Stochastic multiscale modeling of stiction failure in MEMS

T.-V. Hoang, L. Wu, S. Paquay, J.-C. GolINVAL, M. ArNST, L. NoELS
Department of Aerospace & Mechanical Engineering, University of Liège. Email: v.hoangtruong@ulg.ac.be, website: www.ltas-cm3.ulg.ac.be

Introduction
- Stiction is a common failure in MEMS, in which two micro surfaces permanently adhere together, e.g. the stiction failure of micro cantilever beams.
- The problem is due to the adhesive forces, e.g. the capillary forces.
- The adhesive contact force, and structural behaviors suffer from scatters, due to the roughness of the contacting surfaces.

Method
- Direct Monte Carlo simulation (MCS) multiscale method.
 - Characterize the contact rough surfaces using power spectrum density (PSD) and height distribution.
 - Generate N_{SC} surfaces with size of contact zone.
 - For each generated surface, at each integral point evaluate the corresponding meso-scale apparent contact force. (v)
 - Obtain the failure configuration for each generated surface.
 - Requires high computational cost due to step (v).

- Proposed method: Stochastic model-based multiscale method
 - Construct a stochastic model of apparent contact force.
 - Each integral point is associated with a generated sample of the random apparent contact forces using the constructed stochastic model.
 - Reduce computational cost.

 - The direct MCS multi-scale method (high computational cost)
 - Generate N_{SC} surfaces of structural scale size
 - Explicitly evaluate $N_{SC} \times N_{TP}$ contact forces (N_{TP} number of integral points)
 - Evaluate N_{SC} structural behaviors (FEM)
 - Identify structural probabilistic behaviors (v)

 - The stochastic model-based multi-scale method (reduced computational cost)
 - Generate m surfaces of meso-scale size
 - Explicitly evaluate $m \times N_{TP}$ contact forces
 - Generate $N_{SC} \times N_{TP}$ contact forces
 - Evaluate N_{SC} structural behaviors (FEM)
 - Identify structural probabilistic behaviors - approximations of (v)
 - Construct a Stochastic model of random contact forces

Results
- Comparison between direct MCS and stochastic model-based methods
 - The stochastic model-based method can predict the nominate properties of the crack length distribution.

- Comparison between numerical prediction and experimental data [3]
 - The stochastic model-based method can predict the experimental results with high accuracy.

Conclusions
- A novel stochastic multiscale method to predict the probabilistic behaviors of micro structures involving adhesive contacts is developed.
- The model is computationally effective.
- The model is validated by a comparison with experimental data.

References

Acknowledgments
The research has been funded by the Walloon Region under the agreement no 1117477 (CT-INT 2011-11-14) in the context of the ERA-NET MNT framework. The first author gratefully acknowledges the Belgian National Fund for Education at the Research in Industry and Farming for financial support.