yes
4 imm_16_49402274 rs6500336 107.681 0.001 yes
5 imm_16_49317481 imm_16_49380465 104.499 0.001 yes
6 imm_16_49317481 imm_16_49399698 91.579 0.001 yes
7 rs6500336 rs17227589 79.506 0.001 yes
8 imm_1_67439879 imm_1_67453887 70.893 0.001 yes
9 rs3093664 rs17207986 70.879 0.001 yes
10 imm_1_67453887 imm_1_67476695 70.571 0.001 yes
11 imm_12_38780396 imm_12_38919755 70.001 0.001 yes
12 rs3749946 rs17207986 69.628 0.001 yes
13 imm_16_49317481 imm_16_49400462 68.328 0.001 yes
14 rs3749946 rs3093664 67.357 0.001 yes
15 imm_12_38780396 imm_12_38836591 67.167 0.001 yes
16 imm_5_40528991 imm_5_40654985 66.753 0.001 yes
17 rs12445755 rs16948451 66.143 0.001 yes
18 rs17207986 rs206018 63.522 0.001 yes
19 imm_1_67441558 imm_1_67453887 62.812 0.001 yes
20 rs17207986 rs495089 61.758 0.001 yes
21 imm_16_49251512 imm_16_49262042 59.754 0.001 yes
22 rs2442719 rs3131621 58.288 0.001 yes
23 imm_16_49399698 imm_16_49404333 58.088 0.001 yes
24 imm_16_49399698 rs6500336 57.976 0.001 yes
25 imm_16_49380465 rs6500336 57.348 0.001 yes
26 imm_5_150363823 imm_5_150367194 57.228 0.001 yes
27 imm_5_40465299 imm_5_40477475 56.840 0.001 yes
28 imm_1_67399848 imm_1_67439879 56.590 0.001 yes
29 rs2243621 rs17207986 56.515 0.001 yes
30 imm_12_38780396 imm_12_38887209 56.380 0.001 yes
31 imm_16_49403663 imm_16_49404333 54.632 0.001 yes
32 rs17207986 rs2256594 53.595 0.002 yes
33 rs2073048 rs2858332 53.483 0.002 yes
34 imm_20_44041068 imm_20_44044144 52.476 0.006 yes
35 imm_12_38780396 imm_12_38859741 51.89 0.008 yes
36 rs2524082 rs2156875 51.701 0.010 yes
37 rs2273017 rs2187823 51.596 0.010 yes
38 rs17207986 rs13207945 51.247 0.011 yes
39 imm_5_40438290 imm_5_40477475 51.247 0.011 yes
40 rs3749946 rs2273017 50.493 0.014 yes
41 rs9784876 rs241407 50.447 0.014 yes
42 imm_1_67442201 imm_1_67502643 50.441 0.014 yes
43 rs130075 rs3868078 50.262 0.014 yes
44 rs9673419 imm_16_49262042 50.202 0.014 yes
45 rs130075 rs6905036 49.930 0.014 yes
46 rs3130286 rs206018 49.564 0.020 yes
47 rs2524082 rs3131621 48.713 0.023 no
48 rs4386816 rs3130286 48.053 0.030 yes
49 imm_12_38851428 imm_12_38887975 47.598 0.040 no
50 rs4386816 rs17207986 47.447 0.046 yes

116

Chapter 4 4.3 Correcting for available covariates

Table 4.4 is extremely similar to Table 4.1. Only two SNP pairs appearing in the
former do not appear in the latter and are marginal ones anyway, i.e. appearing in
the very bottom of the list. The 48 SNP pairs out of 50 that are replicated tend to
have a very similar ranking in both tables. These results suggests that gender may not
be a strong contributor to the disease. The analysis of the replication dataset, using
gammaMAXT with residuals-based correction of gender, leads to 221 significant SNP
pairs, a number comparable to the 216 obtained without correction (long results again
not shown, but examined in the discussion section). A total of 79 SNP pairs appear
in both cases and most of these pairs are again top ranked ones, consolidating our
hypothesis that gender may not be a strong contributor to the disease.

To conclude this first experiment, we compare the 50 SNP pairs identified by using
gammaMAXT with a residuals-based correction of gender on the discovery data, with
the 221 ones identified with the same method on the replication data. Table 4.5 reports
the SNP pairs from the former analysis, replicated in the latter.

Table 4.5: SNP pairs having a p-value < 0.05 on the discovery and replication data,
using each time gammaMAXT with residuals-based correction of gender.

Rank first SNP second SNP repl. stat repl. p-value
1 imm_1_67478162 imm_1_67502643 146.171 0.001
2 imm_1_67476695 imm_1_67502643 133.786 0.001
3 imm_16_49402777 rs6500336 113.038 0.001
4 imm_16_49402274 rs6500336 107.681 0.001
5 imm_16_49317481 imm_16_49380465 104.499 0.001
6 imm_16_49317481 imm_16_49399698 91.579 0.001
7 rs6500336 rs17227589 79.506 0.001
8 imm_1_67439879 imm_1_67453887 70.893 0.001
9 imm_1_67453887 imm_1_67476695 70.571 0.001
10 imm_16_49317481 imm_16_49400462 68.328 0.001
11 rs3749946 rs3093664 67.357 0.001
12 imm_12_38780396 imm_12_38836591 67.167 0.001
13 imm_5_40528991 imm_5_40654985 66.753 0.001
14 imm_16_49251512 imm_16_49262042 59.754 0.001
15 rs2442719 rs3131621 58.288 0.001
16 imm_16_49399698 imm_16_49404333 58.088 0.001
17 imm_16_49399698 rs6500336 57.976 0.001
18 imm_16_49380465 rs6500336 57.348 0.001
19 imm_5_150363823 imm_5_150367194 57.228 0.001
20 imm_5_40465299 imm_5_40477475 56.840 0.001
21 imm_12_38780396 imm_12_38887209 56.380 0.001
22 imm_16_49403663 imm_16_49404333 54.632 0.001
23 rs2073048 rs2858332 53.483 0.002
24 imm_12_38780396 imm_12_38859741 51.89 0.008
25 rs2524082 rs2156875 51.701 0.010
26 rs2273017 rs2187823 51.596 0.010
27 imm_5_40438290 imm_5_40477475 51.247 0.011
28 rs9784876 rs241407 50.447 0.014
29 rs130075 rs3868078 50.262 0.014
30 rs9673419 imm_16_49262042 50.202 0.014
31 rs130075 rs6905036 49.930 0.014
32 rs2524082 rs3131621 48.713 0.023
33 imm_12_38851428 imm_12_38887975 47.598 0.040

117

Chapter 4 4.3 Correcting for available covariates

Table 4.5 shows that the SNP pairs that are replicated, tend as usual to be those
reaching a high ranking at the first place. We have hence shown that the results are
consistent when we correct for gender, a covariate that is probably not a contributor
to the disease. We now perform a second experiment, as an attempt to correct for
confounding by shared ancestry. Principal component analysis (PCA) was used in [44]
to obtain the top 10 PCs from the SNP data of the discovery dataset and the top 10 PCs
from the SNP data of the replication data. These top PCs can be seen as continuous
axes of genetic variation. In this second experiment, we analyze the discovery and
replication datasets with the gammaMAXT algorithm, while performing a residuals-
based correction of their respective top 10 PCs taken from [44]. The analysis of the
discovery data leads to a ranked list of 120 significant SNP pairs, while the analysis on
the replication data leads to a ranked list of 169 ones. Table 4.6 has been obtained by
removing the SNP pairs from the former list, that are not replicated in the latter one.

Table 4.6: SNP pairs having a p-value < 0.05 on the discovery and replication data,
using each time gammaMAXT with residuals-based correction of the top 10 PCs.

Rank first SNP second SNP repl. stat p-value in Table 4.5
1 rs130075 rs3868078 157.451 0.001 yes
2 rs3749946 rs3093664 112.947 0.001 yes
3 imm_16_49317481 imm_16_49380465 95.800 0.001 yes
4 rs2524082 rs2156875 94.032 0.001 yes
5 imm_16_49402777 rs6500336 91.476 0.001 yes
6 imm_16_49402274 rs6500336 91.168 0.001 yes
7 rs2442719 rs3131621 83.650 0.001 yes
8 rs4248153 rs1265048 83.646 0.001 no
9 imm_5_40528991 imm_5_40654985 76.976 0.001 yes
10 rs3749946 rs6922431 72.910 0.001 no
11 imm_16_84563031 imm_16_84576134 67.876 0.001 no
12 imm_10_6139051 ccc-10-6150332-C-G 66.274 0.001 no
13 imm_1_67453887 imm_1_67476695 64.412 0.001 yes
14 rs4713462 rs2848716 58.429 0.001 no
15 rs3749946 rs707934 58.424 0.001 no
16 imm_16_49251512 imm_16_49262042 57.354 0.001 yes
17 rs3093664 rs707934 55.590 0.001 no
18 imm_16_49399698 imm_16_49404333 54.936 0.001 yes
19 rs6500336 rs17227589 53.378 0.001 yes
20 imm_2_233869411 imm_2_233875787 53.362 0.001 no
21 rs4713438 rs2284178 52.338 0.001 no
22 rs6922431 rs495089 51.800 0.001 no
23 rs6922431 rs707934 50.610 0.002 no
24 rs707934 rs2256594 48.188 0.002 no
25 rs3749946 rs17207986 47.872 0.010 no

Correcting for the top 10 PCs reduces the list of replicated results stronger than
correcting for gender. Indeed, only 12 SNP pairs from Table 4.6 also appear in Table
4.5, even if again, these pairs tend to rank better than the remaining ones. Nonetheless,
the ranking obtained after correction of gender diverges much more from the ranking
retrieved after correcting for the top 10 PCs, than from the ranking observed without
any correction. This suggests that the population is stratified, a conclusion that is
consistent with the one of the STRAT2 experiment.

118

Chapter 4 4.3 Correcting for available covariates

A noticeable asset of the residuals-based correction method is that it is fast. Indeed,
only one regression is performed to compute a new outcome variable and after that,
the software runs as before. The computing time is hence approximately the same
when using the residuals-based correction method as when the covariate is not taken
into account. Note that the test-statistics are always computed using the methods of
Section 2.3, regardless of the original scale on which the trait was expressed, since the
residuals are invariably expressed on a continuous scale.

The most obvious drawback, is that this method removes the information provided
by the covariates at the first place and that this information can therefore not be used
in the analysis itself. As a consequence, covariates associated with the SNPs are not
handled properly. For this reason, we propose a new correction method in the next
section, called on-the-fly correction.

4.3.2 On-the-fly correction

In Chapter 2, we showed how to compute a number, capturing the strength of the
association between a pair of SNPs and the trait, corrected for the main effects of
the two SNPs. The idea of the on-the-fly correction is to generalize this procedure,
in order to additionally correct for the available covariates. In other words, the idea
is to improve the model by including additional covariates, to obtain a more accurate
assessment of the association between an interactive pair and the trait, based on such
a model.

Obviously, this method has an important impact on the computing time, since it
complicates the model fitting behind every single MB-MDR test-statistic computation.
The algorithms for just correcting for the main effects of the SNPs have been presented
in Sections 2.2.2, 2.3.2 and 2.4.2 (respectively in the case of a trait expressed on a
binary, continuous and survival scale). Generalizing them to take account of covariates
requires important modifications of the source code, except for the latter. Indeed, the
survival case is based on the coxfit6 function, which readily takes account of covariates.

Survival data

The correction for the main effect of the SNPs from Section 2.4.2 is based on the Cox
model and in particular on the function coxfit6 from our customized Cox library, whose
signature is given by

coxfit6(time, censoring, covar)⇒ [β, l(β)] (4.7)

This function readily takes account of covariates. Therefore, the algorithm from
Box 2.12 only needs minor changes to take account of the k covariates x1, . . . , xk. The
amount of columns of the model matrixX should simply be increased by k. The content
of these columns is trivial, since the rows correspond to the subjects of the study with
no missing genotype value for neither of the two SNPs under investigation. The news
columns thus contain the k covariate values of that subjects. No other changes are
needed and the final algorithm is given in Box 4.4.

119

Chapter 4 4.3 Correcting for available covariates

Box 4.4. Survival MB-MDR statistic with on-the-fly correction

(1) Create a vector T of size dim = N1 × N2 and fill it with 0’s. Create empty
vectors Vt and Vc. Create empty matrix X consisting of 2+k columns in case
of additive coding and N1 +N2−2+k columns in case of codominant coding.

(2) For s = 1, . . . , S: if gslj and gsrj are not missing do Tgslj×N2+gsrj++, add tis
at the back of Vt, cs at the back of Vc and insert a new row at the end of X:

(a) If additive coding: put gslj in the 1st column and gslj in the 2nd.
(b) If codominant coding: perform two loops. For a = 1, . . . , N1 − 1:

if (a = gslj) put 1 in the ath column, otherwise 0. For b = 1, . . . , N2− 1:
if (b = gsrj) put 1 to the (N1 + b)th column, otherwise 0.

(c) Fill the k last columns with the k covariate values of subject s.

(3) Call coxfit6(Vt, Vc, X). Let loglikmain be the returned log likelihood.

(4) Insert a new column at the end of X filled with 0’s. Define Dcrit = 2, 705543.

(5) Create HLO vector R of size dim. For h = 0, . . . , dim− 1:

(a) If (Th < 10) set Rh = “O” and skips step (b), (c), and (d).
(b) Initialize a = 0. Overwrite the last column of X. For s = 1, . . . , S:

if gslj and gsrj are not missing: do (if (gslj × N2 + gsrj = h) overwrite
the ath element with 1, else with 0) and a++.

(c) Call coxfit6(Vt, Vc, X). Let β and loglikmain+ be the returned objects.
(d) Compute Dobs = 2(loglikmain+ − loglikmain).
(e) If (Dobs < Dcrit) set Rmn = “O”, else if the last element of the β vector

is greater than zero set Rmn = “H”, else set Rmn = “L”.

(6) If there is no “H” and no “L” in the R matrix, return tj = 0.

(7) If there is at least one “H”:

(a) Initialize a = 0. Overwrite the last column of X. For s = 1, . . . , S:
if Rgslj×N2+gsrj = “H”) overwrite the ath element with 1, else with 0) and
a++.

(b) Call coxfit6(Vt, Vc, X). Let loglikHvsLO be the returned log likelihood.
(c) Compute DHvsLO = 2(loglikHvsLO − loglikmain).

(8) If there is at least one “L”:

(a) Initialize a = 0. Overwrite the last column of X. For s = 1, . . . , S:
if Rgslj×N2+gsrj = “L”) overwrite the ath element with 1, else with 0) and
a++.

(b) Call coxfit6(Vt, Vc, X). Let loglikLvsHO be the returned log likelihood.
(c) Compute DLvsHO = 2(loglikLvsHO − loglikmain).

(9) Return tj = max(DHvsLO, DLvsHO).

120

Chapter 4 4.3 Correcting for available covariates

Binary trait

The algorithm of Section 2.2.2, computing a number capturing the degree of association
between a pair of SNPs and a trait expressed on a binary scale, corrected for the main
effects of the two SNPs, has been extremely customized for this task. It relies on the
fact that the subjects can be split into groups depending on their genotype (nine groups
in the bi-allelic case). To optimize the computing time, it takes advantage of the fact
that the trait is dichotomous: the ratio of cases versus controls is computed for each
group and this value is the one that is fitted. As a consequence, the model matrix is
small (nine rows for bi-allelic data) and the fitting does not affect the computing time
too much.

This strategy is only made possible by the fact that the main effects of the SNPs
(or environmental variables) that we are correcting for, are categorical variables. This
is at the first place the property that allows a tabular organization of the information.
Therefore, generalizing this idea to correct for continuous covariates is not possible.
Such variables would force us to fit the actual trait value of every single subjects,
in order to be able to correct for their individual continuous covariate values2. As a
consequence, the model matrix would not be small anymore, since it would have as
many rows as subjects. We showed in Section 2.4.2 that such model matrices rises
the computing time by orders of magnitude. This would make a GWAIs impossible in
practice. In the presence of continuous variables we propose to categorize them or to
create clusters of individuals with similar patterns based on the available covariates,
although we realize that this may be seen as a potential shortcoming of the current
implementation.

Hence, since a set of categorical variables can always be reduced to a single cat-
egorical variable, we suppose that there is only one covariate to correct for in this
section. Note that in practice, the software allows users to have several covariates,
but internally recode them automatically into a single one after heaving read the data.
This operation is done once for all and has thus a negligible impact on the computing
time (less than one second). Note that the internal recoding takes into account that
some factor level combination are not observed in the data (hereby reducing the actual
number of factor levels). As a consequence, the model matrix is automatically smaller
than if we had worked with several variables, improving the computing time.

The correction for the main effects of the SNPs from Section 2.2.2 is based on
three matrices: the affected-subjects, the unaffected-subjects and the HLO one, as was
illustrated in Figure 2.6. To take account of the different values of the categorical
covariate, the first two matrices need to be split. Let’s take gender as leading example.
The first matrix is split into an affected-males and an affected-females matrix and the
second one into an unaffected-males and unaffected-females matrix, as illustrated in
Figure 4.6. This idea is easy to generalize to a covariate that can take Nc > 2 different
values, i.e. by splitting the affected-subjects and unaffected-subjects into Nc matrices
each.

2 Taking the average covariates values of the group members would loose too much information and
defeat the purpose of the on-the-fly correction method

121

Chapter 4 4.3 Correcting for available covariates

Trait SNPlj SNPrj gender

c1 g1lj g1rj f1

c2 g2lj g2rj f2

… … … …

cS gSlj gSrj fS

A00 … A0N B00 … B0N C00 … C0N D00 … D0N

… … … … … … … … … … … …

AN 0 … AN N BN 0 … BN N CN 0 … CN N DN 0 … DN N

R00 … R0N

… … …

RN 0 … RN N

unaffected-females

t

affected-males unaffected-males

HLO matrix

affected-females

!"

!"

!"

!"

!"#

!"

$"

!"

!"

!"

!"

Figure 4.6: Computation of an MB-MDR statistic for a binary trait, with on-the-fly
correction of gender and of the main effect of the SNPs. Input: cs is 1 (0) if the
sth subject is a case (control), gslj and gsrj are the genotypes of the sth subject for
SNP lj and SNP rj respectively and fs is 0 if the subject is a male and 1 if it is a
female . The computation can be decomposed in three steps. First, the affected-
males, unaffected-males, affected-females and unaffected-females matrices are con-
structed. Amn and Bmn are respectively the amounts of affected males/females,
whose genotype gslj = m and gsrj = n. Cmn and Dmn are respectively the amounts
of unaffected males/females, whose genotype gslj = m and gsrj = n. Second, the
HLO matrix is constructed. Rmn is either “H” if the subjects whose genotype is m
for SNP lj and n for SNP rj have a high statistical risk of disease, “L” if they have
a low statistical risk and “O” if there is no statistical evidence. Third, the final tj
value is computed from the five matrices constructed at steps 1 and 2.

For efficiency reasons and to take account of the empty groups more easily, the
affected-males, affected-females, unaffected-males and unaffected-females matrices are
in practice in fact stored as two vectors A and U . The first/second element of A contains
the amounts of affected males/females in the first genotype group, the third/fourth
elements of A the amounts of affected males/females for the second genotype group
and so on. The same method is used to construct U , which contains unaffected subjects
amounts.

122

Chapter 4 4.3 Correcting for available covariates

The correction method described in Section 2.2.2, was based on the creation of a
vector Y , containing the ratio of cases versus number of subjects for every non-empty
genotype group. The idea of the on-the-fly correction method (in the leading example
of gender) is to multiply Y ’s size by two. The first (second) element of Y becomes the
ratio of case males (females) versus total amount of males (females) belonging to the
first genotype group, the third (fourth) element of Y becomes the ratio of case males
(females) versus total amount of males (females) belonging to the second genotype
group and so on. These ratios can easily be obtained from vectors A and U .

The model matrix obviously needs to be extended too. The former rows of the model
matrix that was presented in Section 2.2.2 (called Xold here), needs to be duplicated
(mimicking the fact that the members of each genotype groups have been split into
males and females) and a new column with an alternation of 0’s and 1’s added at the
end of the matrix (to indicate which rows correspond to males/females). In the case
of bi-allelic data, when no group is empty, these matrices are explicitly given by

Xold =

1 0 0
1 0 1
1 0 2
1 1 0
1 1 1
1 1 2
1 2 0
1 2 1
1 2 2

Xnew =

1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 0 2 0
1 0 2 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1
1 1 2 0
1 1 2 1
1 2 0 0
1 2 0 1
1 2 1 0
1 2 1 1
1 2 2 0
1 2 2 1

This idea can be generalized for a covariate that can take Nc > 2, by multiplying

Y ’s size by Nc instead of just two, making Nc copies of each rows of Xold instead of
just two and adding Nc− 1 columns at the end of X instead of just one. The first new
column should contain 1’s for each row that is a second copy of a line from Xold and
0’s elsewhere, the second newly added column should contain 1’s for each row that is
a third copy of a line from Xold and 0’s elsewhere and so on. This procedure comes
from the fact that the on-the-fly correction method is based on a codominant coding
scheme (presented in Section 2.2.2).

As an example, in the case of Nc = 3, the model matrix becomes

123

Chapter 4 4.3 Correcting for available covariates

X =

1 0 0 0 0
1 0 0 1 0
1 0 0 0 1
1 0 1 0 0
1 0 1 1 0
1 0 1 0 1
1 0 2 0 0
1 0 2 1 0
1 0 2 0 1
1 1 0 0 0
1 1 0 1 0
1 1 0 0 1
1 1 1 0 0
1 1 1 1 0
1 1 1 0 1
1 1 2 0 0
1 1 2 1 0
1 1 2 0 1
1 2 0 0 0
1 2 0 1 0
1 2 0 0 1
1 2 1 0 0
1 2 1 1 0
1 2 1 0 1
1 2 2 0 0
1 2 2 1 0
1 2 2 0 1

The tricky part of the on-the-fly-correction method, is that even if Y and X have

been expanded, the size of the HLO matrix should not be modified. Indeed, expanding
it too would just lead to a 3D interaction MB-MDR test-statistic computation, where
gender can be seen as an environmental variable. This method has been described
in Section 2.2.4 and should not be confused with the subject of this section: the
computation of a 2D interaction MB-MDR statistic, corrected for three factors (the
main effects of the two SNPs and the categorical covariate).

The fitting of the model Y = Xβ can be obtained by the algorithm from Box
2.2, except that when no group is empty, the A, U , T and Y vectors now have a
dimension of dim = N1 × N2 × Nc (instead of just N1 × N2 as before) and that as
consequence, some trivial changes are required at steps (2) and (3). However, the
algorithm from Box 2.3, computing the MB-MDR statistic itself, needs some elaborate
changes. Indeed, the fact that some groups may be empty makes the implementation
tricky. A new vector C of size dimHLO = N1 × N2 is needed, to store the amount
of non empty categories represented for each genotype group. This allows to remove
elements of vectors A, U and Y (and rows of matrix X) without loosing track of which
elements (rows) correspond to which genotype group, i.e. HLO matrix element. The
computation, illustrated in Figure 4.6, can be decomposed into three steps:

124

Chapter 4 4.3 Correcting for available covariates

1) Construction of the affected-subjects A and unaffected-subjects U vectors. They
are created with a size of N1×N2×Nc, initialized with 0’s and build up through
a loop over the subjects of the dataset. For s = 1, . . . S: if no value is missing
for subject s: increment a cell of the affected-subjects vector if cs = 1, otherwise
a cell of the unaffected-subjects one. The index of the cell to be incremented is
given by gslj×N2×Nc+gsrj×Nc+fs, where gslj is the subject’s value for SNP1,
gsrj for SNP2 and fs it’s covariate value. After this process, a loop is performed
to construct the model matrix X, the categories vector C (created with a size of
dimHLO = N1 × N2 and initialized with 0’s), the vector T containing the total
number of subjects in each non-empty group and the vector Y containing the ratio
of cases versus number of subjects in these groups. An integer a, initialized to
zero, is needed to keep track of the index of the non-empty genotype group under
investigation. The model matrix X is created empty and at each iteration h =
0, . . . , dim− 1, a loop is performed over the different categories of the covariate.
For c = 0, . . . , Nc − 1 : if there is at least one subject whose genotype satisfies
(SNP lj×N2×Nc+SNP rj×Nc+c = h), the number of such subjects is stored in
Ta, a new row is added to X, whose first elements are the ones of the hth row of
the hard coded-matrix3 and the remaining ones are all set to 0 except the cth one
set to 1, Ya is computed as the ratio of Aa over Ta and a is incremented. When
no such subject satisfying the given genotype is found, the ath elements of A and
U are removed. Let dim be the final size of vectors A, U , T and Y .

2) The second step consists in generating the HLO-matrix, but again coded in vector
format. First, the model is fitted as described in Box 2.2 and the QR decomposi-
tion Q1R1 =

√
WXmain is obtained by calling a library (alglib) dedicated for this

task. Then, a column is added at the back of X. Each Rh element of the HLO-
vector depends on a test for association between the trait and the belonging to
the genotype group satisfying (SNP lj ×N2 +SNP rj = h), but this time adjusted
for the main effects of the SNPs and of the covariate. An integer a again keeps
track of the index of the non-empty genotype group under investigation. For
h = 0, . . . , dimHLO − 1, compute the amount tot of subjects in this category. If
tot < 10 set the hth element of the HLO-vector to “O”. Otherwise, overwrite the
last column of X with 0’s, except the elements from index a till index a+Ch− 1
which are set to 1. Then compute the score statistic from equation 2.5. When
this value, following a 1df (one degrees of freedom) χ2, is below the critical value
χ2
crit = 2, 705543, set the hth element of the HLO-vector to “O”. Otherwise, set it

to either “H” if u > 0 or “L” otherwise. At the end of each loop over h, increment
a by Ch to indicate that Ch groups have been considered.

3) If there is neither “H” nor “L” values in the HLO vector, return 0. Otherwise,
compute two score statistics and return the maximum. The first/second is ob-
tained by overwriting the last column of X with 0’s, except for the elements for
which the corresponding genotype group is in high/low risk which are set to 1
and computing the score statistic using the same strategy as in step 2.

The final algorithm is reported in Box 4.5.

3 Recall that in the rare cases where the hard-coded matrix does not exist, i.e. when either N1 > 3
or N2 > 3, then the row is created explicitly

125

Chapter 4 4.3 Correcting for available covariates

Box 4.5. Binary MB-MDR statistic with on-the-fly correction

(1) Create vectors A, U , T and Y of size dim = N1 ×N2 ×Nc.

(2) Fill A and U with 0’s. For s = 1, . . . , S: if gslj and gsrj are not missing do
Agslj×N2×Nc+gsrj×Nc+fs++ if cs = 1 and Ugslj×N2×Nc+gsrj×Nc+fs++ otherwise.

(3) Create matrix X with dimc = N1 + N2 + Nc − 2 columns. Create a vector
C of size dimHLO = N1 × N2 and fill it with 0’s. Set a = 0. For h =
0, . . . , dimHLO − 1: for c = 0, . . . , Nc− 1: compute Ta = Aa +Ua ; if (Ta = 0)
erase the ath element of vectors A and U , else perform the following operations

(a) Add a new row to X. The first elements are those of the hth row of
the hard-coded model matrix. The other ones are filled by a loop. For
j = 1, . . . Nc − 1: set the next element to 1 if j = c, otherwise to 0.

(b) Compute Ya = Aa
Ta
.

(c) Perform a++.

Compute dim = a.

(4) Compute NA = A0 + . . .+Adim−1, NU = U0 + . . .+Udim−1 and N = NA+NU .

(5) Create fitted values vector µ of size dim and initialize all elements to NA
N
.

(6) Create linear predictor vector η = ln(µ
1−µ).

(7) ComputeD = 2{N lnN−NA lnNA−NU lnNU+
dim−1∑
i=0

[Ai ln(Yi)+Ui ln(1−Yi)]}.
(where only the first term of the latter sum is taken if Yi = 1 and only the second if Yi = 0)

(8) Perform the following iterations:

(a) Create a vector z = η + Y−µ
µ(1−µ)

(taking zi = ηi − 1 if µi = 0 and zi = ηi + 1 if µi = 1)

(b) Calculate dim× dim diagonal matrix W where Wii = Tiµi(1− µi).
(c) Calculate dimc × dimc symmetric positive definite matrix I = X ′WX.
(d) Calculate right-hand side vector v of size dimc defined by v = X ′Wz.
(e) Calculate vector β of size dimc by trying to solve Iβ = v. If it fails,

remove all linearly dependent columns from X and go back to step (c).
(f) Update η = Xβ and µ = 1

1+e−η
.

(g) Compute D = 2{
dim−1∑
i=0

Ai lnYiµi + Ui ln 1−Yi
1−µi).

(where only the first term is taken if Yi = 1 and only the second if Yi = 0)

(h) Stop iterating if |D−Dold|
0.1+D < 10−8 or after 25 iterations.

(9) Find Q1R1 =
√
WX.

(10) Create empty vectors V of size dimc and O of size dim. Create residual vector
ρ of size dim. For i = 0, . . . , dim− 1: if (µi = 0) set ρi = −1, else if (µi = 1)
set ρi = 1, else set ρi = Yi−µi

µi(1−µi) .

126

Chapter 4 4.3 Correcting for available covariates

(11) Create HLO vector R of size dimHLO. Set a = 0. For h = 0, . . . , dimHLO− 1:
if Ch > 0:

(a) Set tot = 0. For k = 0, . . . , Ch: do tot = tot+ Ta+k

(b) If (tot < 10) set Rh = “O” and skip steps (c), (d) and (e).

(c) For i = 0, . . . , dimc − 1: do (Vi = 0) and (for j = a, . . . , a + Ch − 1:
do (Vi = Vi + Q1ji

√
Wj). For i = dimc − 1, . . . , 0: do (for j = i +

1, . . . , dimc − 1: Vi = Vi −R1ijVj) and (Vi = Vi
R1ii

).

(d) For s = 0, . . . , dim − 1: do (if (a ≤ s < a + Ch) do Os = 1 else do
Os = 0) and (for t = 0, . . . , dimc − 1: do Os = Os −XstVt).

(e) Set u = i = 0. For s = 0, . . . , dim − 1: do (u+=WsOsρs) and
(i+=WsO2

s). If i=0 set Rh = “O”, else calculate S = u2

i
. If S < χ2

crit =
2, 705543 set Rh = “O”, else if (u > 0) set Rh = “H”, else set Rh = “L”.

(f) Execute a = a+ Ch.

(12) If there is no “H” and no “L” in the HLO vector R, return tj = 0.

(13) If there is at least one “H”:

(a) For i = 0, . . . , dimc − 1: do (Vi = 0) and (set k = a = 0 ; for j =
0, . . . , dimHLO − 1: if (Rj = “H”) do (for j = a, . . . , a + Ch − 1: Vi =
Vi + Q1ji

√
Wj) ; a = a + Ch. For i = dimc − 1, . . . , 0: do (for j =

i+ 1, . . . , dimc − 1: Vi = Vi −R1ijVj) and (Vi = Vi
R1ii

).

(b) Set a = k = 0. For s = 0, . . . , dimHLO − 1: if Ch > 0: execute (if (Rj =
“H”) do (for s = a, . . . , a + Ch − 1: Os = 1) else do (for s = a, . . . , a +
Ch − 1: Os = 0)) and (for t = 0, . . . , dimc − 1: for s = a, . . . , Ch − 1: do
Os = Os −XstVt) and (a = a+ Ch).

(c) Set u = i = 0. For s = 0, . . . , dim − 1: do (u+=WsOsρs) and
(i+=WsO2

s). If (i>0) compute SHvsLO = u2

i
else set it to zero.

(14) If there is at least one “L”:

(a) For i = 0, . . . , dimc − 1: do (Vi = 0) and (set k = a = 0 ; for j =
0, . . . , dimHLO − 1: if (Rj = “L”) do (for j = a, . . . , a + Ch − 1: Vi =
Vi + Q1ji

√
Wj) ; a = a + Ch. For i = dimc − 1, . . . , 0: do (for j =

i+ 1, . . . , dimc − 1: Vi = Vi −R1ijVj) and (Vi = Vi
R1ii

).

(b) Set a = k = 0. For s = 0, . . . , dimHLO − 1: if Ch > 0: execute (if (Rj =
“L”) do (for s = a, . . . , a+Ch−1: Os = 1) else do (for s = a, . . . , a+Ch−1:
Os = 0)) and (for t = 0, . . . , dimc − 1: for s = a, . . . , Ch − 1: do
Os = Os −XstVt) and (a = a+ Ch).

(c) Set u = i = 0. For s = 0, . . . , dim − 1: do (u+=WsOsρs) and
(i+=WsO2

s). If (i>0) compute SLvsHO = u2

i
else set it to zero.

(15) Return tj = max(SHvsLO,SLvsHO).

127

Chapter 4 4.3 Correcting for available covariates

Continuous trait

Adapting the algorithm of Section 2.3.2 to additionally correct for an available covariate
is similar to what was done for a binary trait. For the same reasons as before, we focus
on a single categorical covariate which can take Nc different values. The algorithm from
Section 2.3.2 is based on four matrices: the amount-matrix, mean-matrix, varnum-
matrix and HLO-matrix, as was illustrated in Figure 2.8. To take account of the
covariate, the first three need to be split, in a similar way as was done in the case of a
trait expressed on a binary scale. Let’s take again gender as leading example. The first
matrix would be split into an amount-male and an amount-female matrix, the second
into a male-mean-trait-value and female-mean-trait-value matrix and so on. This idea
generalizes readily to a covariate that can take any amount Nc of different values, i.e.
by splitting each of the matrices into Nc ones. The model matrix needs again to be
extended and this can be done in the exact same way as in the previous section. The
fitting of the model can be obtained from Box 2.7, except that the dimension is now
given by N1 × N2 × Nc when no group is empty (instead of just N1 × N2 as before).
However, the algorithm from Box 2.8, computing the MB-MDR statistic itself, needs
again some more elaborate changes, similar to what was done in Box 4.5. A vector
C of size dimHLO = N1 × N2 is once more used to store the number of non-empty
categories represented for each genotype group. The computation can be decomposed
into three steps:

1) Construction of the total amount T , mean Y and varnum V vectors. They are
created with a size N1 ×N2 ×Nc and initialized with zeros. Then, several loops
are performed. First, a loop over the subjects of the dataset: for s = 1, . . . S, if no
value is missing for subject s, increment an of T by one and an element of Y by cs.
The index of the cell to be incremented is given by gslj×N2×Nc+gsrj×Nc+fs,
where gslj is the subject’s value for SNP1, gsrj for SNP2 and fs it’s covariate
value. Second, divide all elements of the mean-vector by the elements of T
(except when the group is empty). Third, loop over the subjects of the dataset
again: for s = 1, . . . S, if no value is missing for subject s increment an element
of the varnum-vector by the square of the difference between an element of the
mean-vector and the cs value. The index of the element is computed as above.
Finally, remove empty groups from the amount-, mean- and varnum- vectors and
on the fly construct the model matrix from the hard-coded one (or explicitly in
the rare scenarios explained earlier) and compute the SSEfull value. Let dim be
the final size of the vectors.

2) The second step still consists in generating the HLO-matrix, but again coded in
vector format. First, the model is fitted as described in Box 2.7. Then, a column
is added to X. For h = 1, . . . , dim−1, compute the amount tot of subjects in this
cateogry. If tot < 10 set the hth element of the HLO-vector to “O”. Otherwise,
overwrite the last column of X with 0’s, except the elements from index a till
index a + Ch − 1 which are set to 1. Then compute the Wald statistic from
equation 2.18. When this value is below the critical value Fcrit defined by an F
distribution with degrees of freedom 1 and N − (c+ 1), set the hth element of the
HLO-vector to “O”. Otherwise, set it to either “H” if βc+1 > 0, to indicate a high
risk for disease, or to “L” to indicate a low risk for the disease.

128

Chapter 4 4.3 Correcting for available covariates

3) If there are neither “H” nor “L” values in the HLO vector, return 0. Other-
wise, compute the following two Wald statistics and return the maximum. The
first/second is obtained by overwriting the last column of X with 0’s, except
for the elements for which the corresponding genotype group is in high/low risk
which are set to 1 and computing the score statistic using the same strategy as
in step 2.

The final algorithm is reported in Box 4.6.

Box 4.6. Continuous MB-MDR statistic with on-the-fly correction

(1) Create vectors T , B, Y , V of size dim = N1 ×N2 ×Nc.

(2) Fill T and B with 0’s. For s = 1, . . . , S: if gslj and gsrj are not missing do
Tgslj×N2×Nc+gsrj×Nc+fs++ and Bgslj×N2×Nc+gsrj×Nc+fs+=cs.

(3) Set N = 0. For h = 0, . . . , dim − 1: if (Th > 0) do Yh = Bh
Th

and N+=Th.
Define Fcrit = F0,1(1, N − 2).

(4) Fill V with 0’s. For s = 1, . . . , S: if gslj and gsrj are not missing do
Vgslj×N2×Nc+gsrj×Nc+fs+=(Ygslj×N2×Nc+gsrj×Nc+fs − cs)2.

(5) Create matrix X with dimc = N1 +N2 +Nc − 2 columns. Create a vector C
of size dimHLO = N1 × N2 and fill it with 0’s. Set SSEfull = 0. Set a = 0.
For h = 0, . . . , dimHLO − 1: for c = 0, . . . , Nc − 1: if (Ta = 0) erase the ath
element of vectors T , B, Y and V , else perform the following operations

(a) Add a new row to X. The first elements are those of the hth row of
the hard-coded model matrix. The other ones are filled by a loop. For
j = 1, . . . Nc − 1: set the next element to 1 if j = c, otherwise to 0.

(b) Execute SSEfull+=Va.

(c) Perform a++.

Compute dim = a.

(6) Create dim× dim diagonal weights matrix W . The diagonal elements corre-
spond are those of T .

(7) Calculate dimc × dimc symmetric positive definite info matrix I = X ′WX.

(8) Calculate the right-hand side vector v = X ′WY of size dimc.

(9) Estimate parameter vector β of size dimc by solving the linear system Iβ = v.
If it fails, remove all linearly dependent columns from X and go back to (7).

(10) Create fitted values vector µ of size dim as µ = Xβ.

(11) Set SSEmain = SSEfull. For h = 0, . . . , dim−1: SSEmain+=(Yh−µh)2×Th.

(12) Update the sizes of X to dim× (dimc + 1), I to (dimc + 1)× (dimc + 1) and
v to dimc + 1.

129

Chapter 4 4.3 Correcting for available covariates

(13) Create HLO vector R of size dimHLO. Set a = 0. For h = 0, . . . , dimHLO− 1:
if Ch > 0:

(a) Set t = 0. For k = 0, . . . , Ch: do t = t+ Ta+k

(b) If (t < 10) set Rh = “O” and skip steps (c), (d), (e), (f), (g), (h) and (i).
(c) For h = 0, . . . , dimHLO−1: if (a ≤ h < a+Ch) overwrite the hth element

of the last column of X with 1, otherwise with 0.
(d) Calculate I = X ′WX. Calculate the right-hand side vector v = X ′WY .
(e) Estimate parameter vector β by solving the linear system Iβ = v.
(f) Create fitted values vector µ = Xβ.
(g) Initialize SSEmain+ = SSEmain. For h = 0, . . . , dim − 1: execute

SSEmain++ = (Yh − µh)2 × Th.
(h) Compute W = (SSEmain − SSEmain+)N−(dimc+1)

SSEmain+
. If W < Fcrit set Rh

= “O”, else if βdimc+1 > 0 set Rh = “H”, else set Rh = “L”.
(i) Execute a = a+ Ch.

(14) If there is no “H” and no “L” in the HLO vector R, return tj = 0.

(15) If there is at least one “H”:

(a) Set k = a = 0. For h = 0, . . . , dimHLO − 1: if Ch > 0 do (if (Rk =
“H”) do (for j = a, . . . , a+ Ch − 1: overwrite the jth element of the last
column of X with 1) else (for j = a, . . . , a + Ch − 1: overwrite the jth
element of the last column of X with 0) and k++).

(b) Calculate I = X ′WX. Calculate the right-hand side vector v = X ′WY .
(c) Estimate parameter vector β by solving the linear system Iβ = v.
(d) Create fitted values vector µ = Xβ.
(e) Initialize SSEmain+ = SSEmain. For h = 0, . . . , dim − 1: execute

SSEmain++ = (Yh − µh)2 × Th.
(f) Compute WHvsLO = (SSEmain − SSEmain+)N−(dimc+1)

SSEmain+
.

(16) If there is at least one “L”:

(a) Set k = a = 0. For h = 0, . . . , dimHLO − 1: if Ch > 0 do (if (Rk =
“L”) do (for j = a, . . . , a + Ch − 1: overwrite the jth element of the last
column of X with 1) else (for j = a, . . . , a + Ch − 1: overwrite the jth
element of the last column of X with 0) and k++).

(b) Calculate I = X ′WX. Calculate the right-hand side vector v = X ′WY .
(c) Estimate parameter vector β by solving the linear system Iβ = v.
(d) Create fitted values vector µ = Xβ.
(e) Initialize SSEmain+ = SSEmain. For h = 0, . . . , dim − 1: execute

SSEmain++ = (Yh − µh)2 × Th.
(f) Compute WLvsHO = (SSEmain − SSEmain+)N−(dimc+1)

SSEmain+
.

(17) Return tj = max(WHvsLO,WLvsHO).

130

Chapter 4 4.3 Correcting for available covariates

Real-life data analysis

To test the on-the-fly correction method, we perform again two experiments. First,
we analyze the discovery and replication datasets from Section 4.2.2 with the gam-
maMAXT algorithm, while performing an on-the-fly correction of gender. On the
discovery data we obtain 48 significant SNP pairs, reported in Table 4.7.

Table 4.7: SNP pairs having a p-value < 0.05 on the discovery data, using gamma-
MAXT with on-the-fly correction of gender.

Rank first SNP second SNP stat p-value in Table 4.1
1 imm_1_67478162 imm_1_67502643 151.761 0.001 yes
2 imm_1_67476695 imm_1_67502643 140.157 0.001 yes
3 imm_16_49402777 rs6500336 107.071 0.001 yes
4 imm_16_49402274 rs6500336 104.209 0.001 yes
5 imm_16_49317481 imm_16_49380465 96.597 0.001 yes
6 imm_16_49317481 imm_16_49399698 84.543 0.001 yes
7 rs6500336 rs17227589 77.862 0.001 yes
8 imm_1_67453887 imm_1_67476695 72.817 0.001 yes
9 imm_1_67439879 imm_1_67453887 72.290 0.001 yes
10 imm_12_38780396 imm_12_38919755 69.737 0.001 yes
11 rs3093664 rs17207986 68.787 0.001 yes
12 rs3749946 rs17207986 67.361 0.001 yes
13 imm_12_38780396 imm_12_38836591 67.030 0.001 yes
14 imm_5_40528991 imm_5_40654985 66.027 0.001 yes
15 rs3749946 rs3093664 65.278 0.001 yes
16 rs12445755 rs16948451 63.933 0.001 yes
17 rs17207986 rs206018 62.164 0.001 yes
18 rs17207986 rs495089 60.662 0.001 yes
19 imm_1_67441558 imm_1_67453887 60.518 0.001 yes
20 imm_16_49251512 imm_16_49262042 59.533 0.001 yes
21 imm_16_49399698 rs6500336 57.876 0.002 yes
22 rs2442719 rs3131621 57.394 0.002 yes
23 rs2073048 rs2858332 57.263 0.002 yes
24 imm_5_150363823 imm_5_150367194 57.257 0.002 yes
25 imm_16_49317481 imm_16_49400462 56.793 0.002 yes
26 imm_5_40465299 imm_5_40477475 56.691 0.002 yes
27 imm_16_49380465 rs6500336 56.135 0.002 yes
28 imm_12_38780396 imm_12_38887209 55.980 0.002 yes
29 rs2243621 rs17207986 55.941 0.002 yes
30 imm_16_49399698 imm_16_49404333 55.825 0.002 yes
31 imm_1_67399848 imm_1_67439879 55.718 0.002 yes
32 imm_16_49403663 imm_16_49404333 53.057 0.003 yes
33 rs17207986 rs2256594 52.614 0.003 yes
34 rs2524082 rs2156875 51.594 0.004 yes
35 imm_5_40438290 imm_5_40477475 51.355 0.004 yes
36 rs2273017 rs2187823 51.288 0.004 yes
37 imm_12_38780396 imm_12_38859741 51.274 0.004 yes
38 imm_1_67442201 imm_1_67502643 50.765 0.005 yes
39 rs17207986 rs13207945 50.551 0.006 yes
40 rs9784876 rs241407 50.366 0.006 yes
41 imm_20_44041068 imm_20_44044144 50.222 0.006 yes
42 rs9673419 imm_16_49262042 50.000 0.006 yes
43 rs3130286 rs206018 49.607 0.007 yes
44 rs130075 rs3868078 49.057 0.013 yes
45 rs3749946 rs2273017 48.770 0.016 yes
46 imm_3_46393693 imm_3_46438428 48.285 0.02 yes
47 rs4386816 rs3130286 48.118 0.02 yes
48 rs130075 rs6905036 47.585 0.030 yes

131

Chapter 4 4.3 Correcting for available covariates

This result is extremely similar to the one obtained without correction for gender
(reported in Table 4.1). All 48 SNP pairs appearing in Table 4.7 also appear in Table
4.1 and are ranked similarly. We came to the same conclusion with the residuals-based
method. This result is hence very consistent with the rest and once more consolidates
our hypothesis that gender is probably not a strong contributor to the disease.

The analysis of the replication dataset using gammaMAXT with on-the-fly correc-
tion of gender, leads to 169 significant SNP pairs, a number comparable to the 216
obtained without correction (long results again not shown, but examined in the dis-
cussion section), but again a bit lower. The on-the-fly correction method seem to bo
more conservative than the residuals-base done. A total of 64 SNP pairs appear in
both cases and most of these pairs are again top ranked ones.

To conclude this first experiment, we compare the 48 SNP pairs identified by using
gammaMAXT with on-the-fly correction of gender on the discovery data, with the 169
ones identified with the same method on the replication data. Table 4.8 reports the
significant pairs of SNPs from the former analysis, replicated in the latter.

Table 4.8: SNP pairs having a p-value < 0.05 on the discovery and replication data,
using each time gammaMAXT with on-the-fly correction of gender.

Rank first SNP second SNP repl. stat p-value in Table 4.5
1 imm_16_49402274 rs6500336 132.835 0.001 yes
2 rs2524082 rs2156875 130.353 0.001 yes
3 rs130075 rs3868078 128.857 0.001 yes
4 imm_16_49402777 rs6500336 116.925 0.001 yes
5 rs2442719 rs3131621 111.62 0.001 yes
6 imm_1_67476695 imm_1_67502643 103.885 0.001 yes
7 imm_16_49317481 imm_16_49380465 95.360 0.001 yes
8 imm_1_67478162 imm_1_67502643 93.458 0.001 yes
9 rs2273017 rs2187823 86.850 0.001 yes
10 imm_16_49251512 imm_16_49262042 84.929 0.001 yes
11 rs3749946 rs3093664 81.465 0.001 yes
12 imm_16_49317481 imm_16_49399698 80.976 0.001 yes
13 imm_5_40438290 imm_5_40477475 80.495 0.001 yes
14 imm_5_40465299 imm_5_40477475 80.081 0.001 yes
15 rs9673419 imm_16_49262042 79.273 0.001 yes
16 imm_16_49399698 rs6500336 78.921 0.001 yes
17 imm_12_38780396 imm_12_38887209 69.079 0.001 yes
18 imm_1_67439879 imm_1_67453887 67.880 0.001 yes
19 imm_16_49399698 imm_16_49404333 65.205 0.001 yes
20 imm_1_67453887 imm_1_67476695 64.806 0.001 yes
21 imm_12_38780396 imm_12_38859741 62.999 0.001 yes
22 imm_12_38780396 imm_12_38836591 62.875 0.001 yes
23 imm_16_49317481 imm_16_49400462 61.788 0.001 yes
24 imm_5_150363823 imm_5_150367194 61.050 0.001 yes
25 rs130075 rs6905036 58.931 0.001 yes
26 rs2073048 rs2858332 58.084 0.001 yes
27 imm_16_49380465 rs6500336 55.768 0.001 yes
28 imm_16_49403663 imm_16_49404333 52.766 0.002 yes
29 rs6500336 rs17227589 52.502 0.002 yes
30 rs9784876 rs241407 51.665 0.002 yes

132

Chapter 4 4.3 Correcting for available covariates

The 30 SNP pairs reported in Table 4.8, had all already been identified via residuals-
based correction of gender, i.e. are all in Table 4.5. However, the former contains 33
hits. The on-the-fly correction method was than again slightly more conservative than
the residuals-based one. This may indicate that a few SNPs are associated with gender,
a situation that cannot be taken into account by the residuals-based method.

In the second experiment, we correct for confounding by shared ancestry. In the
case of the residuals-based correction method, we have used the top 10 PCs for this pur-
pose. However, the on-the-fly correction method can only handle categorical variables.
Therefore, we use the R package mclust (with the default options) to automatically
split the subjects into clusters, depending on their top 10 PCs values [33]. The mclust
package is based on a Gaussian finite mixture models fitted via EM algorithm for
model-based clustering [32]. We run the function Mclust and get 9 clusters. We use
the cluster to which the subjects belong as new categorical variable, that we correct
for using the on-the-fly method. We analyze the discovery and replication datasets
with the gammaMAXT algorithm, while performing an on-the-fly correction of cluster
membership. On the discovery data, we obtain 210 significant SNP pairs and on the
replication data, 93 ones. Table 4.9 reports the SNP pairs from the former analysis,
that could be replicated in the latter one.

Table 4.9: SNP pairs having a p-value < 0.05 on the discovery and replication data,
using each time gammaMAXT with on-the-fly correction of cluster membership.

Rank first SNP second SNP repl. stat p-value in Table 4.6
1 rs130075 rs3868078 149.208 0.001 yes
2 rs3749946 rs3093664 112.459 0.001 yes
3 rs2524082 rs2156875 96.197 0.001 yes
4 rs4248153 rs1265048 85.689 0.001 yes
5 rs3749946 rs6922431 79.215 0.001 yes
6 imm_5_40528991 imm_5_40654985 78.653 0.001 yes
7 imm_16_49317481 imm_16_49380465 78.089 0.001 yes
8 rs2442719 rs3131621 75.858 0.001 yes
9 1kg_19_18149069 1kg_19_18170365 73.765 0.001 no
10 imm_16_49402777 rs6500336 71.521 0.001 yes
11 imm_10_6139051 ccc-10-6150332-C-G 70.074 0.001 yes
12 imm_16_49402274 rs6500336 66.874 0.001 yes
13 rs3749946 rs707934 65.902 0.001 yes
14 rs2273017 rs2187823 60.036 0.001 no
15 rs6922431 rs707934 58.673 0.001 yes
16 rs3093664 rs707934 56.757 0.001 yes
17 rs6922431 rs495089 54.014 0.001 yes
18 imm_16_49399698 imm_16_49404333 53.898 0.001 yes

Correcting for cluster membership reduces the list of replicated results much stronger
than correcting for gender. A similar observation was made via the residuals-based
method, where correcting for the top 10 PCs reduces the list of significant results
much stronger than correcting for gender. Interesting to note is also that correcting
for cluster membership with the on-the-fly method reduces leads to a shorter list than
correcting for the top 10 PCs via the residuals-based approach. Indeed, Table 4.9 is
made up of 18 SNP pairs and Table 4.6 of 25 ones. Almost all SNP pairs appearing
in the former (16), also appear in the latter, showing great consistency between the
methods.

133

Chapter 4 4.3 Correcting for available covariates

To validate the results of this chapter, we perform a short biological interpretation
of a selection of SNP pairs that appeared in the very top of most rankings of Table
4.1-4.9. These pairs are recorded in Table 4.10.

Table 4.10: Promising SNP pairs to investigate from a biological point of view.

Rank first SNP second SNP top obs. stat HLO matrix

1 rs130075 rs3868078 157.451

[
L H H
H L O
O O L

]

2 imm_1_67478162 imm_1_67502643 153.330

[
H L L
L H L
L L H

]

3 imm_1_67476695 imm_1_67502643 141.301

[
H L L
L H L
L L H

]

4 imm_16_49402777 rs6500336 132.835

[
H L L
L H H
L O H

]

5 rs2524082 rs2156875 130.353

[
L L H
O H L
H O L

]

6 rs3749946 rs3093664 112.947

[
L H H
H L L
H O O

]

7 imm_16_49317481 imm_16_49380465 104.499

[
L O H
H L L
H H L

]

8 rs2273017 rs2187823 86.850

[
H L L
L O H
L H H

]

The difficulty to find the genes that are close to the SNPs that we want to investigate
from a biological point of view, lies in the fact that Table 4.10 contains a mixture of
SNP names starting with rs and imm. The former are standard names and can be
found in the genome browser at https://genome.ucsc.edu/. The latest assembly
(Dec. 2013 (GRCH38/hg38)) was used. The variant annotator tool allows to find out
easily on which chromosome the SNP is located and which is the nearest gene. The
hits starting with imm contains one short number after the first underscore and a larger
one after the second one. The short number gives the chromosome and the larger one
the location on the chromosome. This position does not always correspond to a SNP in
particular, making it a bit tricky to find out the nearest genes. An online SNP finder
tool at http://snpper.chip.org/bio/snpper-enter-snp is used to solve this issue
(the build 131 of dbSNP was used, with the hg19 genome). For every SNP, a search is
performed 1000 positions around the position given by the larger number in the name.
In practice, the result list returned by the tool is either empty, or containing several
SNP names, all located on the same gene, as illustrated in Figure 4.7 for one of the
hits of Table 4.10. The identified genes are reported in Table 4.11 and when no gene
could be identified, we consider that the location is intergenic.

134

Chapter 4 4.3 Correcting for available covariates

Figure 4.7: Result obtained on SNP Finder to find out the nearest gene correspond-
ing to the hit imm_1_67476695 from Table 4.10, which is SLC35D1.

Table 4.11: Chromosomes and nearest genes of the SNPs from Table 4.10

first SNP chrom. nearest gene second SNP chrom. nearest gene
rs130075 6 CCHCR1 rs3868078 6 intergenic

imm_1_67478162 1 SLC35D1 imm_1_67502643 1 SLC35D1
imm_1_67476695 1 SLC35D1 imm_1_67502643 1 SLC35D1
imm_16_49402777 16 C16orf78 rs6500336 16 intergenic

rs2524082 6 HLA-C rs2156875 6 HLA-C
rs3749946 6 HCP5 rs3093664 6 LTA

imm_16_49317481 16 CBLN1 imm_16_49380465 16 intergenic
rs2273017 6 C6orf10 rs2187823 6 intergenic

We observe that all SNP-pairs involve concomitant variants located on the same
chromosomes. The top ranked hit is located on chromosome 6 and involve the gene
CCHCR1, typically linked to psoriasis, itself associated with many systemic disorders
including Crohn’s disease [117, 115]. The second and third hits of Table 4.11 are
very similar an may be driven by the same biological phenomenon. All these hits
involve SNPs located close to the SLC35D1 gene, a well-known one associated to CD
[96]. This demonstrates the capabilities of mbmdr-4.4.1.out to retrieve such significant
associations. To our knowledge, the gene C16orf78 was not associated to Crohn’s
disease yet and may be a new discovery. Lab validation is required to confirm this
hypothesis. However, note that the C16orf78 gene is a protein coding one that was
already related to prostate cancer [113]. The SNP pairs corresponding to the fifth hit
are located on chromosome 6, the main one reported in this table, close to the HLA-C
gene. This region is again a well known susceptibility one for Crohn’s disease [83, 58].
The sixth hit is an interaction implicating two different genes, both linked to CD:
HCP5 [68, 20] and LTA [142]. CBLN1 enhances secretory activity of human adrenal
gland [85] and since adrenal insufficiency is a known CD symptom, this hit is not really
surprising from a biological point of view either. The gene C6orf10 has been linked
with psoriasis [100]. These very interesting results demonstrates that mbmdr-4.4.1.out
can find SNP pairs that are relevant from a biological point of view.

135

Chapter 4 4.4 Discussion

4.4 Discussion

As the core of MB-MDR involves association tests, it may be affected by confounding
that is unaccounted for. Therefore, in this chapter, we explored a few options to
develop a version of MB-MDR that can be applied to structured populations. We have
introduced four approaches: two based on principles of genomic control as developed
for GWAs and two based on using principal components as continuous axes of genetic
variation.

The STRAT1 algorithm is the immediate extension of Devlin and Roeder [25] for
GWAIs. This algorithm produces the exact same ranking as the original maxT al-
gorithm, with different p-values and has hence not the potential to discover pairs of
SNPs not identified by maxT. However, it can be regarded as a method to reduce the
FWER of the maxT algorithm, observed in the presence of population stratification.
The interpretation of the inflation factor as defined in STRAT1 is different than the
one in Devlin and Roeder. There the aim is to estimate the inflation of the variance
of the test statistic. In MB-MDR we have a particular situation in that there is no
closed form for the theoretical distribution of the MB-MDR test statistics. So there is
no closed form for the variance of these statistics either. Earlier work [80] revealed the
impact of highly varying MAFs on MB-MDR test distributions. In the basic STRAT1
idea, the primary aim was not to estimate variance inflation, but to account for overly
optimistic results in a naive, yet easy to compute, way. Therefore, an immediate gen-
eralization could be to compute variances V1 and V2 instead of medians M1 and M2.
In the original implementation of Devlin and Roeder of an estimated inflation factor
lamda, the assumption was made that the same factor could be used for all test statis-
tics. One of these assumptions was based on inbreeding values being rather similar
across SNPs. Roughly translated to the epistasis scene: is a tendency towards multi-
locus homozygosity in subpopulations compared to the entire population, stable across
SNP pairs? We hypothesize that this may be too strong an assumption (pilot work
under progress - results not shown). This led to the creation of STRAT2.

The STRAT2 algorithm is a method based on test-specific inflation factors, that has
the potential to find significant pairs of SNPs, that could neither be identified by the
maxT algorithm, nor by the gammaMAXT or STRAT1 one. To make the basic idea
work in practice, several accommodations were needed, leading to a potential increase
of the FWER. However, in practice, the order of magnitude of pairs of SNPs identified
is similar to what is obtained via the maxT algorithm. Only recently, we came across
a paper that also uses ideas of creating test-specific corrections [132]. Notably, these
authors use effect size estimates to construct test-specific inflation factors. An effect size
is a quantitative measure for the strength of the association. MB-MDR does not readily
provide these, as using a function of the MB-MDR test values directly to estimate some
sort of effect size will lead to winner’s curse problems [144]. When estimated effect
sizes or penetrances are based on the original data used to detect the signal, the results
are affected by an ascertainment bias known as the “winner’s curse”. In addition, the
reported MB-MDR test values are the result of an accumulation of association evidences
built on the same data set each time. Their variability can therefore not be computed
via theoretical distributions. This was also the reason to adhere to permutation tests
for significance assessments. Theoretical distributions for the final testing step in MB-
MDR no longer hold due to the aforementioned accumulation process.

136

Chapter 4 4.4 Discussion

The principal component method is inherently unable to completely account for
the impact of population stratification [132]. Due to the popularity and wide-spread
use of principal components for genome-wide association studies in structured popula-
tions, we explored how PCs can be inserted in the MB-MDR framework. Either they
are regressed out up front and residuals are submitted to MB-MDR as new traits, or
they are considered as categorical adjustments to the tests implemented in MB-MDR.
These tests are the multilocus genotype prioritization tests and the final MB-MDR
test statistic based on an aggregate of the multilocus. Rather than setting up simplis-
tic simulation scenarios in which we can formally evaluate the proposed strategies for
MB-MDR in structured populations, we focused on a real-life data application. Table
4.12 compares the number of significant SNP pairs found in the different experiments
performed in this chapter on the IBD data (except the experiments correcting for gen-
der, which have been shown to lead to almost the same results as without correction).
Figure 4.8, indicates the amount of common results across the methods of Table 4.12.

Table 4.12: Amount of SNP pairs having a p-value < 0.05 on the discovery data, on
the replication data and on both datasets, depending on the method used.

Method discovery replication in both
gammaMAXT with default options 50 216 31
STRAT2 with a two-stage approach 9 21 9
gammaMAXT with 10 PCs correction (residuals-based) 120 169 25
gammaMAXT with cluster correction (on-the-fly) 210 93 (∗) 18
(*) However, note that many SNP pairs are marginally not significant at 5%, i.e. 213 SNP pairs have a p-value ≤ 5, 1%.

(a) discovery (b) replication (c) in both

Figure 4.8: Venn diagram of the results of Table 4.12

Since the IBD data is consortium one, population structure is bound to occur. The
fact that STRAT2 leads to significantly less hits than gammaMAXT with the default
options, suggests that STRAT2 corrects strongly for unmeasured confounding factors,
yet maybe too much. On one side, more optimal results are expected with genomic
kinship control in structured populations, i.e. leading to less false positive interactions.
On the other side, the two-stage approach that had to be put in place to take account
of the fact that STRAT2 requires a lot of additional computing time may have lowered
the power. Indeed, focusing on a subset of the SNP pairs at our disposal, may alter
our estimation of the null. Undoubtedly, the sample of investigated SNPs is not an
independent and identically distributed one anymore, since it contains pair of SNPs
that have higher chances to be regarded as associated to the outcome. This can lead

137

Chapter 4 4.4 Discussion

to a right shift of the head of the null distribution. As a consequence, the observed
values will be compared to higher values than they should, leading to a power decrease.
However, the fact that the selection of the SNP pairs to investigate is performed on
another dataset than the one on which the analysis itself is performed, should soften
this potential issue. Indeed, the SNP pairs that are not linked to the disease, but lead
to a high test-statistic by chance on a particular dataset, do probably not also lead to
a large test-statistic on another dataset.

We notice that the number of significant SNP pairs is significantly higher on the
replication data than on the discovery one4. Since this is in particular also true when
gammaMAXT is used with the default options (a setting that has been tested inten-
sively on synthetic data), we don’t expect that this is due to an issue with the method.
In fact, a closer look at the partition performed by the epistasis working group of the
IIBDGC to split the original data into the discovery and replication one, reveals that
the subjects have not been assigned totally randomly to the datasets. In reality, the
IBD data is composed of several batches of subjects with different origins and in prac-
tice whole batches have been kept together. Hence, the characteristics of the subjects
belonging to the discovery data may be slightly different from those belonging to the
replication one. In the rest of the discussion, we focus on the results obtained on the
discovery data, which may contain less false-positives.

The fact that the on-the-fly correction method lead to more significant results than
the residuals-based one (210 vs 120) can seem strange at first. In fact, this comes from
the fact that the residuals-based and on-the-fly method do not rely on the same null
hypothesis. Indeed, in the on-the-fly correction method, we have computed clusters
and use cluster membership as a new categorical covariate to correct for. However, the
correction itself is performed within the low-level functions of mbmdr-4.4.1.out that
compute the test-statistics. The architecture of the software separates these function
from the high-level ones presented in Chapter 3 to correct for multiple-testing. How-
ever, the latter are all based on the idea that the trait values should be permuted. As
a consequence, the cluster stays with the SNP values and not with the trait values, i.e.
the null hypothesis behind the on-the-fly correction method is that the trait values are
not associated with the cluster and SNP values. In the residuals-based method yet, the
residuals are used as new outcome variable, so that the shared ancestry information
is now implicitly permuted with the trait values. The null hypothesis in this case is
hence that the trait values and subpopulation belongings are not associated with the
SNP values. Hence, a perspective of this thesis is to write a new option to permute
the categorical covariates together with the trait values. This would allow users to test
both null hypothesis, the new option being more in line with the residuals-based one
and enabling a better comparison of their respective results.

As we can see, the real-life application on IBD presented in this chapter, gives
further food for thought to ameliorate our approaches, prior to extensive and compu-
tationally intensive analysis runs. The importance we give to real-life applications as
part of a feed-back/feed-in loop to methods improvement is highlighted by the examples
we give in the next chapter.

4 Except for the last method reported in Table 4.12, where this amount is similar if the (*) is taken
into account.

138

Chapter 5

Learning from data

5.1 Outline

In this chapter, we present a few practical data analyses methods that helped us to
increase our understanding of the issues that GWAIs involves in practice and to develop
novel methods. This chapter addresses four different analytic problems. First, taking
structured populations correctly into account. This problematic was already intensively
discussed in Chapter 4 and a data analysis was already performed on the IBD data.
However, in the course of this PhD, other experiments were performed in our lab on
the IBD data and the most relevant ones are described here. This leads to interesting
results from a biological point of view, demonstrating that the methods proposed in
Chapter 2 allows to identify pairs of SNPs having high chances to be associated to
a disease. The pros and cons of using another approach than MB-MDR are also
discussed shortly. Second, we analyze data on asthma disease to show that non-genetic
factors cannot be overlooked. They can be important predictors for disease-related
traits on their own, but they can also modify genetic effects or genetic interactions.
Therefore, in this experiment, we investigate the flexibility of our software to discover
GxE interactions. Third, we validate the survival part of our software, which was so
far only described from a theoretical point of view in this manuscript. Censored traits
can be seen as a form of missingness and are omnipresent in clinical practice (time to
disease progression, time to death, time to first replace, ...). Not so many tools exists
that can rapidly and efficiently carry out a GWAIs with categorical variables. In this
experiment, we also test the effect of LD pruning on power. We give users an idea
of what they can expect from an analysis, depending on the number of individuals
available in their study and the heritability of the disease under investigation. Fourth,
we discuss the issues linked with deriving biological interpretations or novel hypothesis
from the pairs of SNPs identified by our software. We have shown throughout the thesis
that it is important to interpret statistical epistasis findings in the context of potential
marginal effects. For this reason, we propose a tool for visualizing main effect and
pairwise-interactions results at a glance. We demonstrate the tool on data on Crohn’s
disease. Finally, we present the first results of an undergoing analysis of real-life data
on Coronary artery disease (CAD). However, since these results are not published yet
and since the data cannot be shared with other parties, the SNP names have been
replaced by dummy ones (snp1, snp2, snp3, . . .). In this way, the results can be kept
confidential until publication.

139

Chapter 5 5.2 MB-MDR for structured population

5.2 MB-MDR for structured population

Handling structured population in MB-MDR was already densely discussed in Chapter
4. An analysis of data on IBD disease was used to validate the methods. However,
in the course of this PhD, other experiments were performed in our lab on this data
and the most relevant ones are presented here. Since the IBD data is consortium one
(a compilation of data from different institutions in different countries), population
structure is bound to occur. Hence, this data is a good testbed for this section.

In [44], the gammaMAXT algorithm was used to analyze both the discovery and
replication datasets described in Section 4.2.2. This analysis was performed at a time
when the residuals-based and on-the-fly correction methods were not developed yet.
Therefore, the approach adopted in the lab was similar to the path adopted by collabo-
rators on this project, namely to use PCs as newly constructed variables that can then
be taken into account in the analysis. For regression-based analysis this is obvious: one
simply includes them as extra covariates in the model. However, even when adhering
to a regression framework, it may not be possible to readily include covariates. It is
highly dependent on properties of software packages. For instance, BOOST [131], one
method of choice with our collaborators, cannot include covariates and thus PC ad-
justments need to be made via a two-stage analysis approach: screening with BOOST,
and following up with classic logistic regressions (glm in R) that naturally allow for
covariate adjustments. In [44], GenABEL was used to compute residuals based on the
top 5 PCs. This analysis leads to 14 significant pairs of SNPs associated to Crohn’s
disease and 6 associated to ulcerative colitis. All SNP-pairs involved concomitant vari-
ants located on the same chromosome. For CD, they are located at 1p31.3, 5p13.1 and
16q12.1, susceptibility regions already discovered in Chapter 4. As explained in the
latter, using PCs outside of the software package is suboptimal and thus more research
followed, leading to the STRAT2 algorithm and the on-the-fly correction method.

Another experiment that was performed in the lab on the IBD data is interesting
to mention, because it takes another approach than using PCs. This work was done in
the context of the BMC Bioinformatics 2013 paper [125], at a time when the STRAT1,
STRAT2, residuals-based and on-the-fly correction methods were not developed yet. A
real-life data analysis on the CD part of the IBD data was used [73, 5]. The idea of this
work was mainly to discuss the speed performances of Van Lishout’s implementation
of maxT and provide more insight into the disease and the capabilities of the mbmdr-
3.0.3.out software. A cleansing process on the CD was performed, giving rise to a set
of 1687 unrelated Caucasians (676 CD patients and 1011 healthy controls) and 311,192
SNPs [125]. This experiment was performed before gammaMAXT was discovered and
analyzing the whole dataset would have taken years. Therefore, Biofilter.0.5.1 [10]
has been used as an additional data preparation step. It uses a knowledge-driven
approach to prioritize genetic markers in gene-gene interaction screening while reducing
the search space. In particular, Biofilter allows the explicit detection and modeling
of interactions between a large set of SNPs based on biological information about
gene-gene relationships and gene-disease relationships. The knowledge-based support
for the models is attributed by implication index, which is simply a number of data
sources that provide evidence of gene-gene interaction or gene-disease relationship, and
is calculated by summing the number of data sources supporting each of the two genes
and the connection between them (see [10] for more details).

140

Chapter 5 5.2 MB-MDR for structured population

In practice, to make the prioritization procedure in Biofilter more focused on CD,
we applied a list of candidate genes for CD (120 genes collected from the publications
[5, 99, 34, 62, 24]) and 160 groups (collected basing on selective search in Biofilter
using keywords crohn, enteritis, inflam, autoimmune, immune, bowel, gastrointest,
ileum, ileitis, intestine, lleocolic, diarrhea, stenosis and cytokine). Using this approach
we ended up with 12,471 SNPs that we further analyzed in MB-MDR. Table 5.1 lists
all the discovered statistically significant interactions.

Table 5.1: SNP-SNP interactions having a multiple testing corrected p-value < 0.05

Rank first SNP second SNP p-value
1 rs11209026 rs7573680 0.004
2 rs11465804 rs7573680 0.017
3 rs11209026 rs2064689 0.018
4 rs11209026 rs6911639 0.021
5 rs11209026 rs4766584 0.023
6 rs11465804 rs2064689 0.025
7 rs11465804 rs4766584 0.028
8 rs11465804 rs6911639 0.029
9 rs11465804 rs10849401 0.033
10 rs11209026 rs296513 0.037
11 rs1343151 rs2076756 0.04
12 rs11209026 rs10849401 0.044
13 rs11209026 rs7786745 0.048
14 rs11209026 rs4655683 0.048

Note that the results of Table 5.1 are adjusted for testing 77 756 685 pairs of SNPs.
Table 5.2 shows the genomic location of the SNPs involved in these significant SNP-
SNP interactions.

Table 5.2: Location of the SNPs involved in a significant SNP-SNP interaction

SNP Position Gene
rs11209026 chr1:67705958 IL23R
rs11465804 chr1:67702526 IL23R
rs7573680 chr2:240169077 HDAC4
rs2064689 chr1:67653010 IL23R
rs6911639 chr6:32978178 HLA-DOA
rs4766584 chr12:109663581 ACACB
rs296513 chr1:200906473 C1orf81
rs10849401 chr12:6273238 intergenic
rs7786745 chr7:18422684 intergenic
rs4655683 chr1:67611613 intergenic
rs1343151 chr1:67719129 IL23R
rs2076756 chr16:50756881 NOD2

141

Chapter 5 5.2 MB-MDR for structured population

The following discussion of these results is mainly taken from my BMC Bioinformat-
ics 2013 publication [125]. This biological interpretation was mainly written by Isabelle
Cleynen, one of my co-authors on this paper. A total of 13 out of 14 significant inter-
actions involve rs11209026 or rs11465804. Both SNPs are located in the interleukin-23
receptor (IL23R) gene, a known susceptibility gene for CD. The SNP rs11209026 is a
non-synonymous coding SNP (Arg381Gln substitution), while rs11465804 is intronic
and in strong linkage disequilibrium (LD) with rs11209026 (r2=0.97). In the original
GWA studies [73], rs11209026 and rs11465804 gave the most significant association
signals with p < 10−9. Given the strong association between the SNPs, it is to be ex-
pected that all interactions found for one SNP are also found for the other (Table 5.1).
The most significant interaction is between rs11209026 and rs7573680 (p=0.004). The
latter is an intronic SNP located in HDAC4 (histone deacetylase 4). Figure 5.1 shows
a Synergy Disequilibrium (SD) plot [133] for the SNPs listed in Table 5.1. Synergy
is defined as the amount of information that can be obtained about the trait T by
observing the pair of SNPs, minus the sum of the amounts of information that can be
obtained about T by observing the two SNPs separately:

I(SNP lj, SNP rj; T)− [I(SNP lj; T) + I(SNP rj; T)] (5.1)

A positive synergy value is represented in red and suggests epistasis (a part of the
information given by the two SNPs on the disease is attribuable to a purely cooperative
interaction between the two SNPs). A negative synergy value is represented in blue and
indicates that the two SNPs are redundantly associated with the trait [133]. An SD plot
is able to highlight disease-associated haplotypes, as well as epistatically interacting
loci with respect to disease.

Figure 5.1: SD plot of potential epistasis interactions between the loci indicated in
Table 5.1. Since there are no high-intensity red squares, strong epistasis is probably
not present. This is inline with the fact that when we adjust the MB-MDR screen
for main effects, no significant SNP pair is relevant [80].

142

Chapter 5 5.2 MB-MDR for structured population

Several studies have suggested that different signals exist in IL23R, conferring risk
or protection to Crohn’s disease. A study by Taylor et al [114], where they aimed to esti-
mate the total contribution of the IL23R gene to CD risk using a haplotype approach,
showed that the population attributable risk for these haplotypes was substantially
larger than that estimated for the IL23R Arg381Gln variant alone. MBMDR-3.0.3
identified several “epistatic” signals from pairs of SNPs located in the IL23R gene. It
should be noted though that epistasis signals on SNPs in LD are considered to be
non-synergetic.

The MB-MDR discoveries on Crohn’s disease also seem to give us a new work-
ing hypothesis to expand on the current knowledge (histone deacetylation). Indeed,
histone deacetylation results in a compact chromatin structure commonly associated
with repressed gene transcription (epigenetic repression), and hereby plays a critical
role in transcriptional regulation, cell cycle progression and developmental events. Al-
though not known to physically interact directly, IL23R and HDAC4 could be linked
trough MAPK1/STAT3 signaling: MAPK1 has been shown to associate with phospho-
rylate HDAC4 [143]. Protein phosphorylation regulates the corepressor activity of the
deacetylase. MAPK1 also acts as an important activator of STAT3 (signal transducer
and activator of transcription 3) which is an essential regulator of immune-mediated
inflammation. In addition, the IL23/IL23R pathway modulates STAT3 transcriptional
activity, and recently it has been shown that CD8+ T cells from Arg381Gln IL23R
carriers showed decreased STAT3 activation compared with WT CD8+ T cells [104].
It can thus be hypothesized that a balanced action between the HDAC1/MAPK1 and
IL23/IL23R pathways, converging on STAT3 signaling, are important for CD patho-
genesis. To be complete, note that the new working hypothesis presented here (histone
deacetylation) may not have clinical/biological significance since our conclusions are
based on rs7573680, an intronic SNP located in HDAC4. Indeed, identification of
gene-gene variants within coding regions is raither straightforward as they have impact
on the protein sequences, whereas intergenic variants are less likely to have a direct
effect. Only when they reside for instance in ultra conserved elements such as listed in
the Vista enhancer database, they can interfere with transcription of genes and have
clinical/biological significance [130].

This analysis shows that the methods of Chapter 2 allows to identify pairs of SNPs
that may truly be associated to the disease. However, since the results are not corrected
for unmeasured confounding factors, some hits may just be false positives. Further-
more, available covariates like gender and age were not taken into account. In this
manuscript, we have intensively spoken about correcting for such factors. However,
MB-MDR also allows to test if such factors directly modifies genetic effects or genetic
interactions, as discussed in Chapter 2. Indeed, mbmdr-4.4.1.out cannot only perform
GxG interaction analysis, but also GxE and GxGxE ones. These features have not
been applied yet in this manuscript and an example of such an analysis is given in the
next section.

143

Chapter 5 5.3 Nature versus nuture

5.3 Nature versus nuture

Non-genetic factors cannot be overlooked in GWAIs. They can be important predictors
for disease-related traits on their own, but they can also modify genetic effects or genetic
interactions. Therefore, in this section, we investigate the flexibility of our software
to analyze GxE interactions. This work was done in the context of the ASHG 2013
conference in Boston [121].

Using phenotypic and GWAS genotype data available through the Single nucleotide
polymorphism Health association Asthma Resource Project (SHARP), we analyze the
difference in pre-bronchodilator FEV1 in patients following or not ICS therapy for
a period of 8 weeks, for 550 pediatric Caucasian CAMP (ages 5-12) subjects [112].
The trait of interest is prech_short expressed on a continuous scale and represents a
relative difference in preFEV1. The environmental variable is dichotomous and refers
to inhaled corticosteroids therapy (ICS) based on budesonide. If ICS is administrated
it is coded 1 and 0 otherwise.

We analyze 550 samples containing no reported family structure. Missing geno-
types were MaCH-imputed using 1000 Genomes Project Reference Panels resulting in
8,221,073 SNPs. Since the T-gene was found to be associated to asthma, a total of
50 SNPs found in the coding part of the T-gene (chr6:166,491,076-166,501,355) were
added to the marker panel. Genotype data QC steps consisted of the following steps:

1) LD pruning (via PLINK) with maximum r2 between-markers of 0.05, 0.2, 0.50,
0.75 and 0.8 respectively (LD pruning thresholds).

2) Removal of poorly annotated SNPs.

3) Removal of SNPs not present in the dbSNP database.

4) Removal of SNPs with MAF< 0.05.

5) HWE at 10−8.

Samples and their genotypes passing QC were extracted with PLINK. The final
subset consisted, for instance, in the case of r2 = 0.2 of 283,665 markers with population
inflation factor λ=1.001 (minimal population stratification effects). Genetic Identity-
by-State (IBS) kinship matrix was calculated using allelic frequency and applied as
part of polygenic model. Trait residuals were computed from trait sex+age+BMI
based on a polygenic regression model using observed kinships (GenABEL 1.7.6). The
datasets were taken as input to mbmdr-4.0.1.out.

MB-MDR 2D analysis

We first perform a SNP-environmental interaction analysis with the command:

./mbmdr-4.0.1.out --continuous -f steroid_drug thedataset.txt

Tables 5.3-5.7 show the results when the LD pruning is respectively at 0.05, 0.2, 0.5,
0.75 and 0.8.

144

Chapter 5 5.3 Nature versus nuture

Table 5.3: Significant SNP-environment pairs found with LD pruning at 0.05

SNP environment variable MB-MDR statistic p-value
rs1840125 steroid_drug 30.919 0.025
rs62385586 steroid_drug 30.574 0.03
rs7832479 steroid_drug 29.159 0.052

Table 5.4: Significant SNP-environment pairs found with LD pruning at 0.2

SNP environment variable MB-MDR statistic p-value
rs10105588 steroid_drug 44.367 0.001
rs4361508 steroid_drug 37.700 0.003
rs6668694 steroid_drug 32.879 0.033

Table 5.5: Significant SNP-environment pairs found with LD pruning at 0.5

SNP environment variable MB-MDR statistic p-value
rs10105588 steroid_drug 44.367 0.004
rs11123492 steroid_drug 43.814 0.004
rs12823753 steroid_drug 43.013 0.004
rs4361508 steroid_drug 37.700 0.019
rs6458016 steroid_drug 35.611 0.033
rs13126782 steroid_drug 35.007 0.041
rs3819722 steroid_drug 34.891 0.042

Table 5.6: Significant SNP-environment pairs found with LD pruning at 0.75

SNP environment variable MB-MDR statistic p-value
rs11902232 steroid_drug 46.461 0.001
rs10105588 steroid_drug 44.367 0.003
rs11123492 steroid_drug 43.814 0.005
rs12823753 steroid_drug 43.013 0.006
rs4361508 steroid_drug 37.700 0.029
rs6458016 steroid_drug 35.611 0.05

Table 5.7: Significant SNP-environment pairs found with LD pruning at 0.8

SNP environment variable MB-MDR statistic p-value
rs11902232 steroid_drug 46.461 0.001
rs10105588 steroid_drug 44.367 0.003
rs11123492 steroid_drug 43.814 0.003
rs12823753 steroid_drug 43.013 0.003
rs35480637 steroid_drug 39.605 0.011
rs4361508 steroid_drug 37.700 0.019
rs6458016 steroid_drug 35.611 0.049

We observe that none of the SNP-environment pairs found in Tables 5.4-5.7 appear
in Table 5.3. This implies that either all results of Tables 5.4-5.7 are false-positives,
which would be very surprising, or that pruning at 0.05 removes too much signal. The
SNPs rs10105588 and rs4361508 are found in all analysis with an LD pruning value of
0.2 or more. These should be investigated from a biological point of view.

145

Chapter 5 5.3 Nature versus nuture

MB-MDR 3D analysis

The 2D analysis showed that pruning at 0.05 may remove too much (potentially im-
portant) SNPs. For this reason, we start this 3D analysis with a pruning at 0.2. We
obtain the results from Table 5.8.

Table 5.8: Significant SNP-SNP-environment triplets found with LD pruning at 0.2

SNP1 SNP2 environment variable MB-MDR statistic p-value
rs61779746 rs12465925 steroid_drug 96.258 0.001
rs4894458 rs2076408 steroid_drug 92.422 0.001
rs13424105 rs661059 steroid_drug 80.651 0.005
rs7001245 rs11782903 steroid_drug 80.262 0.005
rs2490544 rs476646 steroid_drug 79.225 0.007
rs7001245 rs4434656 steroid_drug 79.157 0.007
rs28538891 rs13258014 steroid_drug 78.943 0.007
rs4776560 rs12951840 steroid_drug 78.742 0.008
rs61779746 rs10889296 steroid_drug 78.528 0.008
rs244404 rs11251120 steroid_drug 77.071 0.008
rs244404 rs7916097 steroid_drug 76.962 0.008
rs3098325 rs10415616 steroid_drug 76.770 0.008
rs1792325 rs8100069 steroid_drug 76.273 0.01
rs244404 rs11251133 steroid_drug 76.153 0.01
rs508370 rs759909 steroid_drug 75.674 0.011
rs2063995 rs6481397 steroid_drug 75.369 0.012
rs9850675 rs10982024 steroid_drug 74.423 0.016
rs56347641 rs7702195 steroid_drug 74.359 0.016
rs11585329 rs62164102 steroid_drug 74.258 0.016
rs10208913 rs739900 steroid_drug 73.303 0.023
rs2493929 rs1410936 steroid_drug 73.018 0.03
rs993908 rs12540872 steroid_drug 72.973 0.03
rs4879560 rs1410936 steroid_drug 72.906 0.031
rs2063995 rs12298457 steroid_drug 72.813 0.031
rs989312 rs55843044 steroid_drug 72.707 0.032
rs7625876 rs12892727 steroid_drug 72.636 0.032
rs61779746 rs4585362 steroid_drug 72.512 0.034
rs523395 rs35578731 steroid_drug 72.508 0.034
rs1580312 rs1432805 steroid_drug 72.502 0.034
rs4894458 rs2095343 steroid_drug 72.444 0.034
rs858549 rs7319633 steroid_drug 72.270 0.036
rs6544315 rs55870158 steroid_drug 72.185 0.038
rs9595453 rs12441091 steroid_drug 72.181 0.038
rs1990608 rs55870158 steroid_drug 72.043 0.042
rs6696341 rs9876895 steroid_drug 71.851 0.045
rs1432805 rs362509 steroid_drug 71.717 0.045
rs6820227 rs28434700 steroid_drug 71.648 0.045
rs2490544 rs13119846 steroid_drug 71.628 0.046
rs12711727 rs9705930 steroid_drug 71.393 0.047

146

Chapter 5 5.3 Nature versus nuture

We observe that the 3D analysis already leads to a lot of significant results with
LD pruning at 0.2. We observe that the SNPs rs10105588 and rs4361508 found in
the 2D analysis do not appear in this list. We therefore assume that these are directly
interacting with steroid_drug. The fact that the number of 3D results is so important is
difficult to interpret. An attempt is that the biology of the disease is more complex than
direct interactions and that 3D analysis opens the door to see some parts of a complex
graph network behind the disease. For instance, the interaction of several SNPs with
steroid_drug could be required to start some biological processes, not starting when
only a single SNP is present. Note that the fact that there are much more 3D interaction
candidates than 2D ones can also play a role here. The results with higher values of
LD pruning than 0.2 are not shown, since they also lead to a lot of significant results
and are similarly difficult to interpret than the ones from Table 5.8.

In this section, we have shown that our software is easy to use to conduct a GxE
or GxGxE interaction analysis. This is an asset compared to many other interaction
software. Another edge of the software is that it adequately takes care of missingness.
Chapter 2 describes an optimal strategy to take account of missing SNP values. Fur-
thermore, censored data can be seen as a form of missingness as well and are handled
flexibly in our software. However, this was not demonstrated on data yet in this thesis
and an example of such an analysis is given in the next section.

147

Chapter 5 5.4 Censoring

5.4 Censoring

Censored traits are omnipresent in clinical practice (time to disease progression, time
to death, time to first relapse, ...). Not so many tools exist that can rapidly and
efficiently carry out a GWAIs with varying numbers of factor levels. One possibility is
randomForestSRC [56]. Random Forests have indeed been discussed as an alternative
method to detect interactions [138]. Alternatively, a kernel machine Cox regression
framework is employed in [74]. In the versions of our software up to mbmdr-4.3.2.out
(included), the survival part was solely based on the logrank test. Due to the interesting
properties of Cox regression, we extended our software to allow users to adopt the Cox
model to correct for main effects (see Section 2.4.2) and covariates (see Section 4.3.1).
The work presented in these sections is in fact a very recent, unpublished one.

A simulation study was conducted to analyze the power and type I error rate of
mbmdr-3.0.0.out in the case of a trait expressed on a survival scale, based on the
logrank test. This contribution has been accepted for oral presentation at the ERCIM
2012 conference in Oviedo [126]. The effect of different parameters is measured: the
hazard ratio (2, 4 or 6), the minor allele frequency (0.2 or 0.4), the censoring rate (20%
or 50%), the heritability (0.2 or 0.4) and the number of individuals (200, 400, 800 or
1600). This gives rise to a total of 3× 2× 2× 2× 4 = 96 different settings. For each
possible setting, 100 datasets are generated. We create the new datasets starting from
the balanced case-control datasets (consisting of 1000 attributes) at

http://discovery.dartmouth.edu/epistatic_data/.

To transform this data for which the trait is expressed on a binary scale into a
survival one, we generate a new trait value from aWeibull(a0, b0) for the former controls
and from a Weibull(a1, b0) for the former cases [134]. The parameter a1 is selected in
such a way that the hazard ratio (HR) matches the prespecified values. We generate
the censoring variable according to a uniform distribution U [0, cmax]. The parameter
cmax is selected so that the censoring approximately matches the pre-specified values.
Tables 5.9-5.12 shows the power results, i.e. the percentage of times that the causal
pair is found, in the different scenarios.

Table 5.9: Percentage of times that the causal pair is found (200 individuals)

200 individuals MAF=0.2 MAF = 0.2 MAF = 0.4 MAF = 0.4
h2=0.2 h2=0.4 h2=0.2 h2=0.4

Cens=20% HR=2 1% 18% 1% 6%
Cens=20% HR=4 11% 79% 21% 43%
Cens=20% HR=6 30% 99% 40% 78%
Cens=50% HR=2 1% 8% 0% 1%
Cens=50% HR=4 7% 61% 10% 30%
Cens=50% HR=6 28% 91% 24% 51%

148

Chapter 5 5.4 Censoring

Table 5.10: Percentage of times that the causal pair is found (400 individuals)

400 individuals MAF=0.2 MAF = 0.2 MAF = 0.4 MAF = 0.4
h2=0.2 h2=0.4 h2=0.2 h2=0.4

Cens=20% HR=2 8% 48% 10% 25%
Cens=20% HR=4 51% 99% 72% 95%
Cens=20% HR=6 74% 100% 90% 100%
Cens=50% HR=2 2% 20% 2% 12%
Cens=50% HR=4 38% 96% 51% 81%
Cens=50% HR=6 68% 100% 83% 98%

Table 5.11: Percentage of times that the causal pair is found (800 individuals)

800 individuals MAF=0.2 MAF = 0.2 MAF = 0.4 MAF = 0.4
h2=0.2 h2=0.4 h2=0.2 h2=0.4

Cens=20% HR=2 23% 83% 38% 71%
Cens=20% HR=4 93% 100% 99% 100%
Cens=20% HR=6 99% 100% 100% 100%
Cens=50% HR=2 10% 65% 23% 46%
Cens=50% HR=4 84% 100% 95% 100%
Cens=50% HR=6 98% 100% 100% 100%

Table 5.12: Percentage of times that the causal pair is found (1600 individuals)

1600 individuals MAF=0.2 MAF = 0.2 MAF = 0.4 MAF = 0.4
h2=0.2 h2=0.4 h2=0.2 h2=0.4

Cens=20% HR=2 79% 99% 91% 100%
Cens=20% HR=4 100% 100% 100% 100%
Cens=20% HR=6 100% 100% 100% 100%
Cens=50% HR=2 45% 95% 73% 95%
Cens=50% HR=4 100% 100% 100% 100%
Cens=50% HR=6 100% 100% 100% 100%

The most obvious observation is that power increases when the number of subjects
rises. Datasets containing only 200 subjects are too small to reach a good power, except
when the heritability and hazard ratio are both very strong. Doubling the number of
individuals already improves the results significantly, but the best results are of course
observed with 1600 individuals. Recall that the runs have all been performed with the
default option of the software, i.e. the logrank test. At the time of this publication,
the Cox model was not implemented yet. Anyway, running all these analyses with the
latter would not have been possible, because the overall computing times would have
required years. Tables 5.13-5.16 shows the FWER results, i.e. the percentage of times
that at least one non causal pair is incorrectly found, in the different scenarios.

149

Chapter 5 5.4 Censoring

Table 5.13: Percentage of datasets leading to at least one false-positive (200 subjects)

200 individuals MAF=0.2 MAF = 0.2 MAF = 0.4 MAF = 0.4
h2=0.2 h2=0.4 h2=0.2 h2=0.4

Cens=20% HR=2 1% 7% 7% 5%
Cens=20% HR=4 5% 5% 8% 4%
Cens=20% HR=6 5% 2% 8% 6%
Cens=50% HR=2 3% 2% 6% 2%
Cens=50% HR=4 2% 9% 7% 2%
Cens=50% HR=6 5% 0% 4% 6%

Table 5.14: Percentage of datasets leading to at least one false-positive (400 subjects)

400 individuals MAF=0.2 MAF = 0.2 MAF = 0.4 MAF = 0.4
h2=0.2 h2=0.4 h2=0.2 h2=0.4

Cens=20% HR=2 3% 5% 8% 5%
Cens=20% HR=4 7% 1% 7% 7%
Cens=20% HR=6 2% 1% 5% 3%
Cens=50% HR=2 1% 3% 1% 2%
Cens=50% HR=4 6% 6% 4% 2%
Cens=50% HR=6 8% 10% 6% 3%

Table 5.15: Percentage of datasets leading to at least one false-positive (800 subjects)

800 individuals MAF=0.2 MAF = 0.2 MAF = 0.4 MAF = 0.4
h2=0.2 h2=0.4 h2=0.2 h2=0.4

Cens=20% HR=2 2% 6% 9% 4%
Cens=20% HR=4 5% 2% 3% 6%
Cens=20% HR=6 7% 4% 8% 6%
Cens=50% HR=2 4% 7% 3% 6%
Cens=50% HR=4 6% 9% 3% 5%
Cens=50% HR=6 1% 1% 4% 1%

Table 5.16: Percentage of datasets leading to at least one false-positive (1600 subjects)

1600 individuals MAF=0.2 MAF = 0.2 MAF = 0.4 MAF = 0.4
h2=0.2 h2=0.4 h2=0.2 h2=0.4

Cens=20% HR=2 7% 3% 5% 7%
Cens=20% HR=4 7% 6% 6% 4%
Cens=20% HR=6 5% 4% 3% 5%
Cens=50% HR=2 6% 6% 4% 6%
Cens=50% HR=4 8% 7% 10% 10%
Cens=50% HR=6 3% 2% 4% 2%

In most of the case, we note that the estimated rates are below or within the
interval [2, 5% − 7, 5%] and satisfies thus Bradley’s liberal criterion of robustness for
the significance level α = 5% [8]. However, since we work with only 100 datasets per
settings (working with 1000 datasets to avoid this issue would have required months),
it is not a surprise that some values are outside of this range. The averages of tables
5.13-5.16 (respectively 4.6, 4.4, 4.7 and 5.4) are nonetheless all inside the range. In the
next section, we discuss the interpretability of the results found by our software.

150

Chapter 5 5.5 Interpretation and visualization

5.5 Interpretation and visualization

In terms of deriving biological interpretations or formulating novel hypotheses, extra
value can be obtained by constructing statistical epistasis networks. However, as we
have shown throughout the thesis, it is important to interpret statistical epistasis find-
ings in the context of potential marginal effects. When an ordered list of significant
SNP pairs after an MB-MDR run shows an aggregation of 1 or a few SNPs, it may
point towards the importance of the SNP or a problem with the main SNP effect not
adequately being removed from the signal. That is why we created MoG-Plot (Manhat-
tan over Grail plot), an R tool used internally to visualize main-effect and interaction
results at a glance. The generated figure also localize the genes on their chromosomes,
facilitating interpretability. It was based on a poster presentation of Ben Grady at the
ASHG in which he presented a schematic “solar” plot of negative log p-values of results
from a primary case–control analysis of mtDNA variants associated with CD4 count
change ≥ 100 at 48 weeks [42]. Mitochondrial DNA is naturally represented in circular
form but it inspired us to also use this representation to overlay results from a GWAs
with results from an MB-MDR epistasis runs. Interestingly, independent from our ef-
forts, another group also had the idea to use such circular representations to visualize
connections between disease loci [98]. GRAIL plots (as they called their visualizations)
are primarily based on evidences from the literature, whereas our plots are based on
evidence from an epistasis screen on real-life data.

The R code of MoG-Plot takes as argument two files:

• a file containing a list of SNPs and the p-values representing their main effects
for a particular disease

• a file containing a list of pairs of SNPs and the p-values corresponding to their
interaction effects for the same disease

The R function produces a graphic that is a mixture of a Manhattan plot (except
that it is presented on a circle) and a grail plot[98]. This allows to study visually
the relation between the main effects and the interactions. By default, the files are in
MB-MDR format, but the code is trivial to adapt to other formats. MoG-Plot requires
the R libraries SNPlocs.Hsapiens.dbSNP.20120608, biomaRT, GenomicFeatures and
GenomicRanges. These libraries can be download at bioconductor [40]. The program
first constructs a database of the transcripts/genes based on the human genome version
19. This step needs to be executed only once, the database can then be used to generate
as many figures as needed. MoG-Plot associated each SNPs of the input files to their
chromosome number and position. The p-values of the first input file are changed on
a -log(10) scale for the manhattan-like circular part of the figure.

In order to highlight the graphical capacities of MoG-Plot, we analyze two files
constructed from the real-life data on Crohn’s disease described in Section 5.2. The
first file has been obtained by running a main effect analysis with mbmdr-4.0.1.out on
the reduced dataset composed of 12,471 SNPs described in Section 5.2. It contains
the 12,471 SNP names and the corresponding p-values. The second file has been
obtained by running an interaction analysis with mbmdr-4.0.1.out on the same dataset.
It contains the names of the top 1000 pairs of SNPs obtained at the end of this analysis
and the corresponding p-values. Figure 5.2 gives the output of MoG-Plot.

151

Chapter 5 5.5 Interpretation and visualization

Figure 5.2: This figure is a mixture of a Manhattan-like circle plot and a grail plot.
Only three dots are outside of the red line, meaning that only three SNPs have a
significant main effect. Two of these SNPs are located on chromosome 1, while the
third is on chromosome 16. The interactions seems to be driven by the main effects
of the two first SNPs, since they all start from this location.

The total execution time of MoG-Plot in this case was about 15 minutes on a 2.4
GHz Intel Core 2 Duo processor. However, the majority of the time was spent in the
construction of the transcripts/genes database, which must be executed only once.

Most of the SNPs have no main-effect at all, so that most dots are on the smallest
circle of the figure. The 5% significant threshold is represented by a red circle. One can
see that only 3 SNPs have a significant main-effect, two from chromosome 1 and one
from chromosome 16. From the interaction-part of the figure, one can recognize that
chromosome 1 plays a crucial role. All interactions starts from about the same position
on this chromosome and seems to be driven by strong main effects, represented by the
orange dots.

152

Chapter 5 5.5 Interpretation and visualization

The over-representation of SNPs in top SNP pairs outputted by MB-MDR (or any
epistasis analysis run) is crucial to rule out significant higher-order interactions that
may be caused by strong lower order components. In addition, other elements in a
check-list should be addressed, when interpreting the results of an epistasis analysis.
To illustrate this, we present very recent results of an analysis on Coronary artery
disease (CAD). In the field of statistical genetics, many research center own data that
cannot be shared with third parties. In this context, researchers use our software and
contact us to give them indications on the best options to use. Usually, they send us
results where the SNP names have been replaced by dummy ones (snp1, snp2, . . .). In
this way, they can keep the results secret until publication.

The group of Inke König [66, 41] did such an analysis with mbmdr-4.3.3.out on
CAD data, in collaboration with our lab. Five datasets are at our disposal, a discovery
and four replications ones. The former consists of 2281 subjects (637 cases and 1644
controls) for which 193 711 SNPs are available (after QC). The parallel workflow of
gammaMAXT was used to analyze it, with the default options of the software, except
that the minimal number of individuals in a group to be significant (the -m option)
was set to 50 and the number of permutation (the -p option) was set to 9999. This
reduces the probability of finding sporadic results. This analysis allowed to identify 67
significant pairs of SNPs out of the 18 761 878 905 candidates that were considered!

To go further, the residuals-based correction method described in Section 4.3.1 was
used on the same dataset to take account of gender and age. This analysis identified
49 significant pairs of SNPs. The replication datasets consists respectively of 1802
subjects (735 cases and 1067 controls), 2150 subjects (701 cases and 1449 controls),
2127 subjects (990 cases and 1137 controls) and 3919 subjects (2389 cases and 1570
controls). Instead of taking all the SNPs of the replication datasets into account, we
focus on the 86 ones that belongs to a pair identified on the discovery dataset, either
with or without taking the covariates into account (the -k option enables to focus solely
on these SNPs). Without taking the covariates into account, 15 pairs out of the 67
previously identified ones could be replicated in 3 out of 4 replication datasets and are
given in Table 5.17.

These results look promising from a biological point of view after discussion with
cardiologists. Many of the interesting results are close to each other. When gender
and age are taken into account, 13 pairs out of the 49 previously identified ones could
be replicated in 3 out of 4 replication datasets and are given in Table 5.18. We note
that all pairs appearing in Table 5.18 also appear in Table 5.17. This suggests that
the pairs from Table 5.17 not appearing in Table 5.18 anymore may be false-positive
results. One of the covariate or the combination of both may be a confounding factor
between the genetics and the disease. The next step in such an analysis, is to translate
the SNP-pair list into a gene-pair list and see whether there is evidence from expression
data (co-expression networks), or from software such as biofilter (that give implication
factors for gene-gene pairs based on several biological data bases, see Section 5.2).
What is also often done in our lab is to uses gene ontology (GO) to see whether there
is an over-representation of pathways in the gene list that is derived from the sign gene
pair list. Finally, further functional analysis can be performed in the lab to actually
investigate co-localization of the corresponding proteins.

153

Chapter 5 5.5 Interpretation and visualization

Table 5.17: Significant SNP-SNP pairs found for CAD, without covariate correction

pair of SNPs discovery replication 1 replication 2 replication 3 replication 4
first second stat p-value stat p-value stat p-value stat p-value stat p-value
snp1 snp2 220.4 0.0001 103.2 0.0001 290 0.0001 123.3 0.0001 0 1
snp2 snp3 191.2 0.0001 81.4 0.0001 228.5 0.0001 157.7 0.0001 0 1
snp4 snp5 197.5 0.0001 70 0.0001 227.8 0.0001 0 1 376.7 0.0001
snp6 snp5 164.9 0.0001 65 0.0001 199.9 0.0001 0 1 303.1 0.0001
snp5 snp7 185.3 0.0001 63.7 0.0001 209.7 0.0001 3.2 1 360.8 0.0001
snp8 snp5 137.1 0.0001 59.1 0.0001 155.9 0.0001 0 1 215.8 0.0001
snp2 snp9 186.1 0.0001 52.1 0.0001 217.2 0.0001 126.1 0.0001 0 1
snp5 snp10 137.1 0.0001 49.7 0.0001 150 0.0001 0 1 217.1 0.0001
snp2 snp11 173 0.0001 40 0.0001 174.2 0.0001 124.8 0.0001 0 1
snp12 snp5 69.6 0.0001 37.2 0.0001 109 0.0001 0 1 104.1 0.0001
snp13 snp5 90.8 0.0001 31.2 0.0003 81 0.0001 0 1 112.1 0.0001
snp2 snp14 142.5 0.0001 28.3 0.0009 144.8 0.0001 108.5 0.0001 0 1
snp15 snp5 63.2 0.0002 19.8 0.0817 74.8 0.0001 0 1 57.8 0.0001
snp16 snp17 52.7 0.0314 20.1 0.0679 37.3 0.0001 11.4 0.9992 73.6 0.0001
snp2 snp18 140.7 0.0001 19.1 0.1161 158 0.0001 107.2 0.0001 0 1

Table 5.18: Significant SNP-SNP pairs found for CAD, corrected for gender and age

pair of SNPs discovery replication 1 replication 2 replication 3 replication 4
first second stat p-value stat p-value stat p-value stat p-value stat p-value
snp4 snp5 186,9 0,0001 55,6 0,0001 236,3 0,0001 0 1 259,2 0,0001
snp6 snp5 151,6 0,0001 55,4 0,0001 209,7 0,0001 0 1 212,8 0,0001
snp5 snp7 175,0 0,0001 49,4 0,0001 213,6 0,0001 4,5 1 250,3 0,0001
snp5 snp10 123,9 0,0001 37,3 0,0001 153,2 0,0001 3,0 1 134,0 0,0001
snp8 snp5 123,0 0,0001 45,4 0,0001 170,2 0,0001 0 1 127,9 0,0001
snp1 snp2 169,3 0,0001 71,9 0,0001 310,6 0,0001 112,9 0,0001 0 1
snp2 snp3 159,6 0,0001 54,6 0,0001 274,0 0,0001 146,4 0,0001 0 1
snp2 snp11 148,8 0,0001 49,2 0,0001 208,3 0,0001 111,8 0,0001 0 1
snp2 snp9 189,1 0,0001 57,3 0,0001 251,9 0,0001 115,4 0,0001 0 1
snp12 snp5 67,8 0,0002 31,0 0,0005 101,0 0,0001 0 1 45,3 0,0001
snp13 snp5 78,4 0,0001 27,4 0,0022 80,1 0,0001 0 1 54,6 0,0001
snp2 snp14 115,7 0,0001 18,4 0,1602 169,2 0,0001 94,5 0,0001 0 1
snp15 snp5 53,2 0,0282 15,4 0,5724 77,1 0,0001 0,0 1 32,7 0,0002

154

Chapter 5 5.6 Discussion

5.6 Discussion

In Chapter 4, we have demonstrated the different methods on real-life data on IBD.
In this chapter, we have described several application of our software, both on real-life
and simulated data. Furthermore, we have introduced a tool facilitating interpretation
of the results. Obviously, more elaborate such tools are available on the internet.
However, the tool presented in this thesis is customized for MB-MDR results and
allows to produce nice graphics quickly, without having to learn a new software.

This chapter has shown the relevance of the methods introduced in this thesis.
Flexibility is probably the main asset of mbmdr-4.4.1.out, as should be clear after this
chapter where analyses of very different kinds were performed. Users are invited to
try different combinations of options, to get new insights on the data that they have
at hand. We advocate starting with the default options and depending on the results,
make more advanced analysis or not. Of course, if covariates are available, trying to
take them into account is a must. For this, two strategies are possible. First, the
covariates are considered as environmental factors and 3D interactions are searched
for, considering every possible combination of two SNPs and one environmental factor.
Second, the covariates are just corrected for, in order to identify pure gene-gene interac-
tions. To achieve this, we advocate on-the-fly correction if the covariate is a categorical
one, which does not have too much different categories (otherwise, computing time be-
comes quickly an issue). Otherwise, we advocate residuals-based correction. Working
with a two-stage analysis design is also an interesting strategy to reduce the number
of SNP pairs to further investigate from a biological point of view. Using STRAT2
at stage two is a good strategy to correct automatically for unmeasured confounding
factors.

155

Chapter 6

Conclusions and perspectives

6.1 Conclusions

The main contribution of this PhD thesis is gammaMAXT, a novel implementation of
the maxT algorithm for multiple testing correction. The algorithm was implemented
in software mbmdr-4.4.1.out, as part of the MB-MDR framework to screen for SNP-
SNP, SNP-environment or SNP-SNP-environment interactions at a genome-wide level.
In this context, we analyzed a dataset composed of one million SNPs and thousands
individuals within one day on a 256-core computer cluster. The same analysis would
have taken more than a year with Van Lishout’s implementation of maxT, another
contribution of this PhD, which is already an improvement of the classic Westfall and
Young implementation.

These results are promising for future GWAIs. Furthermore, the proposed gam-
maMAXT algorithm offers a general significance assessment and multiple testing ap-
proach, applicable to any context that requires performing hundreds of thousands of
tests. It offers new perspectives for fast and efficient permutation-based significance
assessment in large-scale (integrated) omics studies. The manual of our software is
given in the Appendix and contains a description of all the options and a history of
the main changes in public versions. The mbmdr-4.4.1.out software can be downloaded
freely at http://www.statgen.ulg.ac.be with the corresponding documentation.

In order to reduce the amount of false discoveries, population stratification and co-
variates are important to correct for. A novel application of existing methods to take
account of this problematic was provided, leading to several contributions. STRAT1
and STRAT2 are two algorithms similar to maxT, but that in addition correct auto-
matically for unmeasured confounding factors. Since STRAT1 consistently leads to
the same ranking as maxT (yet with different p-values), whereas STRAT2 does not,
we systematically advocate using the latter to correct for unmeasured confounding
factors automatically. Residuals-based and on-the-fly correction are two methods to
correct for covariates. The former is based on the classical idea, consisting in computing
residuals based on a linear model including the trait and the covariates, to finally use
these residuals as a new outcome variable. However, this method is not suitable when
covariates are associated with the SNPs and also lead to supplementary limitations.
Therefore, the on-the-fly correction method was introduced, whose idea is to modify
the MB-MDR statistic computations that were presented in Chapter 2 to correct for
the main effects of the SNPs, to additionally correct for the covariates.

156

Conclusion

A real-life dataset on IBD disease was used to validate all these novel methods. This
analysis has lead to interesting biological results. Some of them were already known
in the literature and others may be new discoveries. This demonstrates the ability of
mbmdr-4.4.1.out to handle state-of-the-art datasets in an appropriate way. However,
one cannot draw definitive conclusions on the power of novel methods solely based on a
real-life data analysis. Clearly, an investment is needed in extensive simulation studies,
where we can have full control over factors affecting disease trait to understand the
assets and limits of the new methods. However, generating realistic synthetic data is
far from trivial, since inducing the situation of confounding implies creating scenarios
in which non-linear patterns are distributed differently between the populations and
at the same time generating different disease prevalence between the populations. To
our knowledge, no such tool exists. In replacement, our software was applied to both
simulated and real-life datasets, to learn from data.

This work has lead to several conclusions. First, using principal components as
newly constructed variables that can then be taken into account in the analysis is a
promising idea in the context of MB-MDR, especially in combination with the on-the-
fly correction method. Second, non-genetic factors cannot be overlooked in GWAIs and
MB-MDR is an easy-to-use tool to search for GxE and GxGxE interactions. Third,
censored traits are omnipresent in clinical practice and our software can rapidly and
efficiently carry out a GWAIs with varying number of factor levels in this context.
Finally, facilitating interpretability of the results is an important aspect and a tool for
visualizing main effect and pairwise-interaction results at a glance was proposed.

6.2 Perspectives

A first perspective of this PhD is to write a modified version of the on-the-fly correc-
tion methods. The current architecture of the software is based on the idea that the
multiple-testing correction algorithms require a permutation of the trait values, not
the SNPs and covariates ones. Nonetheless, in the context of the on-the-fly correction,
keeping the covariates values together with the trait ones would be an interesting idea.
This would allow to test another null hypothesis than with the current implementation.
Namely, one where the link between the trait and the covariates has not been broken.

We have already mentioned that an investment is needed in extensive simulation
study to evaluate the new methods correcting for population stratification and covari-
ates. A perspective of this PhD is therefore to write a tool for generating synthetic
data in a flexible way, in which the situation of confounding has been induced in a
non-linear way, with different disease prevalence in subpopulations. Such a tool could
possibly identify the limitations of the methods and lead to improved versions. Note
that the basic idea of STRAT2 guarantees control of the FWER. However, some ac-
commodations had to be done in order to make the algorithm work in practice, leading
to a pragmatic implementation that does not guarantee it anymore. Nonetheless, most
of these accommodations were linked with the fact that STRAT2 should be able to
be readily used on genome-wide data. Since STRAT2 was usually used at the second
stage of a discovery-replication analysis in this PhD (on a reduced dataset), a perspec-
tive would be to write an alternative implementation of STRAT2 dedicated to small
datasets and guaranteeing control of the FWER.

157

Conclusion

Finally, an obvious perspective of this PhD work is to apply the software on real-
life data. Indeed, a set of novel methods to perform interaction analysis studies in a
flexible way is described in this thesis, but these methods have not yet been intensively
used in practical analysis. In particular, the survival part of the software was so far
only put into use on simulated data. Since survival data are not taken into account by
many concurrent software tools, this is really an asset of mbmdr-4.4.1.out that should
be put forward. Hence, some marketing work needs to be done, in order to create new
collaborations with labs having genome-wide data available for analysis.

158

Appendix - Manual

mbmdr-4.4.1.out is a software that is able to detect multiple sets of significant gene-gene
and/or gene-environment interactions in relation to a trait of interest, while efficiently
controlling type I error rates. The trait can be expressed either on a binary or a
continuous scale, or as a censored trait. To see the command line help, type

./mbmdr-4.4.1.out help

The instructions to run mbmdr-4.4.1.out are (depending on the data type) as follows:

./mbmdr-4.4.1.out --binary [options] ’mbmdrFile’

./mbmdr-4.4.1.out --continuous [options] ’mbmdrFile’

./mbmdr-4.4.1.out --survival [options] ’mbmdrFile’

If the data is expressed on a binary or continuous scale, then the ’mbmdrFile’ must
be represented using the following structure (for censored trait see −−help −−survival)

Tr1 ... Trx Cv1 ... Cvy Ma1 ... Maz
T11 ... T1x C11 ... C1y M11 ... M1z
...
Tk1 ... Tkx Ck1 ... Cky Mk1 ... Mkz

The first line is a title line: the Trj’s are the names of the x traits (x ≥ 1), the
Cvj’s are the names of the y covariates (y ≥ 0) and the Maj’s are the names of the z
markers, i.e. SNPs and/or environment variables (z ≥ 2).

The first x columns contain the trait values: in the binary case, Tij is 1 if the ith
subject is a case for the jth trait and 0 if it is a control; in the continuous case Tij is
a continuous value representing the state of the ith subject for the jth trait. Usually,
there is only a single trait (x=1). The next y columns are covariate values (missing
values are not allowed).

The last z columns are markers values (missing values must be coded ’-9’):

• if Maj is a SNP: Mij is 0 if the ith subject is homozygous for the first allele, 1 if
heterozygous and 2 if homozygous for the second allele.

• if Maj is an environment variable: the X different possible values of the environ-
ment variables should be coded 0, 1, ..., X-1.

159

Appendix Manual

If the dataset is in PLINK format, one can first use the following command line to
create the ’mbmdrFile’:
(replace −−binary by −−continuous or −−survival depending on your trait)

./mbmdr-4.4.1.out --plink2mbmdr --binary -ped ’pedFile’ -map ’mapFile’
-o ’mbmdrFile’ -tr ’trFile’

The file ‘trFile’ is an output file giving the chosen labels for the genotypes of each
SNP. The ‘pedFile’ must contain a title line (insert a dummy line at the beginning of
your file if your file does not have a title line). See −−help −−plink2mbmdr for more
options. Note that if you have a ‘pheFile’ the header has to be ID sex trait cov1 cov2 . . .

The different options of the program are1:

[−n INT] number of top pairs in the output (default: 1000)
[−p INT] permutation amount for multiple-testing (default: 999)
[−r INT] random seed parameter (default: random value)
[−m INT] minimum group size to be statistically relevant (default: 10)
[−at INT] amount traits (default: 1)
[−ct INT] current trait (default: 1)
[−ac INT] amount covariates (default: 0)
[−x DOUBLE] cutoff value for the statistical test (default: 0.1)
[−mt STRING] multiple testing correction algorithm: NONE, MAXT, MINP,

RAWP, STRAT1, STRAT2 or gammaMAXT (default)
[−rc STRING] regress covariates: RESIDUALS (default), ONTHEFLY
[−o STRING] output file name (default: ’inputprefix’_output.txt)
[−o2 STRING] models file name (default: ’inputprefix’_models.txt)
[−a STRING] adjust: CODOMINANT (main default), ADDITIVE, ONESTEP or

NONE (survival default)
[−d STRING] dimension of interactions: 1D, 2D (default) or 3D
[−pb STRING] progress bar: NONE or NORMAL (default)
[−v STRING] verbose in models file: SHORT, MEDIUM (default) or LONG
[−if STRING] input format: MBMDR (default), MDR or ISALIVE
[−e LIST] erase markers (LIST: comma-separated list of marker names)
[−E FILE] erase markers (FILE: composed of one marker name per line)
[−k LIST] keep only the markers from the comma-separated list
[−K FILE] keep only the markers from the file
[−s FILE] second stage of a discovery-replication analysis: keep only

the pairs from the given output FILE of the first stage
[−f LIST] filter: analyze only the pairs composed of exactly one

marker from the given comma-separated list of marker names
[−F FILE] filter: analyze only the pairs composed of exactly one marker

from the given file and one marker from the input file
[−rt STRING] rank transformation (continuous trait only): NONE (default),

RANK_TRANSFORM or RANK_TRANSFORM_TO_NORMALITY

1 In this manual, the options that are not mandatory are put between square brackets

160

Appendix Manual

Parallel Workflow

Users analyzing large-scale datasets should use the gammaMAXT parallel workflow.
(to consult the online manual see −−help −−parallel)

WARNING: please use the same set of computing options at each step!!

The workflow consists in 4 steps, illustrated in the following figure and described below.
(replace −−binary by −−continuous or −−survival depending on your trait)

!!! !!!

" "

#$%&'!'(')

'*%+!'(')

'*%,!'(')

*&'%&'!'(')

'*%-#./!'(')

%/01&'+!'(')

%/01&',!'(')

STEP 1: compute partial top vectors on N CPUs (1, 2, ..., N)

./mbmdr-4.4.1.out --continuous --gammastep1 -i INT -N INT [options] ’mbmdrFile’

SPECIFIC OPTIONS

−i INT sets the current CPU id
−N INT sets the total number of CPUs
[−ti STRING] sets the prefix of the temporary top files (default: top)

161

Appendix Manual

STEP 2: create the final top vector on one CPU

./mbmdr-4.4.1.out --continuous --gammastep2 -N INT ’mbmdrFile’

SPECIFIC OPTIONS

−N INT sets the total number of CPUs
[−t STRING] sets the top file name (default: topFile.txt)
[−ti STRING] sets the prefix of the temporary top files (default: top)

STEP 3: compute the permutations on N CPUs (1, 2, ..., N)

./mbmdr-4.4.1.out --continuous --gammastep3 -p INT -o STRING [options] ’mbmdrFile’

SPECIFIC OPTIONS

−p INT sets the permutation amount to be run on the current CPU
−o STRING sets the output file name (all CPUs must use ’xxxi.txt’

where xxx is a common prefix and i the CPU id)
[−t STRING] sets the top file name (default: topFile.txt)

STEP 4: create the final output file on one CPU

./mbmdr-4.4.1.out --continuous --gammastep4 -c STRING -q INT [options] ’mbmdrFile’

SPECIFIC OPTIONS

−c STRING sets the common prefix ’xxx’ of the files generated at step 3
−q INT sets the quantity of files generated at step 3
[−p INT] sets the permutation amount (default: 999)
[−o STRING] sets the output file name (default: ’inputprefix’_output.txt

the file will be created in the directory of the input file)
[−t STRING] sets the top file name (default: topFile.txt)

162

Appendix Manual

History of changes in public versions of MB-MDR

1) mbmdr-4.4.1.out: contains on-the-fly correction of categorical covariates and an
option to perform a two-stage analysis with a discovery and a replication file.

2) mbmdr-4.3.3.out: solving a bug when correcting for covariates. Adding the pos-
sibility to correct for main effects when the dataset is a survival one (based on
the Cox proportional hazards model).

3) mbmdr-4.3.2.out: adding the possibility to handle multiple traits (one by one).
Adding the possibility to take account of covariates (residuals-based correction).
Creating a new file containing the models.

4) mbmdr-4.3.1.out: same version as mbmdr-4.3.2.out, except that there is a bug
when handling covariates expressed on a continuous scale, in the case of a trait
expressed on a binary one. This version is not available anymore.

5) mbmdr-4.2.2.out: replacing the speedMAXT algorithm by the much faster gam-
maMAXT one. As a bonus, gammaMAXT does control the FWER (whereas
speedMAXT did not guarantee it). Revising the default options.

6) mbmdr-4.1.0.out: solving a bug when combining speedMAXT with the 3D option.
Solving a bug when using -v LONG. Allowing to combine -f and 3D.

7) mbmdr-4.0.3.out: allowing to combine the speedMAXT algorithm with the 3D
option. Solving a bug with the -v option. Allowing MDR input format.

8) mbmdr-4.0.1.out: contains the new STRAT1, STRAT2 and speedMAXT algo-
rithms. The purpose of the first two is to correct for population stratification.
The purpose of the speedMAXT is to perform a MAXT-like multiple-testing, but
faster (based on a maximum of 1 million non-zero test-statistics per permutation).

9) mbmdr-3.1.0.out: first version with a progress bar. Solves a bug with the 3D
option.

10) mbmdr-3.0.3.out: adding code to handle a censored trait and solving a small bug
related to the cholesky decomposition.

11) mbmdr-3.0.2.out: refactoring the code and adding an option for performing 3D
interactions analysis. This version is about 1.5 times faster than mbmdr-2.7.5.

12) mbmdr-2.7.5.out: first public C++ version of MB-MDR containing Van Lishout’s
implementation of maxT. This version handles traits expressed on either a bi-
nary or a continuous scale. It can perform a main effect analysis or a two-order
interaction analysis.

13) FAM-MDR: R-implementation of the MB-MDR methodology. Very slow and
not flexible. Can only handle a trait expressed on a binary scale. Note that this
software prepares the data by computing residuals that have removed familial
relationships as much as possible, before running the MB-MDR methodology.
Removing the familial relationships is done using the polygenic function in the
GenABEL package. The C++ software does not remove the familial relation-
ships, allowing you to adopt another modeling strategy.

163

Bibliography

[1] Alanis-Lobato, G., Cannistraci, C. V., Eriksson, A., Monica, A., and
Ravasi, T. Highlighting nonlinear patterns in population genetics datasets.
Scientific Reports 5, 8140 (2015).

[2] Allenby, G. M., Leone, R. P., and Jen, L. A dynamic model of purchase
timing with application to direct marketing. Journal of the American Statistical
Association 94 (1999), 365–74.

[3] Aschard, H., Lutz, S., Maus, B., Duell, E., Fingerlin, T., Chatter-
jee, N., Kraft, P., and Van Steen, K. Challenges and opportunities in
genome-wide environmental interaction (GWEI) studies. Hum Genet 131, 10
(2012), 1591–613.

[4] Balding, D. J. A tutorial on statistical methods for population association
studies. Nat Rev Genet 7 (2006), 781–791.

[5] Barett, J. C., Hansoul, S., Nicolae, D. L., Cho, J. H., Duerr, R. H.,
Rioux, J. D., Brant, S. R., Silverberg, M. S., Taylor, K. D., Bar-
mada, M. M., et al. Genome-wide association defines more than 30 distinct
susceptibility loci for crohn’s disease. Nat Genet 40, 8 (2008), 955–962.

[6] Beevers, C. G., and E, M. J. Therapygenetics: moving towards personalized
psychotherapy treatment. Trends in Cognitive Sciences 16, 1 (2012), 11–12.

[7] Bickel, P. J., and Doksum, K. A. Mathematical Statistics, Basic Ideas and
Selected Topics. Prentice-Hall, Inc., 1977.

[8] Bradley, J. Robustness? British Journal of Mathematical and Statistical
Psychology 31 (1978), 144–152.

[9] Breslow, N. E. Analysis of survival data under the proportional hazards model.
International Statistical Review 43, 1 (1975), 45–57.

[10] Bush, W. L., Dudek, S. M., and Ritchie, M. D. Biofilter: A knowledge-
integration system for the multi-locus analysis of genome-wide association stud-
ies. In Pacific Symposium on Biocomputing (2009), pp. 368–379.

[11] Calle, M. L., Urrea, V., Malats, N., and Van Steen, K. MB-MDR:
model-based multifactor dimensionality reduction for detecting interactions in
high-dimensional genomic data. Tech. Rep. 24, Department of Systems Biology,
Universitat de Vic, Vic, Spain, 2008.

164

Bibliography

[12] Calle, M. L., Urrea, V., Malats, N., and Van Steen, K. mbmdr: an R
package for exploring gene-gene interactions associated with binary or quantita-
tive traits. Bioinformatics 26, 17 (2010), 2198–2199.

[13] Calle, M. L., Urrea, V., Vellalta, G., Malats, N., and Van Steen,
K. Improving strategies for detecting genetic patterns of disease susceptibility in
association studies. Statistics in Medicine 27 (2008), 6532–6546.

[14] Cattaert, T. Main effects adjustments in MB-MDR. Tech. rep., University of
Liège, 2011.

[15] Cattaert, T., Calle, M. L., Dudek, S. M., Mahachie John, J. M.,
Van Lishout, F., Urrea, V., Ritchie, M. D., and Van Steen, K. Model-
based multifactor dimensionality reduction for detecting epistasis in case-control
data in the presence of noise. Ann Hum Genet 75 (2011), 78–89.

[16] Cattaert, T., Rial Garcia, J. A., Gusareva, E., and Van Steen, K.
Comparison of different methods for detecting gene-gene interactions in case-
control data. 20th Annual IGES Conference (2011).

[17] Cerrito, P., and Cerrito, J. Clinical Data Mining for Physician Decision
Making and Investigating Health Outcomes. Hershey, New York : Medical Infor-
mation Science Reference, 2010.

[18] Chanda, P., Sucheston, L., zhang, A., Brazeau, D., Freudenheim,
J. L., Ambrosone, C., and Ramanathan, M. Ambience: A novel approach
and efficient algorithm for identifying informative genetic and environmental as-
sociations with complex phenotypes. Genetics 180, 2 (2008), 1191–210.

[19] Choi, S. C., and Wette, R. Maximum likelihood estimation of the parameters
of the gamma distribution and their bias. Technometrics 11, 4 (1969), 683–690.

[20] Ciccacci, C., Perricone, C., Ceccarelli, F., Rufini, S., Di Fusco, D.,
Allessandri, C., Spinelli, F. R., Cipriano, E., Novelli, G., Valesini,
G., et al. A multilocus genetic study in a cohort of italian sle patients confirms
the association with stat4 gene and describes a new association with hcp5 gene.
PLoS ONE 9, 11 (2014).

[21] Collins, R. L., Hu, T., Wejse, C., Sirugo, G., Williams, S. M.,
and Moore, J. H. Multifactor dimensionality reduction reveals a three-locus
epistatic interaction associated with susceptibility to pulmonary tuberculosis.
BioData Mining 6, 4 (2013).

[22] Cover, T. M., and Thomas, J. A. Elements of information theory. Wiley,
1991.

[23] Cox, D. R. Regression models and life-tables. Journal of the Royal Statistical
Society, Series B 34, 2 (1972), 187–220.

[24] Dalal, S. R., and Kwon, H. K. The role of microRNA in inflammatory bowel
disease. Gastroenterology and Hepatology 6 (2010), 714–722.

165

Bibliography

[25] Devlin, B., and Roeder, K. Genomic control for association studies. Bio-
metrics 55, 4 (1999).

[26] Dunn, O. J. Multiple comparisons among means. Journal of the American
Statistical Association 56, 293 (1961), 52–64.

[27] Durstenfeld, R. Algorithm 235: Random permutation. In Communications
of the ACM 7 (1964), vol. 7, p. 420.

[28] Efron, B. The efficiency of cox’s likelihood function for censored data. Journal
of the American Statistical Association 72, 359 (1974), 557–565.

[29] Eichler, E. E., Flint, J., Gibson, G., Kong, A., Lean, S., Moore, J. H.,
and Nadeau, J. H. Missing heritability and strategies for finding the underlying
causes of complex disease. Nature Reviews Genetics 11, 6 (2010), 446–450.

[30] Feldman, D., and Shavitt, Y. An optimal median calculation algorithm for
estimating internet link delays from active an optimal median calculation algo-
rithm for estimating internet link delays from active measurements. In E2EMON
(2007), IEEE.

[31] Fisher, R. A., and Yates, F. Statistical tables for biological, agricultural and
medical research. Oliver & Boyd, 1938.

[32] Fraley, C., and Raftery, A. E. Model-based clustering, discriminant anal-
ysis and density estimation. Journal of the American Statistical Association 97
(2002), 611–31.

[33] Fraley, C., Raftery, A. E., Murphy, B., and Scrucca, L. mclust version
4 for r: Normal mixture modeling for model-based clustering, classification, and
density estimation. Tech. rep., University of Washington, 2012.

[34] Franke, A., McGovern, D. P., Barrett, J. C., Wang, K., Radford-
Smith, G., Ahmad, T., Lees, C. W., Balschun, T., Lee, J., Roberts,
R., et al. Genome-wide meta-analysis increases to 71 the number of confirmed
crohn’s disease susceptibility loci. Nat Genet 42, 12 (2010), 1118–1126.

[35] Freedman, D. A. Statistical Models: Theory and Practice. Cambridge Univer-
sity Press, 2009.

[36] Galambos, J. Bonferroni inequalities. Annals of Probability 5, 4 (1977), 577–
581.

[37] Galas, D. J., and Hood, L. Systems biology and emerging technologies will
catalyze the transition from reactive medicine to predictive, personalized, pre-
ventive and participatory (P4) medicine. Interdisciplinary Bio Central 1 (2009),
1–4.

[38] Gauderman, W. J., Thomas, D. C., Murcray, C. E., Conti, D., Li,
D., and Lewinger, J. P. Efficient genome-wide association testing of gene-
environment interaction in case-parent trios. American Journal of Epidemiology
172 (2010), 116–122.

166

Bibliography

[39] Ge, Y., Dudoit, S., and Speed, T. P. Resampling-based multiple testing for
microarray data analysis. Tech. Rep. 633, Department of Statistics, University
of California, Berkley, 2003.

[40] Gentleman, R., Carey, V. J., Bates, D. M., Bolstad, B., Dettling,
M., Dudoit, S., Ellis, B., Gautier, L., and Ge, Y. Bioconductor: Open
software development for computational biology and bioinformatics. Genome
Biology 5, R80 (2004).

[41] Gola, D., Mahachie John, J. M., Van Steen, K., and König, I. A
roadmap to multifactor dimensionality reduction methods. Briefings in Bioin-
formatics (2015).

[42] Grady, B. J., Samuels, D. C., Robbins, G. K., Selph, D., Canter, J. A.,
Pollard, R. B., Haas, D. W., Shafer, R., Kalams, S. A., Murdock,
D. G., et al. Mitochondrial genomics and cd4 t-cell count recovery after an-
tiretroviral therapy initiation in aids clinical trials group study 384. J acquir
Immune Defic Syndr 58, 4 (2011), 363–70.

[43] Gusareva, E., and Van Steen, K. Practical aspects of genome-wide associ-
ation interaction analysis. Hum Genet (2014).

[44] Gusareva, E., Wei, Z., Traherne, J. A., Hugot, J. P., Cleynen, I.,
Cho, J. H., Hakonarson, H., and Van Steen, K. Epistasis associated to
inflammatory bowel disease (IBD) in humans. In International Genetic Epidemi-
ology Societz (IGES) meeting (2015).

[45] Gyenesei, A., Moody, J., Semple, C., Haley, C., and wei, w. High-
throughput analysis of epistasis in genome-wide association studies with biforce.
Bioinformatics 19 (2012), 376–382.

[46] Hahn, L. W., Ritchie, M. D., and Moore, J. H. Multifactor dimensionality
reduction software for detecting gene–gene and gene–environment interactions.
Bioinformatics 19, 3 (2002), 376–382.

[47] Hardy, J., and Singleton, A. Genome-wide association studies and human
disease. New England Journal of Medicine 360 (2009), 1759–1768.

[48] Harms, M. J., and Thornton, J. W. Evolutionary biochemistry: revealing
the historical and physical causes of protein properties. Nat Rev Genet 14, 8
(2013), 559–71.

[49] Hautsch, N., Malec, P., and Schienle, M. Capturing the zero: A new class
of zero- augmented distributions and multiplicative error processes. Journal of
financial econometrics (2013).

[50] Hemani, G., Theocharidis, A., Wei, W., and Haley, C. epiGPU: ex-
haustive pairwise epistasis scans parallelized on consumer level graphics cards.
Bioinformatics 27 (2011), 1462–1465.

167

Bibliography

[51] Hoggart, C. J., Parra, E. J., Shriver, M. A., Bonilla, C., Kittes,
R. A., Clayton, D. G., and McKeigue, P. M. Control of confounding of
genetic associations in stratified populations. Am J Hum Genet 72, 6 (2003),
1492–1504.

[52] Horvarth, S., and Laird, N. M. A discordant-sibship test for disequilibrium
and linkage: No need for parental data. Am J Hum Genet 63, 6 (1998), 1886–
1897.

[53] Horvath, S., Xu, X., and Laird, N. M. The family based association test
method: strategies for studying general genotype-phenotype associations. Euro-
pean Journal of Human Genetics 9, 4 (2001), 301–6.

[54] Institute for digital research and education. How are the like-
lihood ratio, wald, and lagrange multiplier (score) tests different and/or
similar? http://www.ats.ucla.edu/stat/mult_pkg/faq/general/nested_tests.htm
(Last checked: 30 may 2016).

[55] International Human Genome Sequencing Consortium. Finishing the
euchromatic sequence of the human genome. Nature 431, 7011 (2014), 931–945.

[56] Ishwaran, H., and Kogalur, U. B. Random survival forests for r. R News
7, 2 (2007), 25–31.

[57] Johnston, J., and DiNardo, J. Econometric methods, 4th ed. Cambridge
University Press, 1997.

[58] Jung, E. S., Cheon, J. H., Lee, J. H., Park, S. J., Jang, H. W., Chung,
S. H., Park, M. H., Kim, T. G., Oh, H. B., Yang, S. K., et al. HLA-C*01
is a risk factor for crohn’s disease. Inflammatory Bowel Disease 22, 4 (2016),
796–806.

[59] Kalbfleisch, J. D., and Prentice, R. L. The statistical analysis of failure
time data. Wiley, 1980.

[60] Kam-Thong, T., Azencott, C., Cayton, L., Putz, B., Altmann, A.,
Karbalai, N., Samann, P., Scholkopf, B., Muller-Myhsok, B., and
Borgwardt, K. GLIDe: GPU-based linear regression for detection of epistasis.
Hum Hered 73 (2012), 220–236.

[61] Kam-Thong, T., Czamara, D., Tsuda, K., Borgwardt, K., Lewis, C.,
Erhardt-Lehmann, A., Hemmer, B., Rieckmann, P., Daake, M., We-
ber, F., et al. ePIBLaSTeR-fast exhaustive two-locus epistasis detection strat-
egy using graphical pro- cessing units. European Journal of Human Genetics 19
(2011), 465–471.

[62] Kaser, A., Zeissig, S., and Blumberg, R. S. Inflammatory bowel disease.
Annu. Rev. Immunol. 28 (2010), 573–621.

[63] Kleinbaum, D. Survival Analysis, a self learning text. Springer-Verlag, 1996.

168

Bibliography

[64] Knights, J., Yang, J., Zhang, A., and Ramanathan, M. Symphony, an
information-theoretic method for gene–gene and gene–environment interaction
analysis of disease syndromes. Heredity 110, 6 (2013), 548–59.

[65] Knuth, D. The Art of Computer Programming, Volume 3: Sorting and Search-
ing, Second Edition. Addison-Wesley, 1998.

[66] König, I., Loley, C., and Ziegler, A. How to include chromosome x in your
genome-wide association study. Genetic Epidemiology 38, 2 (2014), 97–103.

[67] Kotz, S., Balakrishnan, N., and Johnson, N. L. Continuous Multivariate
Distributions, Models and Applications. Wiley, 2000.

[68] Laing, B., Han, D. Y., and Ferguson, L. R. Candidate genes involved in
beneficial or adverse responses to commonly eaten brassica vegetables in a new
zealand crohn’s disease cohort. Nutrients 5, 12 (2013), 5046–64.

[69] Lander, E. S., Linton, L. M., Birren, B., Nusbaum, C., Zody, M. C.,
Baldwin, J., Devon, K., Dewar, K., Doyle, M., FitzHugh, W., et al.
Initial sequencing and analysis of the human genome. Nature 409, 6822 (2001),
860–921.

[70] Lee, S. H., Wray, N. R., Goddard, M. E., and Visscher, P. M. Estimat-
ing missing heritability for disease from genome-wide association studies. The
American Journal of Human Genetics 88, 3 (2011), 294.

[71] Lester, K. J., and Eley, T. C. Therapygenetics: Using genetic markers
to predict response to psychological treatment for mood and anxiety disorders.
Biology of mood and anxiety disorders 3, 1 (2013), 1–16.

[72] Levy, S., Sutton, G., Ng, P., Feuk, L., Halpern, A., Walenz, B.,
Axelrod, N., Huang, J., Kirkness, E., Denisov, G., and et al. The
diploid genome sequence of an individual human. PLoS Biol 5, 10 (2007).

[73] Libioulle, C., Louis, E., Hansoul, S., Sandor, C., Farnir, F., Franchi-
mont, D., Vermeire, S., Dewit, O., de Vos, M., Dixon, A., et al. Novel
crohn disease locus identified by genome-wide association maps to a gene desert
on 5p13.1 and modulates expression of PTGER4. Plos Genetics 3, 4 (2007), e58.

[74] Lin, X., Cai, T., Wu, M. C., Zhou, Q., Liu, G., Christiani, D., and Lin,
X. Kernel machine snp-set analysis for censored survival outcomes in genome-
wide association studies. Genet Epidemiol. 35, 7 (2011), 620–631.

[75] Lipsitz, S., Fitzmaurice, G. M., Sinha, D., Hevelone, N., Giovannucci,
E., and Hu, J. C. Testing for independence in j × k contingency tables with
complex sample survey data. Biometrics 71, 3 (2015), 832–40.

[76] Liu, L., Zhang, D., Liu, H., and Arendt, C. Robust methods for population
stratification in genome wide association studies. BMC Bioinformatics 14, 132
(2013).

169

Bibliography

[77] Londin, E. R., Keller, M. A., Maista, C., Smith, G., Mamounas, L. A.,
Zhang, R., Madore, S. J., Gwinn, K., and Corriveau, R. A. CoAIMs: A
cost-effective panel of ancestry informative markers for determining continental
origins. PLoS ONE 5, 10 (2010).

[78] Mackay, T. F. C. Epistasis and quantitative traits: Using model organisms to
study gene-gene interactions. Nat Rev Genet 15, 1 (2014), 22–23.

[79] Mahachie John, J. M. Genomic Association Screening Methodology for High-
Dimensional and Complex Data Structures: Detecting n-Order Interactions. PhD
thesis, University of Liège, 2012.

[80] Mahachie John, J. M., Cattaert, T., Van Lishout, F., Gusareva, E.,
and Van Steen, K. Lower-order effects adjustment in quantitative traits model-
based multifactor dimensionality reduction. PLoS ONE 7(1) (2012), e29594.
doi:10.1371/journal.pone.0029594.

[81] Mahachie John, J. M., Gusareva, E., Van Lishout, F., and Van Steen,
K. A robustness study to investigate the performance of parametric and non-
parametric tests used in model-based multifactor dimensionality reduction epis-
tasis detection. BioData Mining (2013).

[82] Mahachie John, J. M., Van Lishout, F., and Van Steen, K. Model-based
multifactor dimensionality reduction to detect epistasis for quantitative traits in
the presence of error-free and noisy data. European Journal of Human Genetics
19, 6 (2011), 696–703.

[83] Mahdi, B. M. Role of HLA typing on crohn’s disease pathogenesis. Ann Med
Surg 4, 3 (2015).

[84] Manolio, T. A., Collins, F. S., Goldstein, D. B., Hindorff, L. A.,
Hunter, D. J., McCarthy, M. I., Ramos, E. M., Cardon, L. R.,
Chakravarti, A., Cho, J. H., et al. Finding the missing heritability of
complex diseases. Nature 461, 7265 (2009), 747–753.

[85] Mazzocchi, G., Andreis, P. G., De Caro, R., Aragona, F anf Got-
tardo, L., and Nussdorfer, G. Cerebellin enhances in vitro secretory activ-
ity of human adrenal gland. J Clin Endocrinol Metab 84, 2 (1999), 632–5.

[86] Minka, T. P. Estimating a Gamma distribution. .
http://research.microsoft.com/en-us/um/people/minka/papers/minka-
gamma.pdf (Last checked: 30 may 2016).

[87] Moore, J. H., and Williams, S. M. Traversing the conceptual divide between
biological and statistical epistasis: systems biology and a more modern synthesis.
BioEssays 27, 6 (2005), 637–646.

[88] Moreau, Y., and Tranchevent, L. Computational tools for prioritizing
candidate genes: boosting disease gene discovery. Nature Review Genetics 13, 8
(July 2012), 523–36.

170

Bibliography

[89] National Center for Biotechnology Information. NCBI dbSNP build
138 for human. United States National Library of Medicine (2013).

[90] Niu, A., Zhang, S., and Sha, Q. A novel method to detect gene–gene inter-
actionsin structured populations: MDR-SP. Ann Hum Genet 75 (2011), 742–54.

[91] Park, M. Y., and Hastie, T. Penalized logistic regression for detecting gene
interactions. Biostatistics 9, 1 (2007), 30–50.

[92] Pattin, K. A., White, B. C., Barney, N., Gui, J., Nelson, H. H.,
Kelsey, K. T., Andrew, A. S., Karagas, M. R., and Morre, J. H. A
computationally efficient hypothesis testing method for epistasis analysis using
multifactor dimensionality reduction. Genet Epidemiol. 33, 1 (2009), 87–94.

[93] Pavlopoulos, G., Oulas, A., Iacucci, E., Sifrim, A., Moreau, Y.,
Schneider, R., Aerts, J., and Iliopoulos, I. Unraveling genomic varia-
tion from next generation sequencing data. BioData Mining 6, 13 (July 2013),
1–25.

[94] Peto, R., and Peto, J. Asymptotically efficient rank invariant test procedures.
Journal of the Royal Statistical Society, Series A (Blackwell Publishing) 135, 2
(1972), 185–207.

[95] Price, A. L., Patterson, N. J., Plenge, R. M., Weinblatt, M. E.,
Shadick, N. A., and Reich, D. Principal components analysis corrects for
stratification in genome-wide association studies. Nature Genetics 38, 8 (2006),
904–9.

[96] Raelson, J. V., Little, R. D., Ruether, A., Fournier, H., Paquin, B.,
Van Eerdewegh, P., Bradley, W. E. C., Croteau, P., Nguyen-Huu,
Q., Segal, J., et al. Genome-wide association study for crohn’s disease in the
quebec founder population identifies multiple validated disease loci. Proceedings
of the National Academy of Sciences 104, 37 (2007), 14747–52.

[97] RARE Project. Rare disease impact report: Insights from patients and the
medical community. Survey from the global Genes Report financed by Shire
(2013).

[98] Raychaudhuri, S. VIZ-GRAIL: visualzing functional connections across dis-
ease loci. Bioinformatics 27 (2011), 1589–1590.

[99] Raychaudhuri, S., Plenge, R. M., Rossin, E., Ng, A. C., Consortium,
I. S., Purcell, S. M., Sklar, P., Scolnick, E. M., Xavier, R. J., Alt-
shuler, D., et al. Identifying relationships among genomic disease regions:
Predicting genes at pathogenic snp associations and rare deletions. PLoS Genet-
ics 5, 9 (2009), 1–15.

[100] Reveille, J. D. Genetics of spondyloarthritis—beyond the mhc. Nature Re-
views Rheumatology 8 (2012), 296–304.

171

Bibliography

[101] Ritchie, M. D., Hahn, L. W., and Moore, J. H. Power of multifactor
dimensionality reduction for detecting gene-gene interactions in the presence of
genotyping error, missing data, phenocopy, and genetic heterogeneity. Genet
Epidemil. 24, 2 (2003), 150–7.

[102] Ritchie, M. D., Hahn, L. W., Roodi, N., Bailey, L. R., Dupond, W. D.,
Parl, F. F., and Moore, J. H. Multifactor-dimensionality reduction reveals
high-order interactions among estrogen-metabolism genes in sporadic breast can-
cer. Am J Hum Genet 69 (2001), 138–147.

[103] Romano, J. P., Shaikh, A. M., and Wolf, M. Formalized data snooping
based on generalized error rates. Econometric Theory 24 (2008), 404–447.

[104] Sarin, R., Wu, X., and Abraham, C. Inflammatory disease protective R381Q
IL23 receptor polymorphism results in decreased primary CD4+ and CD8+ hu-
man T-cell functional responses. Proc Natl Acad Sci USA (2011).

[105] Scott, L. J. Regression Models for Categorical and Limited Dependent Vari-
ables. Thousand Oaks CA: Sage Publications, 1997.

[106] Shastry, B. S. Pharmacogenetics and the concept of individualized medicine.
Pharmacogenomics J. 6, 1 (2006), 16–21.

[107] Simpson, E. H. The interpretation of interaction in contingency tables. Journal
of the Royal Statistical Society, Series B 13, 238-241 (1951).

[108] Slager, S. L., and Schaid, D. J. Case-control studies of genetic markers:
power and sample size approximations for armitage’s test for trend. Human
Heredity 52 (2001), 149–153.

[109] Slatkin, M. Epigenetic inheritance and the missing heritability problem. Ge-
netics 182, 3 (2009), 845–850.

[110] Smyth, G. An efficient algorithm for REML in heteroscedastic regression. Jour-
nal of computational and Graphical Statistics 11, 4 (2002), 836–847.

[111] Spielman, R. S., McGinnis, R. E., and Ewens, W. J. Transmission test for
linkage disequilibrium: the insulin gene region and insulin-dependent diabetes
mellitus (IDDM). Am J Hum Genet 52, 3 (1993), 506–16.

[112] Tantisira, K. G., Damask, A., Szefler, S. J., Schuemann, B.,
Markezich, A., Su, J., Klanderman, B., Sylvia, J., Wu, J., Martinez,
F., et al. Genome-wide association identifies the t gene as a novel asthma
pharmacogenetic locus. Am J Respir Crit Care Med 185, 12 (2012), 1286–91.

[113] Tao, S., Wand, Z., Feng, J., Hsu, F. C., Jin, G., Kim, S. T., Zhang, Z.,
Gronberg, H., zheng, L. S., Isaacs, W. B., et al. A genome-wide search
for loci interacting with known prostate cancer risk-associated genetic variants.
Carcinogenesis 33, 3 (2012), 598–603.

172

Bibliography

[114] Taylor, K. D., Targn, S. R., Mei, L., Ippoliti, A. F., McGovern, D.,
Mengesha, E., King, L., and Rotter, J. I. IL23R haplotypes provide a large
population attributable risk for crohn’s disease. Inflammatory Bowel Disease 14,
9 (2008), 1185–1191.

[115] Tervaniemi, M. H., Siitonen, H. A., Söderhäll, C., Minhas, G., Vuola,
J., Tiala, I., Sormunen, R., Samuelsson, L., Suomela, S., Kere, J.,
et al. Centrosomal localization of the psoriasis candidate gene product, cchcr1,
supports a role in cytoskeletal organization. PLoS ONE 7, 11 (2012).

[116] Therneau, T. M., Grambsch, P. M., and Fleming, T. R. Martingale-
based residuals for survival models. In Biometrika (1990), vol. 77, pp. 147–60.

[117] Tiala, I., Wakkinen, J., Suomela, S., Puolakkainen, P., Tammi, R.,
forsberg, S., Rollman, O., Kainu, K., Rozell, B., Kere, J., et al.
The psors1 locus gene cchcr1 affects keratinocyte proliferation in transgenic mice.
Hum. Mol. Genet. 17, 7 (2008), 1043–51.

[118] Ting, H., Sinnott-Armstrong, N. A., Kiralis, J. W., Andrew, A. S.,
Karagas, M. R., and H, M. J. Characterizing genetic interactions in human
disease association studies using statistical epistasis networks. BMC Bioinfor-
matics 12, 364 (2011).

[119] Tucker, G., Price, A. L., and Berger, B. Improving the power of gwas
and avoiding confounding from population stratification with pc-select. Genetics
187, 3 (2014), 1045–9.

[120] Urbanowicz, R. J., Kiralis, J., Sinnott-Armstrong, N. A., T, H., M,
F. J., and H, M. J. GAMETES: a fast, direct algorithm for generating pure,
strict, epistatic models with random architectures. BioData Mining 5, 16 (2012).

[121] Van Lishout, F., Bessonov, K., Duan, K., Gusareva, E., Ma-
hachie John, J. M., Tantishira, K., and Van Steen, K. Genome-wide
environmental interaction analysis using multidimensional data reduction princi-
ples to identify asthma pharmacogenetic loci in relation to corticosteroid therapy.
In Annual Society of Human Genetics annual Meeting, Boston, USA (2013).

[122] Van Lishout, F., Cattaert, T., Mahachie John, J. M., Gusareva, E.,
Urrea, V., Cleynen, I., Theatre, E., Charloteaux, B., Kvasz, A.,
Calle, M. L., Wehenkel, L., and Van Steen, K. An efficient algorithm
to perform multiple testing in epistasis screening. In Benelux Bioinformatics
Conference, Luxembourg (2011).

[123] Van Lishout, F., Gadaleta, F., Moore, J. H., Wehenkel, L., and
Van Steen, K. gammaMAXT: a fast multiple-testing correction algorithm.
In ERCIM 2014 Abstract Book (2014), Pisa, Ed.

[124] Van Lishout, F., Gadaleta, F., Moore, J. H., Wehenkel, L., and
Van Steen, K. gammaMAXT: a fast multiple-testing correction algorithm.
BioData Mining (2015).

173

Bibliography

[125] Van Lishout, F., Mahachie John, J. M., Gusareva, E. S., Urrea, V.,
Cleynen, I., Théâtre, E., Charloteaux, B., Calle, M. L., Wehenkel,
L., and Van Steen, K. An efficient algorithm to perform multiple testing in
epistasis screening. BMC Bioinformatics 14, 138 (2013).

[126] Van Lishout, F., Vens, C., Urrea, V., Calle, M. L., Wehenkel, L.,
and Van Steen, K. Survival analysis: finding relevant epistatic SNP pairs
using model-based multifactor dimensionality reduction. In 5th International
Conference of the ERCIM WG on computing & statistics, Oviedo, Spain (2012).

[127] Van Steen, K. Traveling the world of gene-gene interactions. Briefings in
Bioinformatics 13, 1 (2011), 1–19.

[128] van’t Veer, L. J., and Bernards, R. Enabling personalized cancer medicine
through analysis of gene-expression patterns. Nature 452, 7187 (2008), 564–70.

[129] Varadan, V., Miller, D. M., and Anastassiou, D. Computational infer-
ence of the molecular logic for synaptic connectivity in c. elegans. Bioinformatics
22, 14 (2006).

[130] Visel, A., Minovitsky, S., Dubchak, I., and Pennacchio, L. A. VISTA
enhancer browser—a database of tissue-specific human enhancers. Nucleic Acids
Research 35 (2007).

[131] Wan, X., Yang, C., Yang, Q., Xue, H., Fan, X., et al. BOOST: A fast
approach to detecting gene-gene interactions in genome-wide case-control studies.
Am J Hum Genet 87 (2010), 325–340.

[132] Wang, K. Testing for genetic association in the presence of population stratifi-
cation in genome-wide association studies. Genet Epidemil. 33, 7 (2009), 637–45.

[133] Watkinson, J., and Anastassiou, D. Synergy disequilibrium plots: graphical
visualization of pairwise synergies and redundancies of snps with respect to a
phenotype. Bioinformatics 25, 11 (2009), 1445–1446.

[134] Weibull, W. A statistical distribution funciton of wide applicability. J. Appl.
Mech.-Trans. ASME 18, 3 (1951), 293–97.

[135] Westfall, P. H., and Troendle, J. F. Multiple testing with minimal as-
sumptions. Biom J. 50, 5 (2008), 745–755.

[136] Westfall, P. H., and Young, S. S. Resampling-base multiple testing. Wiley,
New York, 1993.

[137] Wienbrandt, L., Kassens, J., Gonzalez-Domınguez, J., Schmidt, B.,
D, E., and Schimmler, M. FPGA-based acceleration of detecting statistical
epistasis in GWAS. In 14th International Conference on Computational Science
(2014), P. C. Science, Ed., vol. 29, pp. 220–230.

[138] Winham, S. J., Colby, L. C., Freimuth, R. R., Wang, X., de Andrade,
M., Huebner, M., and Biernacka, J. M. Snp interaction detection with
random forests in high-dimensional genetic data. BMC Bioinformatics 13, 164
(2012).

174

Bibliography

[139] Won, S., Lu, Q., Bertram, L., Tanzi, R. E., and Lange, C. On the meta-
analysis of genome-wide association studies: A robust and efficient approach to
combine population and family-based studies. Hum Hered 73, 1 (2012), 35–46.

[140] Xin, Y., and Xia, G. S. Linear regression analysis: Theory and computing. In
World Scientific (2009).

[141] Yang, J., Weedon, M. N., Purcell, S., Lettre, G., and Estrada, K.
e. a. Genomic inflation factors under polygenic inheritance. European Journal
of Human Genetics 19, 7 (2011), 807–12.

[142] Yang, S. K., Lee, S. G., Cho, Y. K., Lim, J., Lee, I., and Song, K. Asso-
ciation of tnf-alpha/lta polymorphisms with crohn’s disease in koreans. Cytokine
35, 1-2 (2006), 13–20.

[143] Zhou, X., Richon, V. M., Wang, A. H., Yang, X. J., Rifkind, R. A.,
and Marks, P. A. Histone deacetylase 4 associates with extracellular signal-
regulated kinases 1 and 2, and its cellular localization is regulated by oncogenic
ras. Proc Natl Acad Sci USA 97 (2000), 14329–14333.

[144] Zöllner, S., and Pritchard, J. K. Overcoming the winner’s curse: Esti-
mating penetrance parameters from case-control data. Am J Hum Genet 80, 4
(2007), 605–15.

[145] Zuk, O., Hechter, E., Sunyaev, S. R., and Lander, E. S. The mystery of
missing heritability: Genetic interactions create phantom heritability. Proceed-
ings of the National Academy of Sciences 109, 4 (2012), 1193–1198.

175

