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L’objectif de ce chapitre est tout d’abord de dresser rapidement le portrait de ce que l’on 
entend par hasard, aléatoire, fortuit, ensuite d’examiner quels sont les différents sens du mot 
probabilité, et enfin de voir comment ces deux éléments interviennent en statistique 
inférentielle. Il ne s’agit pas de développer les techniques du calcul des probabilités ou de la 
statistique mais de décrire le cadre et les structures de ces théories. 
 
 
1. Le hasard 
 
1.1. Sens commun 
 
Plusieurs représentations du hasard existent pour le commun des mortels. Il y a tout d’abord le 
destin : il correspond à une volonté sous-jacente à notre vie de tout les jours qui conditionne 
celle-ci. C’est de cette représentation qu’il s’agit lorsque l’on parle de la « loi des séries » : 
des faits se produisent de manière apparemment chaotique mais, sous ce désordre, se dessine 
une semi-intention qui donnera lieu à l’événement final. Il apparaît également comme une 
circonstance atténuante des conséquences des décisions que nous prenons et des actions que 
nous entreprenons, « c’est la faute à pas de chance » : il s’agit ici d’un refus de responsabilité. 
Enfin – et on s’approche ici du sens utilisé dans l’étude scientifique du hasard – on représente 
le hasard par un ensemble de faits qui n’auraient pas de cause : on a ici l’idée du désordre, du 
chaos, se manifestant au mépris de toute loi. 
 
Cette dernière représentation est caractérisée par le fait que l’événement fortuit qui survient 

- paraît n’avoir aucune cause ; 
- aurait pu survenir à n’importe quel autre moment, à n’importe quel autre personne, 

dans n’importe quelle autre circonstance ; 
- n’est en aucune mesure prévisible. 

Cette analyse s’applique à tout événement fortuit, heureux (gain à un jeu de hasard) ou 
malheureux (tuile qui tombe d’un toit et que vous recevez sur la tête). 
 
Dans le cas de l’événement « malheureux », le hasard se double d’un sentiment d’injustice, 
d’intention négative. Qu’il s’agisse d’accidents de la route ou de maladie grave, la personne 
concernée ne se demande pas quelle était la probabilité de survenance de cet événement ou la 
proportion de personnes à qui cela peut arriver ; pour cette personne, le hasard a fait le choix 
de la mettre au nombre de ses victimes.  
 
De manière plus générale, on a ici affaire à l’opposition entre l’anarchie et la constance : le 
hasard s’applique aux individus, pour chacun desquels l’événement survient ou ne survient 
pas, et une loi générale s’applique à la collectivité, pour une proportion donnée de laquelle 
l’événement survient. Sans le hasard individuel, il n’y aurait pas de constance collective. 
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1.2. Point de vue philosophique 
 
Deux points de vue s’affrontent relativement à la notion de hasard. 
 
La première approche consiste à considérer que le hasard n’est que le reflet de notre 
ignorance. Cette manière de voir est confortée par la remarquable efficacité des théories 
physiques (mécanique newtonienne par exemple). Les lois gouvernant l’évolution d’un 
système étant connues et les conditions initiales étant fixées, il est théoriquement possible de 
ce point de vue de déterminer ladite évolution. Ce point de vue déterministe a eu de tout 
temps ses défenseurs, qu’il s’agisse d’Hippocrate2, de Spinoza, de Kant ou d’Einstein3.  
 
Même si on admet que la causalité est essentielle – sinon comment faire confiance aux 
théories physiques efficaces ? – se pose la question, face à des situations aléatoires, de la 
cause initiale. Ce contre-argument a été utilisé par Aristote déjà. Un homme a mangé le soir 
des aliments salés ; il a soif et veut boire, mais il n’a plus d’eau en sa maison ; il se rend donc 
à la fontaine ; des brigands vivant dans la forêt voisine passent par là et le tuent. Quelle est la 
cause initiale de la mort de cet homme ? Certainement pas d’avoir mangé salé ! 
 
L’autre position, celle du hasard objectif, consiste à considérer certaines situations comme 
totalement contingentes : le hasard est simplement la rencontre (incausée) de séries causales 
indépendantes. Ainsi les séries causales physiologique (ingestion d’aliments salés → 
sensation de soif → besoin de boire → déplacement à la fontaine), géologico-météorologique 
(présence d’une source), sociologique (qui fait que des hommes sont devenus brigands, 
habitent la forêt et n’en sortent que la nuit) sont gouvernées par des lois, mais rien n’explique 
leur rencontre. Il ne s’agit donc pas d’une négation du déterminisme, mais du caractère 
imprévisible de la rencontre de séries causales. Ce point de vue est défendu par exemple par 
Aristote, Cournot ou Wittgenstein. 
 
D’autres points de vue, entre ces positions extrêmes, peuvent être adoptés. C’est ainsi que 
Poincaré considère le hasard comme la limite de la situation « petites causes, grands effets ». 
Il l’illustre à l’aide de la théorie cinétique des gaz. Les lois gouvernant l’évolution de chaque 
molécule de gaz sont connues, mais lorsqu’on est face à énormément de tels systèmes 
individuels en relation les uns avec les autres, on ne peut qu’en déduire des lois de structure, 
en décomposant le gaz en cellules et en déterminant la probabilité des états macroscopiques, 
sans s’inquiéter des molécules individuelles. 
 
1.3. Phénomènes fortuits 
 
Un point de vue qui peut unifier les différents points de vue est de considérer que toutes les 
situations sont des situations tendancielles : à des conditions initiales fixées, sont associées un 
éventail plus ou moins larges de conséquences, de résultats possibles. L’éventail peut être très 
serré – voire totalement fermé – pour les cas où la prévisibilité est (presque) parfaite ; il peut 
être largement ouvert lorsque la prévisibilité n’est que partielle ou même totalement absente. 
Les phénomènes fortuits relèvent de cette seconde catégorie. 
 

                                                 
2 « Le hasard, quand on vient à l’examiner, se trouve n’être rien. Tout ce qui se fait a une certaine cause, et cette 
cause se trouve en avoir une autre qui l’a produite  ». 
3 « Dieu ne joue pas aux dés ». 
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Un fait isolé peut bien sûr être fortuit (c’est le cas de l’exemple cité par Aristote) ; mais son 
observation empirique ne permet pas de découvrir son caractère fortuit4. Si par contre on a 
affaire à une structure répétitive, l’observation empirique peut rendre compte de ce caractère 
fortuit. Dans ce second cas de figure, un phénomène fortuit est caractérisé par 

- la complète anarchie des résultats individuels, aucune loi ne présidant à leur 
occurrence (sinon la Loterie Nationale n’existerait pas) ; 

- la cohérence statistique de l’ensembles des résultats : stabilité des moyennes calculées 
sur un grand nombre de résultats successifs5 (sinon les compagnies d’assurances 
n’existeraient pas). 

 
Cette description est bien entendu valable pour des phénomènes fortuits constitués d’épreuves 
successives totalement identiques, mais également dans des cas plus généraux où des 
phénomènes de dépendance apparaissent (chaîne de Markov, mouvement brownien). 
Cependant, seul le premier cas d’espèce permet de considérer la définition fréquentiste de la 
probabilité (voir § 2.3). 
 
1.4. Formalisation 
 
Une théorie mathématique est par essence abstraite et indifférente à l’existence même de 
l’objet auquel elle s’applique(rait). La physique quant à elle baigne dans l’existentiel. L’étude 
d’une situation physique6 à l’aide d’une théorie mathématique – que nous appellerons théorie 
physique – ne peut se réaliser que pour la partie quantifiable du phénomène et n’est jamais 
que la construction d’une image abstraite de cette partie quantifiable. Elle ne fournit donc pas 
une connaissance réelle, mais seulement symbolique du phénomène étudié. C’est cet aspect 
de représentation qui impose à toute théorie physique sa confrontation avec l’observation. En 
cas d’infirmation7, la théorie doit être retouchée ou remplacée. C’est ainsi que, dans certaines 
conditions (vitesses non négligeables par rapport à celle de la lumière), la mécanique 
newtonienne doit être généralisée par la théorie de la relativité.  
 
C’est à ce titre que la théorie des probabilités peut être considérée comme une théorie 
physique. Les phénomènes fortuits constituent l’objet de cette théorie, un phénomène fortuit 
étant caractérisé par l’ensemble  Ω  de ses résultats possibles. Un événement est, d’un point 
de vue intuitif, un fait qui, lors de chaque réalisation du phénomène fortuit, est susceptible de 
se produire ou de ne pas se produire et, d’un point de vue formel, une partie  A  de  Ω  telle 
que lors d’une réalisation du phénomène fortuit ayant pour résultat  ω ∈ Ω,  A  se produit si et 
seulement si  ω ∈ A. 
 
La théorie mathématique, applicable à tous les phénomènes fortuits, est basée sur la définition 
d’une fonction de probabilité  Pr,  d’une σ-algèbre8     sur  Ω  dans  [0 ; 1], obéissant aux 

                                                 
4 Ceci est à l’origine des difficultés d’utilisation (et particulièrement de mise en nombre) de la  théorie des 
probabilités dans les sciences humaines (par exemple décision en univers aléatoire en économie). 
5 Cette cohérence est justifiée, en théorie des probabilités par les lois des grands nombres. 
6 Au sens le plus large, sciences humaines comprises. 
7 Attention ! L’observation permet d’infirmer, jamais de confirmer une théorie physique. 
8 Il ne suffit pas de prendre   = (Ω). En effet, dans certains cas non dénombrables on peut être conduit à des 
incohérences et, par ailleurs, la limitation à une σ-algèbre est parfois essentiel lorsque l’ensemble des 
événements observables doit « s’enrichir » au cours du temps ; c’est le cas par exemple en modélisation 
financière. 
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axiomes de Kolmogorov9 et dont on peut déduire toute une série de conséquences, dont les 
lois des grands nombres. 
 
Le lien entre théorie et expérience est fourni par la notion de propension à l’occurrence des 
événements, le modèle n’étant pas infirmé lorsque tout événement auquel il attribue une 
probabilité faible est un événement d’occurrence rare. Cette rareté ne peut bien sûr être 
constatée que si le phénomène est suffisamment répétitif. 
 
 
2. Les sens du mot « probabilité » 
 
2.1. Degré de croyance 
 
Cette définition subjective de la probabilité s’applique à des propositions logiques auxquelles 
on attribue divers degrés de croyance. Il ne s’agit pas ici de l’expression d’une ignorance ou 
d’un doute, mais on considère qu’une affirmation ayant une certaine vraisemblance à propos 
de laquelle l’esprit n’atteint pas à la certitude. Nous noterons  PrDC  cette probabilité.  
 
On trouve ce point de vue chez différents auteurs : Platon, Aristote, Mill, de Morgan, Jevons. 
Nous donnerons ici la formalisation proposée par de Finetti10. Il suppose défini, sur un 
ensemble  T  de propositions logiques et pour un élément  s  de  T, un préordre total : 

  si et seulement si, étant donné  s, la proposition  r  est estimée au moins aussi 
probable que la proposition  q. La construction de la probabilité est faite grâce à un ensemble 
de paris : pour différentes valeurs de  a  et  b

),(),( srsq p

11, « vous gagnez  a €  si  q  est vrai et vous 
perdez  b €  si  q  est faux ». La personne confrontée à cette famille de paris acceptera ceux 
pour lesquels12    

),~(Pr),(Pr DCDC sqbsqa ⋅>⋅  
 

et refusera ceux pour lesquels on a l’inégalité inverse. En remplaçant  ),~(PrDC sq   par  
  et en résolvant l’équation ci-dessus, on trouve ),(Pr1 DC sq−

 

ba
bsq
+

>),(PrDC . 

 
Donc, si cette personne accepte tous les paris pour lesquels  a/b > x  et refuse ceux pour 
lesquels  a/b < x, c’est que, pour elle, 
 

x
sq

+
=

1
1),(PrDC . 

 

                                                 
9 Contrairement aux autres théories physiques où une unité de mesure pour chaque grandeur est définie une fois 
pour toutes, un de ces axiomes,  Pr(Ω) = 1, varie d’un phénomène fortuit à l’autre, l’ensemble  Ω  étant lui-même 
variable. 
10 DE FINETTI B., La prévision, ses lois logiques, ses sources subjectives, Annales de l’Institut H. Poincaré, 
VII/1, 1937. 
11 En fait, comme on va le voir, le résultat ne dépend que du rapport a/b. 
12 On désigne par  q~  la négation de la proposition  q. 
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Une objection qui peut être formulée à l’encontre de cette construction est la suivante : dans la 
réalité, un pari  (a, b)  peut être accepté et le pari  (a’, b’)  refusé par une personne, alors que  
a/b = a’/b’. En effet, il se peut qu’une personne accepte de parier 10 € contre 5 € à propos de 
la véracité d’une proposition, mais refuse de parier 10 000 € contre 5 000 € ; le concept 
d’utilité doit alors être introduit. 
 
D’autres objections plus fondamentales sont, d’une part, que cette théorie subjectiviste ne 
peut pas être confrontée à l’expérience (dans la réalité, un événement survient ou ne survient 
pas) et, d’autre part, qu’elle ne permet pas d’expliquer des phénomènes comme la cohérence 
statistique sur un grand nombre de réalisations. 
 
2.2. Inférence partielle 
 
Cette notion s’applique, tout comme la précédente, à des propositions logiques formant un 
ensemble  T. Ici cependant,  la probabilité n’est pas une attitude de l’esprit, mais une relation 
logique objective (pas de variation d’un sujet à l’autre) qui mesure une proximité logique, une 
connexion déductive liant deux propositions. On notera cette probabilité  PrIP, l’expression  
PrIP(q, r)  représentant la probabilité que  r  implique  q. 
 
Cette acception est décrite par Keynes, Wittgenstein, Carnap et Jeffreys. Ce dernier13 construit 
cette probabilité à partir d’un préordre total sur l’ensemble des couples de propositions en 
montrant qu’il est possible de définir  PrIP(q, r)  comme un nombre réel compris entre 0 et 1 
vérifiant 
 

)&,(Pr),(Pr),&(Pr
),(Pr),&(Pr  alors  ,&  si

0),(Pr  alors  ,~  si
1),(Pr  alors  ,  si

IPIPIP

IPIP

IP

IP

rqsrqrsq
rqrsqsqr

rqqr
rqqr

⋅=
=⇒
=⇒
=⇒

  

 
et qui peut s’interpréter ainsi : entre les deux valeurs extrêmes 0 et 1, correspondant 
respectivement à la contradiction et à la déductibilité,  PrIP(q, r)  est d’autant plus proche de 1 
que le contenu de  q  ajoute moins à celui de  r. 
 
Cette probabilité, dont la construction formelle est irréprochable, est peu utilisable en raison 
de la difficulté de définir en pratique le préordre « est au moins aussi probable que ». 
 
2.3. Fréquence 
 
Cette notion, notée  PrF, s’applique aux événements d’un phénomène fortuit à nombre fini de 
résultats possibles :  { n }ωωω ,,, 21 K=Ω . La probabilité d’un événement  A  est ici définie 
comme étant la proportion de résultats constituant l’événement  A  parmi l’ensemble de tous 
les résultats : 

n
AA )(#)(PrF =  

 
ou, si l’on veut définir une fonction à deux arguments comme dans les cas précédents,  
                                                 
13 JEFFREYS H., Theory of Probability, Oxford University Press, 1939. 
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



 ≠

∩
=

sinon                    1

0)(#     si     
)(#

)(#
),(PrF

B
B

BA
BA  

 
et qui rend la définition à un seul argument dans le cas particulier où  B = Ω. 
 
On a affaire ici à la définition – qu’on trouve chez de Moivre, Montmort et Laplace – 
exprimée par la sempiternelle formule « quotient du nombre de cas favorables par le nombre 
de cas possibles » qui, dans l’enseignement secondaire, limite l’étude des probabilités aux 
seuls modèles finis équiprobables, quand elle ne laisse pas croire que la théorie des 
probabilités est simplement une application de l’analyse combinatoire ! 
 
Bien entendu, pour lesdits modèles finis équiprobables, la théorie basée sur cette définition 
convient et est efficace, mais elle limite son utilisation à des applications quelque peu 
artificielles telles que certains jeux de hasard. Elle ne permet pas de traiter les situations 
discrètes non équiprobables ou dénombrables et encore moins les situations continues. 
 
Une généralisation de cette approche fréquentiste a été donnée par von Mises14 qui traduit 
l’idée que la théorie des probabilités a pour objet des phénomènes répétitifs et qu’une 
probabilité se mesure comme une fréquence sur une suite suffisamment longue de 
réalisations. Les difficultés techniques de construction de la fonction de probabilité dans ce 
contexte sont considérables et conduisent à la théorie des collectifs, cohérente mais pas 
élémentaire du tout. 
 
2.4. Propension 
 
Cette dernière approche s’applique aux événements d’un phénomène fortuit (voir §§ 1.3 et 
1.4) et représente la tendance qu’a un événement à se produire, sa propension à l’occurrence. 
Cette notion ne nécessite nullement la répétitivité de la situation aléatoire ; elle est a 
rapprocher d’une notion telle que la fragilité d’un objet en cristal. Il n’est pas nécessaire de 
donner un choc à cet objet ni de le briser pour définir sa fragilité, c’est une notion qui lui est 
intimement associée ; il en va de même pour la propension à l’occurrence des événements 
d’un phénomène fortuit. Cette probabilité sera notée  PrP. 
 
Ce point de vue plus moderne apparaît chez Fréchet, Cramér, Popper ainsi qu’au sein de 
l’école russe (Chebyshev, Markov, Lyapounov, …) et il a été formalisé par Kolmogorov15 par 
l’axiomatique que voici. 
 
Etant donné un phénomène fortuit caractérisé par un ensemble  Ω  de résultats possibles et 
une σ-algèbre     sur  Ω  correspondant aux événements observables, on définit la probabilité 
comme une mesure de la tendance qu’ont les événements à ce produire. Il s’agit de la fonction  
PrP  de    dans  [0 ; 1] qui obéit aux axiomes suivants :  PrP(Ω) = 1 et si  { }JjAj ∈:   est un 
ensemble d’éléments de    deux à deux disjoints, alors 
 

                                                 
14 VON MISES R., Probability, Statistics and Truth, Dover, 1981. 
15 KOLMOGOROV A.N., Grundbegriffe der Wahrscheinlichkeitsrechnung, Springer, 1933. 
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∑
∈∈

=










Jj
jj

Jj

AA )(PrPr PP U . 

 
A nouveau, si on veut une définition à deux arguments, on définit à partir de là 
 





 ≠

∩
=

sinon                    1

0)(Pr     si     
)Pr(

)Pr(
),(PrP

B
B

BA
BA  

 
et le cas particulier  B = Ω  permet de retrouver la formulation à un argument. 
 
Dans cette approche, le triplet  (Ω, , PrP)  est appelé espace probabilisé. 
 
2.5. Unification 
 
Popper16 a proposé un formalisme abstrait général qui s’applique aux différents sens 
rencontrés. Les éléments en sont 

- un ensemble  S ; 
- une application de  S  dans  S : aa ~a  ; 
- une application de  S × S  dans  S : baba ⊗a),(  
- une application de  S × S  dans   :  ),(),( bapba a

liés par les axiomes 
 

[ ] [

[ ] ),(),(~),(),(),(:
,,

),(),(),(
),(),(

,,,
),(),(

),(),(,),(),(,
),(),(:,

,,

bbpbapbapbcpbbpSc
Sba

cbpcbapcbap
capcbap

Scba
bbpaap

bdpadpSdcbpcapSc
dcpbapSdc

Sba

=+⇒≠∈∃
∈∀

⋅⊗=⊗
≤⊗

∈∀
=

=∈∀⇒=∈∀
≠∈∃

∈∀

]

 

 
Les conséquences de ces axiomes sont trop nombreuses pour être toutes citées ici. Signalons 
simplement que, dans les arguments de la fonction  p,  l’opération  ⊗   est commutative et 
associative, que 
 

1),(:,
0),(~:

≠∈∃
=∈∃

bapSba
aapSa

 

 
et que, quels que soient  a, b, c et d  dans  S, on a 
 

                                                 
16 POPPER K., The Logic of Scientific Discovery, Hutchinson, 1959. 
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( )

( ) ),(~),(),)(~),(
),(~1),(~),(

),(),(~~
1),(1),(0

ccpcbpcbapcbap
bbpbapbap

bapbap
aapbap

+=⊗+⊗
+=+

=
=≤≤

 

 
Par ailleurs, si on définit    par  ba ⊕ ( ))(~)(~ ba~ ⊗ , alors 
 

( )

( ) ( dcabapdcbap
cbapcbpcapcbap

baap

),()(),(
),(),(),(),(

1),(~

⊗⊕⊗=⊕⊗
⊗−+=⊕

)

=⊕
 

 
Maintenant, si on définit  p0(a)  par  ( ))(~, aaap ⊕ , on peut montrer que 
 








=

=
⇒≠

0),(~
)(
),(

),(
0)( 0

0

0

bbp
bp
bap

bap
bp  

 
Le nombre  p(a, b)  est la probabilité de  a  si  b, et le nombre  p0(a)  est la probabilité de  a  
par rapport à  ( . Les relations ci-dessus définissent un calcul des probabilités. )~,, ⊗S
 
Les définitions de la probabilité comme degré de croyance, inférence partielle, fréquence ou 
propension entrent toutes dans ce moule (on a noté  a   le complémentaire de l’ensemble  a) : 
 

 S a~  ba ⊗  p(a, b) 
degré de croyance T a~  a & b PrDC(a, b) 
inférence partielle T a~  a & b PrIP(a, b) 

fréquence (Ω) a  ba ∩  PrF(a, b) 
propension  a  ba ∩  PrP(a, b) 

 
Bien entendu, l’opération    correspond, dans les deux premiers cas, à  « a ou b »  et, 
dans les deux autres, à  . 

ba ⊕
ba ∪

 
L’interprétation qui sera adoptée dans la suite du texte est celle des propensions et on notera, 
plus classiquement, 
 

PrP(A) = Pr(A)   PrP(A, B) = Pr(A | B) 
 
 

3. La statistique inférentielle 
 
3.1. Schéma général 
 
Dans les applications simples de la théorie des probabilités (nombre d’as obtenu lors d’un 
nombre donné de lancers indépendants d’un dé par exemple), la situation se décrit simplement 
et complètement et le formalisme de la théorie des probabilités permet de répondre à des 
questions relatives à cette situation. Dans des situations réelles plus complexes (analyse et 
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gestion de la problématique des files d’attente aux caisses d’une grande surface), après avoir 
décrit la situation – ce qui n’est pas toujours simple – tout ce qu’on peut proposer, c’est une 
famille de modèles plausibles, dont un est plus adéquat que les autres mais qui est inconnu. 
Nous nous limiterons, dans ce qui suit, où tous les modèles ont la même forme mais varient de 
l’un à l’autre en fonction d’un paramètre ; on parle alors de statistique paramétrique. 
 
L’objectif de la statistique inférentielle peut prendre diverses formes. Sur base d’une ou 
plusieurs observation(s), on peut 

- choisir une action à exécuter (problème de décision) ; 
- préciser la valeur ou un ensemble de valeurs pour le paramètre adéquat (problème 

d’estimation) ; 
- exprimer un avis sur une affirmation relative à la situation (problème de test 

d’hypothèse). 
 
Le schéma général est le suivant. Il comprend un ensemble  Θ  des valeurs paramétriques  
possibles  θ  et, pour chacune d’entre elles, un espace probabilisé  (Ω, , Prθ)  pour lequel 
seule la fonction de probabilité dépend du paramètre17. Il est toujours admis qu’il existe une 
valeur paramétrique  Θ∈0θ   pour laquelle le modèle est adéquat. Cette valeur  θ0  est appelée 
état du monde ; les conclusions, quelles qu’elles soient, n’en font jamais état, l’état du monde 
étant par définition inconnu. 
 
Le schéma général que nous venons de décrire  (Ω, , Θ, Prθ)  sera, suivant le problème à 
résoudre, complété ou particularisé. 
 
3.2. Trois problèmes en statistique inférentielle 
 
Problème de décision 
 
Dans un problème de décision, le schéma général ci-dessus est complété par deux ensembles  
∆  et  Γ  et par deux fonctions  γ  et  σ . L’ensemble  ∆  est l’ensemble des décisions possibles  
et  Γ  est l’ensemble des conséquences ; ce dernier est muni d’une structure de préordre total, 
permettant au décideur d’exprimer ses préférences quant auxdites conséquences. La fonction     
 

),(),(
:

δθγδθ
γ

a

Γ→∆×Θ
 

 
fournit les différentes valeurs de  γ(θ, δ), conséquence de la décision  δ  si l’état du monde est  
θ. L’objectif d’un problème de décision est de trouver la fonction 
 

)(
:

ωσω
σ

a

∆→Ω
 

 
appelée stratégie, pour laquelle la fonction de conséquence 
 

                                                 
17 Ce paramètre peut par exemple être une moyenne de population d’individus, ou une variance, ou le couple 
formé par ces deux éléments, … 
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( ))(,),( ωσθγθω a

Γ→Θ×Ω
 

 
a des propriétés globalement optimales (c’est-à-dire pour l’ensemble des valeurs possibles de  
ω). 
 
Un exemple simple est celui où un client a le choix entre deux lots de  N  pièces, un à un prix 
élevé mais de qualité parfaite (ou garantie) et l’autre moins cher mais pour lequel chaque 
pièce a une probabilité  θ  d’être défectueuse. Le schéma général  (Ω, , Θ, Prθ)  est celui de 
l’échantillonnage de  n  pièces que l’on teste, l’ensemble  ∆  comporte deux éléments 
(chacune des décisions possibles), la fonction  γ(δ, θ)  représente, pour chacune des décisions, 
le coût (achat et rebut estimé) en fonction de la probabilité de défaut  θ. On peut donc déduire 
de l’étude de cette fonction les valeurs de  θ  pour lesquelles l’une ou l’autre des décisions est 
meilleure et en déduire une stratégie de choix de la décision. 
 
Dans certains cas, les décisions sont multiples et échelonnées dans le temps ; dans ce cas, au 
lieu d’utiliser simplement la matrice  γ(δ, θ)  des conséquences, il convient de représenter la 
situation par un arbre de décision, aux nœuds duquel se succèderont des manifestation du 
hasard et des décision à prendre, toujours suivant un principe d’optimalisation globale des 
conséquences. La stratégie retenue sera, dans ce cas, une succession de décisions. 
 
Problème d’estimation 
 
L’objectif d’un problème d’estimation est de donner des informations sur l’état du monde. 
Une région de confiance pour le paramètre18  θ  au niveau d’incertitude   α  est un sous-
ensemble aléatoire  R  de  Θ  pour lequel 
 

αθθθ
−=∈

Θ∈
1][Prinf R . 

 
Pour toutes les valeurs de  θ, la probabilité  ][Pr R∈θθ   est donc au moins égale à  1 – α. 
Pour une réalisation du phénomène fortuit (résultat  ω), l’ensemble (non aléatoire)  R(ω)  est 
la réalisation observée de la région de confiance. 
 
Le niveau d’incertitude  α  doit bien sûr être suffisamment petit pour caractériser un 
événement (affirmer que l’état du monde est un élément de  R  alors qu’il n’en est rien) rare. 
Bien entendu, pour tout  ω,  R(ω)  est d’autant plus grand que  α  est petit ; c’est l’expression 
technique du conflit entre précision (taille de la région de confiance) et sécurité (niveau 
d’incertitude). 
 
Lorsque  Θ ⊂ , la notion de région de confiance prend presque toujours la forme d’un 
intervalle de confiance ; il s’agit d’un intervalle aléatoire  [u ; v]  tel que  

 
αθθθ

−=≤≤
Θ∈

1][Prinf vu . 

 

                                                 
18 Si les éléments de  Θ  sont des couples (ou des triplets) de paramètres, la notion de région de confiance peut 
s’appliquer au couple (ou au triplet), mais également aux composantes individuelles. 
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Problème de test d’hypothèse 
 
On appelle hypothèse d’un schéma général  (Ω, , Θ, Prθ)  toute proposition  H0  de la forme  
« θ ∈ Θ0 », où  Θ0 ⊂ Θ. Si l’ensemble  Θ0  ne comporte qu’un seul élément, l’hypothèse est 
dite simple, sinon, elle est dite composite. La question qui se pose dans un problème de test 
d’hypothèse est de savoir dans quelle mesure le résultat observé  ω  de la réalisation du 
phénomène fortuit infirme ou confirme19 l’hypothèse  H0. 
 
Dans l’approche de Neyman-Pearson, le problème du test d’hypothèse apparaît comme un cas 
particulier d’un problème de décision avec  { }21 ,δδ=∆   où  δ1  (resp.  δ2) correspond au rejet 
(resp. au non rejet) de  H0  et où la stratégie  σ  est définie à partir de la notion de région 
critique  Z0, partie de  Ω  telle que 
 





Ω∈
∈

=
02

01

\   si   
   si   

)(
Z

Z
ωδ
ωδ

ωσ  

 
Le niveau d’incertitude du test est le nombre 
 

)(Prsup 0
0

Zθ
θ

α
Θ∈

=  

 
et la puissance du test est la fonction 
 

)(Pr
]1;0[

:
0Zθθ a

→Θ
Φ  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    Θ0                                                        θ 
 Θ

 α 

 1 

  Φ(θ) 

 
La fonction puissance est représentée sur le graphique ci-dessus, le graphe en trait interrompu 
étant la finesse « idéale ». 
 

 11

                                                 
19 On devrait plutôt dire « infirme ou n’infirme pas », une observation isolée permettant de rejeter une 
affirmation, pas de la prouver. 



Le niveau d’incertitude  α  représente donc la probabilité de rejeter l’hypothèse  H0  si celle-ci 
est vraie. Cette erreur est appelée erreur de type I. L’erreur de type II est de ne pas rejeter  H0  
si celle-ci est fausse ; sa probabilité est 
 

)(Prinf1 0\ 0

Zθθ ΘΘ∈
− . 

 
Lorsque l’on est amené à rejeter  H0, on peut être intéressé de connaître l’importance de 
l’écart. Cet aspect s’appréhende à l’aide de la notion de probabilité de dépassement. 
Définissons sur  Ω  le préordre total    par : p 21 ωω p   si et seulement si  ω1  est au moins 
aussi défavorable à  H0  que  ω2. Définissons ensuite, pour chaque  ω ∈ Ω, l’événement (que 
nous supposerons observable) 
 

{ }ωω pttW :)(0 Ω∈= . 
 

La probabilité de dépassement est la variable aléatoire  PD0, définie par 
 

( ))(Prsup)( 00
0

ωω θ
θ

WPD
Θ∈

= . 

 
Il est clair que, quel que soient  ω1  et  ω2, on a 
 

)()()()(
)()(ou            )()(

20102010

10202010

ωωωω
ωωωω

PDPDWW
WWWW

≤⇔⊂
⊂⊂

 

 
et que, pour l’implication  ⇐  ci-dessus, une inégalité stricte entre les probabilités de 
dépassement implique une inclusion stricte entre les événements. 
 
Etant donné une observation (résultat  ω  observé lors d’une réalisation du phénomène 
fortuit), on peut dire que, si l’hypothèse  H0  est vraie, alors les observations au moins aussi 
défavorables à  H0  que l’observation  ω  ont une probabilité au plus égale à  PD0(ω). 
 
3.3. Utilisation pratique 
 
Dans la pratique, presque tous les problèmes de statistique inférentielle concernent une 
population de  N  individus, dont on extrait un échantillon à partir duquel on tente d’inférer 
des conclusions s’appliquant à la population. 
 
Population 
 
Si chaque individu de la population est porteur d’un (ou de plusieurs) nombre(s), la 
population est dite univariée (ou multivariée). Si les différents individus sont affectés chacun 
à une et une seule catégorie, on parle de population nominale. 
 
Pour une population univariée l’ensemble des nombres  {x1, x2, …, xN}  peut faire l’objet de la 
définition d’une ogive, fonction  F  de    dans  [0 ; 1]  telle que  F(t)  représente la 
proportion des individus de la population porteur d’un nombre inférieur ou égal à  t. A partir 
de cette ogive, on peut également définir différents paramètres statistiques de population tels 
que moyenne, écart type, … Pour une population nominale, les paramètres statistiques de 
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population sont simplement les proportions  p1, p2, …, pm  d’individus relevant de chacune 
des catégories. 
 
La statistique inférentielle s’applique uniquement aux populations dont les paramètres 
statistiques de population sont (partiellement) inconnus, l’objectif étant de suppléer à cette 
absence de connaissance. 
 
Echantillonnage 
 
Nous nous limiterons ici à la notion d’échantillon aléatoire simple, c’est-à-dire pour lequel le 
nombre  n  d’individus extraits est fixé, les extractions se faisant de la même population, de 
manière aléatoire et indépendante. 
 
Le phénomène fortuit  (Ω, )  dont on parle dans le schéma général est ce mécanisme 
d’échantillonnage, l’ensemble  Ω  étant l’ensemble de tous les échantillons possibles. 
 
La population n’est pas totalement connue. Nous supposerons que cette indétermination est de 
type paramétrique : il manque la connaissance de la valeur paramétrique20  θ, prenant ses 
valeurs dans l’ensemble  Θ. C’est la troisième composante du schéma général  (Ω, , Θ, Prθ). 
 
Enfin, la loi de probabilité est définie, pour une population univariée, en considérant les 
éléments de l’échantillon comme  n  variables aléatoires indépendantes et identiquement 
distribuées de commune fonction de répartition donnée par l’ogive de la population et, pour 
une population nominale, si on note  Cj  les catégories et  ei  les individus de l’échantillon, par 
 

[ ]
ii j

n

i
ji

n

i

pCe ∏
==

=







∈

11

Pr I , 

 
quels que soient  j1, …, jn ∈ {1, …, m}. 
 
Pour chaque échantillon, il est possible de calculer des paramètres statistiques d’échantillon : 
moyenne, écart type, … pour une population univariée, fréquence des catégories pour une 
population nominale21. Si on considère ces paramètres statistiques d’échantillon calculés pour 
chaque échantillon possible (chaque élément de  Ω), ils définissent des variables aléatoires 
dans le schéma général. Pour ces variables aléatoires, on peut définir des valeurs typiques 
(paramètres de localisation, de dispersion, …). Ce sont les paramètres statistiques 
d’échantillonnage. 
 
Clairement, les paramètres statistiques d’échantillon et d’échantillonnage sont liés à ceux de 
la population22. C’est ainsi qu’il est possible de démontrer, pour une population univariée, que 
la moyenne d’échantillonnage de la moyenne d’échantillon est égale à la moyenne de 
population. 
 
Estimateurs 
 

                                                 
20 Eventuellement multivariée. 
21 Ceci relève de la statistique descriptive. 
22 Mais il convient de soigneusement les distinguer ! 
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Les problèmes rencontrés plus haut 
- définir d’une stratégie de choix de décision en fonction des conséquences liées aux 

différentes valeurs d’un paramètre  θ ;  
- estimer un paramètre  θ ; 
- tester une hypothèse relative à la valeur d’un paramètre  θ ; 

utilisent la notion d’estimateur du paramètre  θ. Il s’agit d’une variable aléatoire    sur le 
schéma général (paramètre statistique d’échantillon) dont un paramètre de localisation 
(d’échantillonnage)  est égal au paramètre (de population)  θ. 

θ̂

 
Un estimateur est dit sans biais si sa moyenne d’échantillonnage est égale à la valeur du 
paramètre de population  θθ =)(

)
E   et efficace si sa variance est inférieure à celle de tous les 

autres estimateurs. Pour une population univariée de moyenne  µ  et d’écart type  σ  dont les 
éléments de l’échantillon sont les variables aléatoires  X1, …, Xn, si on définit moyenne et 
variance d’échantillon par 
 

∑∑
==

−==
n

i
i

n

i
i mX

n
sX

n
m

1

22

1
)(11  

 
on a affaire, pour le premier, à un estimateur sans biais car, comme on l’a déjà dit,  E(m) = µ, 
alors que le second n’est qu’asymptotiquement sans biais puisqu’on peut démontrer que 
 

22 1)( σ
n

nsE −
= . 

 
3.4. Et ensuite ? 
 
Cette troisième section est le cadre conceptuel et le point de départ de tous les 
développements de la statistique inférentielle paramétrique, qu’il s’agisse des méthodes de 
construction des estimateurs (maximum de vraisemblance, khi carré minimum, …) ou du 
développement de méthodes d’estimation et de test dans des cas divers et variés. Cet 
important chapitre technique n’a évidemment pas sa place ici. 
 
Il convient de signaler que ce qui vient d’être exposé ne se veut pas complet, bien loin de là. 
On n’a en rien abordé les aspects non paramétriques, les techniques robustes, les méthodes 
bayesiennes, … On s’est également  limité volontairement aux aspects classiques des 
fondements du calcul des probabilités et de la statistique ; par exemple, à côté de l’approche 
de Neyman-Pearson des tests, on aurait pu envisager celles qui utilisent les modèles 
probabilistes relatifs aux propositions logiques  PrDC  et  PrIP. 
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