Hasard, probabilités et statistique

Louis ESCH!

L’objectif de ce chapitre est tout d’abord de dresser rapidement le portrait de ce que I’on
entend par hasard, aléatoire, fortuit, ensuite d’examiner quels sont les différents sens du mot
probabilité, et enfin de voir comment ces deux éléments interviennent en statistique
inférentielle. 11 ne s’agit pas de développer les techniques du calcul des probabilités ou de la
statistique mais de décrire le cadre et les structures de ces théories.

1. Le hasard
1.1. Sens commun

Plusieurs représentations du hasard existent pour le commun des mortels. Il y a tout d’abord le
destin : il correspond a une volonté sous-jacente a notre vie de tout les jours qui conditionne
celle-ci. C’est de cette représentation qu’il s’agit lorsque 1’on parle de la « loi des séries » :
des faits se produisent de maniére apparemment chaotique mais, sous ce désordre, se dessine
une semi-intention qui donnera lieu a 1’événement final. Il apparait également comme une
circonstance atténuante des conséquences des décisions que nous prenons et des actions que
nous entreprenons, « c’est la faute a pas de chance » : il s’agit ici d’un refus de responsabilité.
Enfin — et on s’approche ici du sens utilis¢ dans 1’étude scientifique du hasard — on représente
le hasard par un ensemble de faits qui n’auraient pas de cause : on a ici I’idée du désordre, du
chaos, se manifestant au mépris de toute loi.

Cette derniére représentation est caractérisée par le fait que I’événement fortuit qui survient
- parait n’avoir aucune cause ;
- aurait pu survenir a n’importe quel autre moment, a n’importe quel autre personne,
dans n’importe quelle autre circonstance ;
- n’est en aucune mesure prévisible.
Cette analyse s’applique a tout événement fortuit, heureux (gain a un jeu de hasard) ou
malheureux (tuile qui tombe d’un toit et que vous recevez sur la téte).

Dans le cas de 1’événement « malheureux », le hasard se double d’un sentiment d’injustice,
d’intention négative. Qu’il s’agisse d’accidents de la route ou de maladie grave, la personne
concernée ne se demande pas quelle était la probabilité de survenance de cet événement ou la
proportion de personnes a qui cela peut arriver ; pour cette personne, le hasard a fait le choix
de la mettre au nombre de ses victimes.

De maniére plus générale, on a ici affaire a I’opposition entre 1’anarchie et la constance : le
hasard s’applique aux individus, pour chacun desquels I’événement survient ou ne survient
pas, et une loi générale s’applique a la collectivité, pour une proportion donnée de laquelle
I’événement survient. Sans le hasard individuel, il n’y aurait pas de constance collective.
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1.2. Point de vue philosophique

Deux points de vue s’affrontent relativement a la notion de hasard.

La premiére approche consiste a considérer que le hasard n’est que le reflet de notre
ignorance. Cette manicre de voir est confortée par la remarquable efficacité des théories
physiques (mécanique newtonienne par exemple). Les lois gouvernant I’évolution d’un
systéme étant connues et les conditions initiales étant fixées, il est théoriquement possible de
ce point de vue de déterminer ladite évolution. Ce point de vue déterministe a eu de tout
temps ses défenseurs, qu’il s’agisse d’Hippocrate”, de Spinoza, de Kant ou d’Einstein’.

Méme si on admet que la causalité est essentielle — sinon comment faire confiance aux
théories physiques efficaces ? — se pose la question, face a des situations aléatoires, de la
cause initiale. Ce contre-argument a été utilisé par Aristote dé¢ja. Un homme a mangé le soir
des aliments salés ; il a soif et veut boire, mais il n’a plus d’eau en sa maison ; il se rend donc
a la fontaine ; des brigands vivant dans la forét voisine passent par la et le tuent. Quelle est la
cause initiale de la mort de cet homme ? Certainement pas d’avoir mang¢ salé !

L’autre position, celle du hasard objectif, consiste a considérer certaines situations comme
totalement contingentes : le hasard est simplement la rencontre (incausée) de séries causales
indépendantes. Ainsi les séries causales physiologique (ingestion d’aliments salés —
sensation de soif — besoin de boire — déplacement a la fontaine), géologico-météorologique
(présence d’une source), sociologique (qui fait que des hommes sont devenus brigands,
habitent la forét et n’en sortent que la nuit) sont gouvernées par des lois, mais rien n’explique
leur rencontre. Il ne s’agit donc pas d’une négation du déterminisme, mais du caractére
imprévisible de la rencontre de séries causales. Ce point de vue est défendu par exemple par
Aristote, Cournot ou Wittgenstein.

D’autres points de vue, entre ces positions extrémes, peuvent étre adoptés. C’est ainsi que
Poincaré considere le hasard comme la limite de la situation « petites causes, grands effets ».
Il I’illustre a I’aide de la théorie cinétique des gaz. Les lois gouvernant 1’évolution de chaque
molécule de gaz sont connues, mais lorsqu’on est face a énormément de tels systémes
individuels en relation les uns avec les autres, on ne peut qu’en déduire des lois de structure,
en décomposant le gaz en cellules et en déterminant la probabilité des états macroscopiques,
sans s’inquiéter des molécules individuelles.

1.3. Phénomeénes fortuits

Un point de vue qui peut unifier les différents points de vue est de considérer que toutes les
situations sont des situations tendancielles : a des conditions initiales fixées, sont associées un
éventail plus ou moins larges de conséquences, de résultats possibles. L’éventail peut étre tres
serré — voire totalement fermé — pour les cas ou la prévisibilité est (presque) parfaite ; il peut
étre largement ouvert lorsque la prévisibilité n’est que partielle ou méme totalement absente.
Les phénomenes fortuits relévent de cette seconde catégorie.

2 « Le hasard, quand on vient a ’examiner, se trouve n’étre rien. Tout ce qui se fait a une certaine cause, et cette
cause se trouve en avoir une autre qui 1’a produite ».
? « Dieu ne joue pas aux dés ».



Un fait isolé peut bien sir étre fortuit (c’est le cas de I’exemple cité par Aristote) ; mais son
observation empirique ne permet pas de découvrir son caractére fortuit®. Si par contre on a
affaire a une structure répétitive, 1’observation empirique peut rendre compte de ce caractere
fortuit. Dans ce second cas de figure, un phénomene fortuit est caractérisé par
- la compléte anarchie des résultats individuels, aucune loi ne présidant a leur
occurrence (sinon la Loterie Nationale n’existerait pas) ;
- la cohérence statistique de 1’ensembles des résultats : stabilit¢ des moyennes calculées
sur un grand nombre de résultats successifs’ (sinon les compagnies d’assurances
n’existeraient pas).

Cette description est bien entendu valable pour des phénomeénes fortuits constitués d’épreuves
successives totalement identiques, mais également dans des cas plus généraux ou des
phénoménes de dépendance apparaissent (chaine de Markov, mouvement brownien).
Cependant, seul le premier cas d’espeéce permet de considérer la définition fréquentiste de la
probabilité (voir § 2.3).

1.4. Formalisation

Une théorie mathématique est par essence abstraite et indifférente a 1’existence méme de
I’objet auquel elle s’applique(rait). La physique quant a elle baigne dans I’existentiel. L’étude
d’une situation physique® a I’aide d’une théorie mathématique — que nous appellerons théorie
physique — ne peut se réaliser que pour la partie quantifiable du phénoméne et n’est jamais
que la construction d’une image abstraite de cette partie quantifiable. Elle ne fournit donc pas
une connaissance réelle, mais seulement symbolique du phénomene étudié. C’est cet aspect
de représentation qui impose a toute théorie physique sa confrontation avec 1’observation. En
cas d’infirmation’, la théorie doit étre retouchée ou remplacée. C’est ainsi que, dans certaines
conditions (vitesses non négligeables par rapport a celle de la lumicre), la mécanique
newtonienne doit étre généralisée par la théorie de la relativité.

C’est a ce titre que la théorie des probabilités peut €tre considérée comme une théorie
physique. Les phénomeénes fortuits constituent I’objet de cette théorie, un phénomene fortuit
¢tant caractérisé par I’ensemble Q de ses résultats possibles. Un événement est, d’un point
de vue intuitif, un fait qui, lors de chaque réalisation du phénomeéne fortuit, est susceptible de
se produire ou de ne pas se produire et, d’un point de vue formel, une partiec 4 de Q telle
que lors d’une réalisation du phénomeéne fortuit ayant pour résultat @ € 2, 4 se produit si et
seulement si @ € 4.

La théorie mathématique, applicable a tous les phénomenes fortuits, est basée sur la définition
d’une fonction de probabilité Pr, d’une c-algébre® ¥ sur Q dans [0; 1], obéissant aux

* Ceci est a Iorigine des difficultés d’utilisation (et particuliérement de mise en nombre) de la théorie des
probabilités dans les sciences humaines (par exemple décision en univers aléatoire en économie).

> Cette cohérence est justifiée, en théorie des probabilités par les lois des grands nombres.

% Au sens le plus large, sciences humaines comprises.

7 Attention ! L’observation permet d’infirmer, jamais de confirmer une théorie physique.

¥ 11 ne suffit pas de prendre ¥ = P(Q). En effet, dans certains cas non dénombrables on peut étre conduit & des
incohérences et, par ailleurs, la limitation a une o-algébre est parfois essentiel lorsque I’ensemble des

événements observables doit « s’enrichir » au cours du temps; c’est le cas par exemple en modélisation
financiere.



axiomes de Kolmogorov® et dont on peut déduire toute une série de conséquences, dont les
lois des grands nombres.

Le lien entre théorie et expérience est fourni par la notion de propension a 1’occurrence des
événements, le modéle n’étant pas infirmé lorsque tout événement auquel il attribue une
probabilité faible est un événement d’occurrence rare. Cette rareté ne peut bien sir étre
constatée que si le phénomene est suffisamment répétitif.

2. Les sens du mot « probabilité »
2.1. Degré de croyance

Cette définition subjective de la probabilité s’applique a des propositions logiques auxquelles
on attribue divers degrés de croyance. Il ne s’agit pas ici de I’expression d’une ignorance ou
d’un doute, mais on considére qu’une affirmation ayant une certaine vraisemblance a propos
de laquelle I’esprit n’atteint pas a la certitude. Nous noterons Prpc cette probabilité.

On trouve ce point de vue chez différents auteurs : Platon, Aristote, Mill, de Morgan, Jevons.
Nous donnerons ici la formalisation proposée par de Finetti'’. Il suppose défini, sur un
ensemble 7 de propositions logiques et pour un élément s de 7, un préordre total :
(g,5) < (r,s) si et seulement si, étant donné s, la proposition » est estimée au moins aussi
probable que la proposition ¢. La construction de la probabilité est faite grace a un ensemble
de paris : pour différentes valeurs de a et b'', « vous gagnez a € si ¢ est vrai et vous
perdez b € si g est faux ». La personne confrontée a cette famille de paris acceptera ceux
pour lesquels'?

a-Pry.(q,5)>b-Pry.(q,s)

et refusera ceux pour lesquels on a I’inégalité inverse. En remplagant Pr,.(q,s) par

1-"Pry.(q,s) eten résolvant I’équation ci-dessus, on trouve

b
Pr ,8) > .
e (459) a+h

Donc, si cette personne accepte tous les paris pour lesquels a/b > x et refuse ceux pour
lesquels a/b <x, c’est que, pour elle,

1
Pr ,8)=—.
e (455) I+ x

? Contrairement aux autres théories physiques ol une unité de mesure pour chaque grandeur est définie une fois
pour toutes, un de ces axiomes, Pr(Q) = 1, varie d’un phénoméne fortuit a ’autre, I’ensemble Q étant lui-méme
variable.

" DE FINETTI B., La prévision, ses lois logiques, ses sources subjectives, Annales de I’Institut H. Poincaré,
VII/1, 1937.

"""En fait, comme on va le voir, le résultat ne dépend que du rapport a/b.

> On désigne par g la négation de la proposition g.



Une objection qui peut étre formulée a 1’encontre de cette construction est la suivante : dans la
réalité, un pari (a, b) peut étre accepté et le pari (a’, b’) refusé par une personne, alors que
alb = a’/b’. En effet, il se peut qu’une personne accepte de parier 10 € contre 5 € a propos de
la véracité d’une proposition, mais refuse de parier 10 000 € contre 5 000 € ; le concept
d’utilité doit alors étre introduit.

D’autres objections plus fondamentales sont, d’une part, que cette théorie subjectiviste ne
peut pas étre confrontée a 1I’expérience (dans la réalité, un événement survient ou ne survient
pas) et, d’autre part, qu’elle ne permet pas d’expliquer des phénoménes comme la cohérence
statistique sur un grand nombre de réalisations.

2.2. Inférence partielle

Cette notion s’applique, tout comme la précédente, a des propositions logiques formant un
ensemble 7. Ici cependant, la probabilité n’est pas une attitude de 1’esprit, mais une relation
logique objective (pas de variation d’un sujet a I’autre) qui mesure une proximité logique, une
connexion déductive liant deux propositions. On notera cette probabilit¢ Prpp, I’expression
Prip(g, ) représentant la probabilité que » implique gq.

Cette acception est décrite par Keynes, Wittgenstein, Carnap et Jeffreys. Ce dernier' construit
cette probabilité a partir d’un préordre total sur ’ensemble des couples de propositions en
montrant qu’il est possible de définir Prip(g, ) comme un nombre réel compris entre 0 et 1
vérifiant

si ¥ = g, alors Pry(gq,r) =1
si r = g, alors Pr;,(q,7)=0
st r& g = s, alors Prj,(q &s,7) =Pr,(q,r)
Pr,(q & s,r) =Pr,(q,r) Prp(s,qg & r)

et qui peut s’interpréter ainsi: entre les deux valeurs extrémes 0 et 1, correspondant
respectivement a la contradiction et a la déductibilité, Prip(g, ) est d’autant plus proche de 1
que le contenu de ¢ ajoute moins a celui de .

Cette probabilité, dont la construction formelle est irréprochable, est peu utilisable en raison
de la difficulté de définir en pratique le préordre « est au moins aussi probable que ».

2.3. Fréquence

Cette notion, notée Prg, s’applique aux événements d’un phénomene fortuit & nombre fini de
résultats possibles : Q= {a)l,a)z,...,a)n}. La probabilité d’un événement A est ici définie
comme ¢€tant la proportion de résultats constituant I’événement A4 parmi I’ensemble de tous

les résultats :

Pr.(4) = M
n

ou, si I’on veut définir une fonction a deux arguments comme dans les cas précédents,

'3 JEFFREYS H., Theory of Probability, Oxford University Press, 1939.



#(ANB)
Pr.(4,B)=4 #(B)

1 sinon

si #(B)#0

et qui rend la définition & un seul argument dans le cas particulier ou B = Q.

On a affaire ici a la définition — qu’on trouve chez de Moivre, Montmort et Laplace —
exprimée par la sempiternelle formule « quotient du nombre de cas favorables par le nombre
de cas possibles » qui, dans 1’enseignement secondaire, limite 1’étude des probabilités aux
seuls mode¢les finis équiprobables, quand elle ne laisse pas croire que la théorie des
probabilités est simplement une application de I’analyse combinatoire !

Bien entendu, pour lesdits mod¢les finis équiprobables, la théorie basée sur cette définition
convient et est efficace, mais elle limite son utilisation a des applications quelque peu
artificielles telles que certains jeux de hasard. Elle ne permet pas de traiter les situations
discrétes non équiprobables ou dénombrables et encore moins les situations continues.

Une généralisation de cette approche fréquentiste a été donnée par von Mises'* qui traduit
I’idée que la théorie des probabilités a pour objet des phénomenes répétitifs et qu’une
probabilit¢ se mesure comme une fréquence sur une suite suffisamment longue de
réalisations. Les difficultés techniques de construction de la fonction de probabilité dans ce
contexte sont considérables et conduisent a la théorie des collectifs, cohérente mais pas
¢lémentaire du tout.

2.4. Propension

Cette derniere approche s’applique aux événements d’un phénomene fortuit (voir §§ 1.3 et
1.4) et représente la tendance qu’a un événement a se produire, sa propension a l’occurrence.
Cette notion ne nécessite nullement la répétitivité de la situation aléatoire; elle est a
rapprocher d’une notion telle que la fragilit¢ d’un objet en cristal. Il n’est pas nécessaire de
donner un choc a cet objet ni de le briser pour définir sa fragilité, c’est une notion qui lui est
intimement associée ; il en va de méme pour la propension a I’occurrence des événements
d’un phénomene fortuit. Cette probabilité sera notée Prp.

Ce point de vue plus moderne apparait chez Fréchet, Cramér, Popper ainsi qu’au sein de
1’école russe (Chebyshev, Markov, Lyapounov, ...) et il a été formalisé par Kolmogorov'> par
I’axiomatique que voici.

Etant donné un phénomene fortuit caractérisé par un ensemble Q de résultats possibles et
une o-algebre F sur Q correspondant aux événements observables, on définit la probabilité

comme une mesure de la tendance qu’ont les événements a ce produire. 11 s’agit de la fonction
Prp de ¥ dans [0; 1] qui obéit aux axiomes suivants : Prp(Q2) =1 et si {A iJed } est un

ensemble d’éléments de ¥ deux a deux disjoints, alors

4 VON MISES R., Probability, Statistics and Truth, Dover, 1981.
' KOLMOGOROV A.N., Grundbegriffe der Wahrscheinlichkeitsrechnung, Springer, 1933.



PrP[UAjJ =>"Pr,(4,).

jeJ jeJ
A nouveau, si on veut une définition a deux arguments, on définit a partir de 1a

Pr(4An B)
Pr,(4,B)=< Pr(B)
1 sinon

si Pr(B)#0

et le cas particulier B =Q permet de retrouver la formulation a un argument.

Dans cette approche, le triplet (Q, 7, Prp) est appelé espace probabilisé.

2.5. Unification

Popper'® a proposé un formalisme abstrait général qui s’applique aux différents sens
rencontrés. Les éléments en sont

- unensemble S;

- une applicationde S dans S: at> ~a ;

- une applicationde S x S dans S: (a,b)>a®b
- une applicationde S xS dans R : (a,b) — p(a,b)
liés par les axiomes

Ya,be S,
de,d €S : p(a,b) # p(c,d)
[Vc eSS, p(a,c)= p(b,c)] = [Vd €S, p(d,a)= p(d,b)]
p(a,a) = p(b,b)
Ya,b,c €S,
pa®b,c) < p(a,c)
pa®b,c)= pla,b®c)- p(b,c)
Ya,be S,
[BcesS: p(b,b) = p(c,b)] = p(a,b)+ p(~ a,b) = p(b,b)
Les conséquences de ces axiomes sont trop nombreuses pour étre toutes citées ici. Signalons
simplement que, dans les arguments de la fonction p, 1’opération & est commutative et

associative, que

JaeS:p(~a,a)=0
da,be S : p(a,b)#1

et que, quels que soient a, b, c etd dans S, ona

' POPPER K., The Logic of Scientific Discovery, Hutchinson, 1959.



0< p(a,b)<1 pla,a)=1
p(~ (~ a),b)= p(a,b)
p(a,b)+ p(~a,b)=1+ p(~ b,b)
p(a®b,c)+ p((~ a)®b,c)) = p(b,c) + p(~ c,c)

Par ailleurs, si on définit a@®b par ~((~ a)®(~ b)), alors

p(a D (~ a),b) =1
pla®b,c)= p(a,c)+ p(b,c)— p(a®b,c)
p(a@B®c),d)= p((a®b)D(a®c),d)

Maintenant, si on définit pg(a) par p(a,a @D (~ a)), on peut montrer que

_po(a’b)
p®=0 = PP, )
p(~b,b)=0

Le nombre p(a, b) est la probabilité de a si b, et le nombre po(a) est la probabilité de a
par rapport a (S, ~, ®). Les relations ci-dessus définissent un calcul des probabilités.

Les définitions de la probabilité comme degré de croyance, inférence partielle, fréquence ou
propension entrent toutes dans ce moule (on anoté¢ a le complémentaire de I’ensemble a) :

S ~a a®b pla, b)
degré de croyance T a a&b Prpc(a, b)
inférence partielle T a a&b Prip(a, b)
fréquence P(Q) a anb Pre(a, b)
propension F a anb Prp(a, b)

Bien entendu, I’opération a@®b correspond, dans les deux premiers cas, a «a ou b » et,
dans les deux autres,a a\Ub.

L’interprétation qui sera adoptée dans la suite du texte est celle des propensions et on notera,
plus classiquement,

Prp(4) = Pr(4) Pro(4, B) = Pr(4 | B)

3. La statistique inférentielle
3.1. Schéma général

Dans les applications simples de la théorie des probabilités (nombre d’as obtenu lors d’un
nombre donné de lancers indépendants d’un dé par exemple), la situation se décrit simplement
et complétement et le formalisme de la théorie des probabilités permet de répondre a des
questions relatives a cette situation. Dans des situations réelles plus complexes (analyse et



gestion de la problématique des files d’attente aux caisses d’une grande surface), aprés avoir
décrit la situation — ce qui n’est pas toujours simple — tout ce qu’on peut proposer, c’est une
famille de mod¢les plausibles, dont un est plus adéquat que les autres mais qui est inconnu.
Nous nous limiterons, dans ce qui suit, ou tous les modeles ont la méme forme mais varient de
I’un a I’autre en fonction d’un paramétre ; on parle alors de statistique paramétrique.

L’objectif de la statistique inférentielle peut prendre diverses formes. Sur base d’une ou
plusieurs observation(s), on peut
- choisir une action a exécuter (probléme de décision) ;
- préciser la valeur ou un ensemble de valeurs pour le parametre adéquat (probleme
d’estimation) ;
- exprimer un avis sur une affirmation relative a la situation (probléme de test
d’hypothése).

Le schéma général est le suivant. Il comprend un ensemble ® des valeurs paramétriques
possibles & et, pour chacune d’entre elles, un espace probabilis¢ (€2, 7, Prg) pour lequel

seule la fonction de probabilité dépend du paramétre'’. Il est toujours admis qu’il existe une
valeur paramétrique 6, € ® pour laquelle le modele est adéquat. Cette valeur & est appelée

etat du monde ; les conclusions, quelles qu’elles soient, n’en font jamais état, 1’état du monde
étant par définition inconnu.

Le schéma général que nous venons de décrire (Q, 7, ®, Pry) sera, suivant le probléme a

résoudre, complété ou particularisé.
3.2. Trois problémes en statistique inférentielle
Probléme de décision

Dans un probléme de décision, le schéma général ci-dessus est complété par deux ensembles
A et T et par deux fonctions y et o.L’ensemble A est ’ensemble des décisions possibles
et I' est I’ensemble des conséquences ; ce dernier est muni d’une structure de préordre total,
permettant au décideur d’exprimer ses préférences quant auxdites conséquences. La fonction

OxA—->T

g :‘ (0.5) > 7(0.5)

fournit les différentes valeurs de {6, J), conséquence de la décision & si I’état du monde est

6. L’objectif d’un probléme de décision est de trouver la fonction

Q> A

- o(w)

appelée stratégie, pour laquelle la fonction de conséquence

17 Ce paramétre peut par exemple étre une moyenne de population d’individus, ou une variance, ou le couple
formé par ces deux ¢léments, ...



Qx0 T
(@,0) — 7(0,0(w))

a des propriétés globalement optimales (c’est-a-dire pour I’ensemble des valeurs possibles de
).

Un exemple simple est celui ou un client a le choix entre deux lots de N picces, un a un prix
¢levé mais de qualité parfaite (ou garantie) et 1’autre moins cher mais pour lequel chaque
piéce a une probabilité & d’étre défectueuse. Le schéma général (QQ, 7, ®, Pry) est celui de

I’échantillonnage de n pieces que I’on teste, I’ensemble A comporte deux éléments
(chacune des décisions possibles), la fonction 19, €) représente, pour chacune des décisions,
le cotit (achat et rebut estimé) en fonction de la probabilité¢ de défaut €. On peut donc déduire
de I’étude de cette fonction les valeurs de & pour lesquelles 1’une ou I’autre des décisions est
meilleure et en déduire une stratégie de choix de la décision.

Dans certains cas, les décisions sont multiples et échelonnées dans le temps ; dans ce cas, au
lieu d’utiliser simplement la matrice 1o, €) des conséquences, il convient de représenter la
situation par un arbre de décision, aux nceuds duquel se succederont des manifestation du
hasard et des décision a prendre, toujours suivant un principe d’optimalisation globale des
conséquences. La stratégie retenue sera, dans ce cas, une succession de décisions.

Probleme d’estimation

L’objectif d’un probléme d’estimation est de donner des informations sur 1’état du monde.
Une région de confiance pour le paramétre'® 6 au niveau d’incertitude o est un sous-
ensemble aléatoire R de ® pour lequel

}grgg Pr,[0eR]=1-«.

Pour toutes les valeurs de 6, la probabilit¢é Pr,[@ € R] est donc au moins égale a 1 — .

Pour une réalisation du phénomeéne fortuit (résultat ), I’ensemble (non aléatoire) R(w) est
la réalisation observée de la région de confiance.

Le niveau d’incertitude o« doit bien sir étre suffisamment petit pour caractériser un
événement (affirmer que I’état du monde est un élément de R alors qu’il n’en est rien) rare.
Bien entendu, pour tout @, R(w) est d’autant plus grand que «a est petit ; c’est I’expression
technique du conflit entre précision (taille de la région de confiance) et sécurité (niveau
d’incertitude).

Lorsque ® c R, la notion de région de confiance prend presque toujours la forme d’un
intervalle de confiance ; 1l s’agit d’un intervalle aléatoire [u ; v] tel que

i <O<vl=1-
16’r€1£Pr5[u_<9_v] l-«o.

'8 Si les éléments de @ sont des couples (ou des triplets) de paramétres, la notion de région de confiance peut
s’appliquer au couple (ou au triplet), mais également aux composantes individuelles.
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Probléme de test d’hypothése

On appelle hypothese d’un schéma général (€, 7, ©, Prg) toute proposition Hy de la forme

«B € Oy» ou BO)pc . Sil’ensemble ®p ne comporte qu’un seul élément, [’hypothese est
dite simple, sinon, elle est dite composite. La question qui se pose dans un probléme de test

d’hypothése est de savoir dans quelle mesure le résultat observé @ de la réalisation du
phénoméne fortuit infirme ou confirme'® I’hypothése H.

Dans I’approche de Neyman-Pearson, le probléme du test d’hypothése apparait comme un cas
particulier d’un probléme de décision avec A = {51,52} ou o (resp. &) correspond au rejet

(resp. au non rejet) de Hp et ou la stratégie o est définie a partir de la notion de région
critique Zy, partie de Q telle que

0, sl wmeZ,
o(w) = .
0, si weQ\Z,

Le niveau d’incertitude du test est le nombre

a =sup Pr,(Z,)

00,
et la puissance du test est la fonction
0 —[0;1]
D:
0+ Pr,(Z,)
D(
9 A
1 —————— e

O 0

La fonction puissance est représentée sur le graphique ci-dessus, le graphe en trait interrompu
étant la finesse « idéale ».

' On devrait plutét dire « infirme ou n’infirme pas », une observation isolée permettant de rejeter une
affirmation, pas de la prouver.
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Le niveau d’incertitude « représente donc la probabilité de rejeter I’hypothése Hy si celle-ci
est vraie. Cette erreur est appelée erreur de type 1. L’erreur de type II est de ne pas rejeter Hy
si celle-ci est fausse ; sa probabilité est

- inf Pr,(Z,).

0e6\0,

Lorsque I'on est amené a rejeter Hyp, on peut étre intéressé de connaitre 1’importance de
I’écart. Cet aspect s’appréhende a l’aide de la notion de probabilité de dépassement.
Définissons sur €2 le préordre total < par: @, < w, si et seulementsi @; est au moins

aussi défavorable a Hy que @,. Définissons ensuite, pour chaque @ € Q, I’événement (que
nous supposerons observable)

Wo(a))={teQ : t—<a)}.
La probabilité de dépassement est la variable aléatoire PD,, définie par

PD,(®w) =sup Pr, (W0 (a))).

00,

Il est clair que, quel que soient @; et @,, ona

Wy(w) cWy(w,) ou Wy(w,)cW (o)
Wy(w)cWy(o,) < PDy(®)<PD,(w,)

et que, pour I'implication <= ci-dessus, une inégalité stricte entre les probabilités de
dépassement implique une inclusion stricte entre les événements.

Etant donné une observation (résultat @ observé lors d’une réalisation du phénoméne
fortuit), on peut dire que, si ’hypothése H, est vraie, alors les observations au moins aussi
défavorables a Hy que I’observation @ ont une probabilité au plus égale & PDy(w).

3.3. Utilisation pratique

Dans la pratique, presque tous les problemes de statistique inférentielle concernent une
population de N individus, dont on extrait un échantillon a partir duquel on tente d’inférer
des conclusions s’appliquant a la population.

Population

Si chaque individu de la population est porteur d’un (ou de plusieurs) nombre(s), la
population est dite univariée (ou multivariée). Si les différents individus sont affectés chacun
a une et une seule catégorie, on parle de population nominale.

Pour une population univariée I’ensemble des nombres {xi, x2, ..., xy} peut faire I’objet de la
définition d’une ogive, fonction F de R dans [0; 1] telle que F(¢f) représente la
proportion des individus de la population porteur d’un nombre inférieur ou égal a ¢. A partir
de cette ogive, on peut également définir différents parameétres statistiques de population tels
que moyenne, écart type, ... Pour une population nominale, les parameétres statistiques de
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population sont simplement les proportions py, pa, ..., p» d’individus relevant de chacune
des catégories.

La statistique inférentielle s’applique uniquement aux populations dont les parameétres
statistiques de population sont (partiellement) inconnus, 1’objectif étant de suppléer a cette
absence de connaissance.

Echantillonnage

Nous nous limiterons ici a la notion d’échantillon aléatoire simple, c’est-a-dire pour lequel le
nombre 7 d’individus extraits est fixé, les extractions se faisant de la méme population, de
manicre aléatoire et indépendante.

Le phénomene fortuit (Q, ) dont on parle dans le schéma général est ce mécanisme

d’échantillonnage, ’ensemble Q étant I’ensemble de tous les échantillons possibles.

La population n’est pas totalement connue. Nous supposerons que cette indétermination est de
type paramétrique : il manque la connaissance de la valeur paramétrique®® 6, prenant ses
valeurs dans I’ensemble ©®. C’est la troisiéme composante du schéma général (Q, 7, ®, Pry).

Enfin, la loi de probabilité¢ est définie, pour une population univariée, en considérant les
¢léments de I’échantillon comme n variables aléatoires indépendantes et identiquement
distribuées de commune fonction de répartition donnée par 1’ogive de la population et, pour
une population nominale, si on note C; les catégories et e; les individus de I’échantillon, par

P{ﬁ [ei eC, U - ﬁpif ’
i=1 =l

quels que soient ji, ..., j, € {1, ..., m}.

Pour chaque échantillon, il est possible de calculer des parametres statistiques d’échantillon :
moyenne, écart type, ... pour une population univariée, fréquence des catégories pour une
population nominale®'. Si on considére ces paramétres statistiques d’échantillon calculés pour
chaque échantillon possible (chaque élément de (), ils définissent des variables aléatoires
dans le schéma général. Pour ces variables aléatoires, on peut définir des valeurs typiques
(parametres de localisation, de dispersion, ...). Ce sont les paramétres statistiques
d’échantillonnage.

Clairement, les paramétres statistiques d’échantillon et d’échantillonnage sont liés a ceux de
la population®. C’est ainsi qu’il est possible de démontrer, pour une population univariée, que
la moyenne d’échantillonnage de la moyenne d’échantillon est égale a la moyenne de
population.

Estimateurs

? Eventuellement multivariée.
2 Ceci reléve de la statistique descriptive.
*? Mais il convient de soigneusement les distinguer !
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Les problémes rencontrés plus haut

- définir d’une stratégie de choix de décision en fonction des conséquences liées aux

différentes valeurs d’un parameétre 6

- estimer un parametre 6

- tester une hypothese relative a la valeur d’un paramétre 6;
utilisent la notion d’estimateur du paramétre 6. Il s’agit d’une variable aléatoire 0 surle
schéma général (parametre statistique d’échantillon) dont un parametre de localisation
(d’échantillonnage) est €gal au parametre (de population) 6.

Un estimateur est dit sans biais si sa moyenne d’échantillonnage est égale a la valeur du
parametre de population E(8) =6 et efficace si sa variance est inférieure a celle de tous les

autres estimateurs. Pour une population univariée de moyenne u et d’écart type o dont les
¢léments de I’échantillon sont les variables aléatoires Xj, ..., X,, si on définit moyenne et
variance d’échantillon par

m=—ZX,. Szzli:()(,.—m)2
n i

on a affaire, pour le premier, a un estimateur sans biais car, comme on 1’a déja dit, E(m) = 4,
alors que le second n’est qu’asymptotiquement sans biais puisqu’on peut démontrer que

l’l—l 2
o .

E(s) ="

3.4. Et ensuite ?

Cette troisieme section est le cadre conceptuel et le point de départ de tous les
développements de la statistique inférentielle paramétrique, qu’il s’agisse des méthodes de
construction des estimateurs (maximum de vraisemblance, khi carré minimum, ...) ou du
développement de méthodes d’estimation et de test dans des cas divers et variés. Cet
important chapitre technique n’a évidemment pas sa place ici.

Il convient de signaler que ce qui vient d’€tre exposé€ ne se veut pas complet, bien loin de 1a.
On n’a en rien abordé¢ les aspects non paramétriques, les techniques robustes, les méthodes
bayesiennes, ... On s’est ¢galement limité volontairement aux aspects classiques des
fondements du calcul des probabilités et de la statistique ; par exemple, a coté de I’approche
de Neyman-Pearson des tests, on aurait pu envisager celles qui utilisent les modéles
probabilistes relatifs aux propositions logiques Prpc et Prip.
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