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ABSTRACT

This thesis may be divided into two parts, namely linear and nonlinear dynamics of
drillstrings. For linear drillstrings, an improved dynamic stiffness method (IDSM)
is developed. The IDSM is based on the combination of transfer matrix, dynamic
stiffness method and finite element method. In the IDSM, the whole structure is
first divided into substructures based on the required master degrees of freedom.
For each substructure, the global dynamic stiffness matrix (DSM) is obtained
directly by rearranging the corresponding global transfer matrix. In this way,
the internal degrees of freedom of each substructure are not used in the model.
Therefore, the order of the model is greatly reduced. Because the drillstring is
one-dimensional structure, the whole system may be modeled only with one or two
degrees of freedom depending on the research purpose. The succesful applications
of the IDSM to the axial, torsional and lateral vibrations as well as to buckling
analysis of drillstrings have demonstrated that the program based on the IDSM
can be used as a tool in the drilling fields both to make recommendations for
the prevention of drillstring and bit failures and to help in the interpretation of
downhole measurements of drillstring dynamics. The IDSM has also been applied
to modal analysis for other beam-like structures.

For nonlinear drillstrings, the backward whirl motion due to bit-holewall contact
is investigated in detail using both lumped and finite element models. Based on
the lumped model, the formula to calculate the whirl speed and whirl radius have
been derived in a closed and explicit form. The parameters which influence the
backward whirl motion are systematically studied. Because the lumped model may
be too simple to completely explain the bit whirl phenomena, finite element model
is developed. Effort has been made to modify an existing contact element in order
to simulate the dynamic contact phenomenon of the drillstrings. In the contact
element, not only the transverse friction forces but also the longitudinal friction
forces are taken into account. The element stiffness and damping matrices are
derived explicitly. This element is implemented in a general and powerful multi-
body dynamic analysis software, namely, Mecano module of Samcef. Therefore,
many computational aspects of the Mecano software, for example the nonlinear
beam element, the user’s element, the implicit time integration method (Hilber-
Hughes-Taylor method) as well as the pre- and post-analyzer, can be directly
applied. Some observations agree with experimental work performed by other
researchers for rotor systems.

Techniques to identify downhole bit whirl motion are developed based on the bit

whirl kinematics. All the whirl parameters including whirl speed, whirl amplitude,
bit rotation speed can be estimated using either accelerometers or contact sensors.
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Chapter 1: General Introduction

CHAPTER 1:

GENERAL INTRODUCTION

1.1 DRILLING EQUIPMENT

The equipment for oil-well drilling consists basically of five distinct subsystems: hoisting,
circulating, rotating components, well control and power. These five subsystems go together
to make a complete drilling system which is located over a wellhead for the sole purpose
of making a hole in the ground. Among the five subsystems, the rotating components, or
drillstring system, play an important role during drilling.

Swivel

Kelly Cock
Kelly

I — Kelly Saver Sub.

Drill Pipe

— Tool Joint

Dirill Collar

Stabilizer

e
pere—

(J——— i

Fig.1.1: Drillstring system

Shown in Fig.1.1 is a typical rotating equipment which consists of the swivel, the kelly, the
rotary table, the drill stem and the bit. The drill stem is the assembly of equipment between
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Chapter 1: General Introduction

the swivel and the bit, including the kelly, drill pipe, and drill collars. The term drillstring
system or simply drillstring used in this thesis refers to the drillpipe, drillcollars, stabilizers
and bit. Another term BHA (Bottom Hole Assembly) is a section of the drillstring from bit
to the top of the drill collar.

Drill collars are heavier than drill pipe and are used on the bottom part of the string to
provide weight and torque on the bit. The bit is a rock cutting tool. There are two types
of bit which are used very often in the drilling fields: three-cone or roller-cone bit and PDC
(Polycrystalline Diamond Compact) bit. The development of PDC bit has had a major
impact on drilling practices in medium- to medium-hard formations.

1.2 STATIC AND DYNAMIC PROBLEMS OF DRILLSTRING

1.2.1 Static problems

In order to understand the possible static problems associated with drillstrings, let us first
analyze the static forces generated during drilling.

(a) Buoyancy force

The drillstring is usually surrounded by the drilling mud. Therefore the drillstring is subject
to buoyancy force which is developed by pressure acting over the cross sectional area of the
drill collars at the bottom end. This force is upward.

(b) Gravity force

In vertical hole, the gravity force is generated by the weight of the drillstring itself. The
weight of drill collar from the bit to the neutral point” is used often as the weight on bit
(WOB). The gravity force is downward.

(c) External force and moment

At the top end of the drillstring, an external axial force is applied in order to provide an
expected axial force on the bit (WOB). For vertical drilling, this force may be upward or
downward depending on the expected WOB. Meanwhile, an external moment is applied at
the top end of the drillstring in order to rotate the bit.

(d) Reaction forces

The reaction forces include mainly the friction forces due to drillstring and holewall contact,
the drilling force and moment due to bit-formation interaction.

These forces are shown in Fig.1.2. Because of these forces, the following issues must be
taken into account in the static design of a drillstring:

(2) The state of the stress is varied in the drillstring. The upper part is in tension and the
lower part is in compression. Hence the determination of the neutral point becomes very
important.
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Chapter 1: General Introduction

(b) The lower part of the drillstring may be buckled due to the large WOB.

(¢) The drilling direction is partly influenced by the static force, especially by the side
force. In fact, most of the work about the prediction of drilling direction is based on the

static force analysis.

External forces

11

Gravity force

Buoyancy force

Reaction force

A

Drilling force

Fig.1.2: Forces acting on drillstring

1.2.2 Dynamic problems

The importance of drillstring and in particular BHA vibration has not arisen at the beginning
of the drilling industry development. However, with the requirement of reducing the cost,
the drilling equipment works usually in the limit where vibration becomes more than just a
side effect. In recent years, vibration was found to be a driving factor not only in directional

control but mainly in BHA failure.
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Chapter 1: General Introduction

The dynamic behavior of drillstrings during drilling operations is very complex because of
the multiple excitation sources. The main excitation sources are:

(a) Bit-formation interaction.  For roller-cone rock bit, it has been found that the
excitation frequency due to bit-formation interaction is three times the rotation speed.
However, for PDC bit, the situation is more complex because of the multiple cutters placed
on the bit body. Moreover, the bit-formation interaction is one of the coupling mechanisms
because of interdependence of the drilling forces on the bit.

(b) Contact between drillstring and holewall. ~ During drilling, not only the stabilizers
and the drill collars, but also the drill pipe have all chance to contact with the holewall.
Such contact will introduce friction forces and nonlinear restoring forces.

(c) The fluctuations of WOB and TOB, the mass unbalance force, the mud pressure
fluctuations are other important excitation sources.

Furthermore, the boundary conditions of the drillstring at both top and bottom ends are
very complex.

Because of these excitations and complex boundary conditions, the behavior of drillstring
vibration may be very complicated. Basically, the phenomenon is somewhat unpredictable
since the drilled formation is generally unknown while drilling. However, understanding
the fundamental underlying phenomena is undoubtedly necessary to define adjustable pa-
rameters influencing vibration. Particularly for PDC bits, understanding and controlling
vibration is of crucial importance because shocks and vibrations are very detrimental to
PDC cutters. The dynamic loading is the main reason why PDC bits cannot drill efficiently
the hard formations. It is expected that if one can control and reduce the vibration level of
the drillstring, the PDC bit could probably supersede rock bit to drill harder formations.
This is confirmed by successful use of "low friction pad” or anti-whirl PDC bit.

Although the dynamics of drillstrings has been investigated for some twenty years or so,
particularly in recent years, much attention has been paid in this area, some phenomena are
still not fully understood. There are also many established models for drillstring dynamics
which are mainly either analytical models or FEM (finite element method) based models.
The analytical models are usually too simple to predict accurately the dynamic behaviors of
drillstring systems. On the other hand, the FEM based models are usually too complicated
or too large to use in the drilling fields.

Ideally, the drillstring vibration control must be integrated in the complete economical and
technological environment of the drilling process: vibration depending on operation and
equipment, an optimum is to be found from a global economical point of view. In order to
realize this objective, simple but high accurate dynamic models must be first established.
Such models can predict not only the dynamic behavior with high accuracy, but more
importantly can be used conveniently in the drilling fields with microcomputers. Developing
such a model is one of the purposes of the thesis.



Chapter 1: General Introduction

1.3 OUTLINE OF THE THESIS

The thesis is based on part of the work performed during the author’s stay at LTAS of Uni-
versity of Liége since February, 1992. It concentrates on the understanding of the vibration
behaviors of drillstrings based on both linear and nonlinear models. For the convenience of
reading, each chapter is written independently with an introduction and conclusions. How-
ever, chapter 2 is the basis of chapter 3 and 4. Chapter 5 and chapter 6 study the backward
whirl phenomena by lumped model and FEM model respectively.

Chapter 2 describes the principle of an improved dynamic stiffness method (IDSM) and its
application to beam-like systems. The IDSM is based on the combination of the transfer
method, the dynamic stiffness method (DSM) and the finite element method (FEM). The
procedure of the IDSM is described in detail. It is demonstrated through numerical examples
that the IDSM benefit analysis and solution of the eigenvalues, force responses, dynamic
force identification problems for beam-like structures.

Chapter 3 applies the IDSM to the axial and torsional vibration analysis of drillstrings.
Because the torsional vibration amnalysis is similar with the axial vibration, only the axial
vibration is described in detail. Using the IDSM, the whole drillstring can be reduced exactly
either to a SDOF model or to a two DOFs model depending on the research purpose. The
model accounts for the frequency-dependent damping. Based on the reduced model, free
and forced vibrations are investigated. The procedure of how to estimate the down hole bit
axial and torsional forces and motions using surface measurement is described. The design
of shock absorber is also discussed.

Chapter 4 describes the application of the IDSM to lateral vibration and buckling analysis
of the BHA. The BHA is modeled with the bit displacements as the generalized coordinates.
The model takes the effects of WOB, the curvature of the BHA as well as the drilling mud
into consideration. It is shown that both the WOB and curvature decrease the bending
natural frequencies. The exact bukling loads are also obtained based on the model.

The theory given in chapter 2, 3 and 4 makes it possible in the drilling fields, using only
microcomputers, to analyze exactly the axial, torsional and lateral vibrations, to calculate
the buckling loads as well as to identify the bit forces and motions by surface measurements.
Without doubt, because the simplicity and high efficiency, the model will help both the
designer and the driller to control and hence to reduce the vibration levels.

The work presented in the above three chapters (chapter 2,3,4) is mainly based on Chen and
Géradin (1992a, 1993c, 1994a ~ h), Géradin and Chen (1994), Chen, Golinval and Géradin
(1993, 1994c), Chen, Géradin and Lamine (1993, 1994a,b).

Chapter 5 studies the PDC bit whirl kinematics and backward whirl motion due to bit-
holewall contact based on a lumped model. The cutter trajectory, and the overlap condition
of cutter path for a whirling bit are given. The relation between the whirl parameters and
hole lobes is derived. The bit whirl kinematics is the basis of identification of bit whirl by
experiment (described in chapter 7).
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Chapter 1: General Introduction

The dry friction induced steady-state backward whirl motion is studied both analytically
and numerically based on a lumped model. The formula to calculate the whirl speed and
the whirl radius have been derived in a closed form. The study presented in this chapter
makes it clear that once backward whirl is initiated, the whirl frequency and its amplitude
are heavily dependent on the rotation speed, the eigenfrequency, the clearance and the
formation stiffness. It also appears that the friction coefficient, which is responsible for the
initiation of backward whirl, does not affect the whirl frequency and amplitude. The steady
state backward whirl amplitude increases with the rotation speed but the whirl frequency
is limited by the eigenfrequency of the joint drillstring-formation system.

This chapter is based on Chen and Géradin (1993d), Chen, Rixen and Géradin (1992, 1994)
and Chen, Golinval and Géradin (1994a,b).

Chapter 6 gives a further study of backward whirl due to bit-holewall contact based on FEM
model. Effort has been made to modify an existing disk-cylinder contact element in order to
simulate the dynamic contact phenomenon of the drillstrings. This element is implemented
in a general and powerful multi-body dynamic analysis software, namely, Mecano module
of Samcef. Therefore, many computational aspects of the Mecano software, for example the
nonlinear beam element, the user’s element, the implicit time integration method (Hilber-
Hughes-Taylor method) as well as the pre- and post-analyzer, can be directly applied. In
the contact element, not only the transverse friction forces but also the longitudinal friction
forces are taken into account. The element stiffness and damping matrices are derived
explicitly. Using this element, the backward whirl due to bit-holewall contact is further
studied. The influences of friction coefficient, the external force, the contact damping and
stiffness, and the rotation speed on the backward whirl motion are investigated in detail. It
is found that there is a lowest backward whirl speed which is near to but greater than the
first bending eigenfrequency of the system. This observation cannot be made in chapter 5
where lumped model is used. The contact-element developed in this chapter may be applied
to other contact situations, for example the rotor-stator contact.

This chapter is mainly based on Parisis and Géradin (1990), Chen, Rixen and Géradin
(1992,1994), Chen, Géradin and Lamine (1994c).

Chapter 7 develops some techniques of downhole bit whirl identification by experiment. The
background of the identification method is the bit whirl kinematics described in chapter 5.
Two independent methods are developed: accelerometer-based and contact-sensor based.
It is proved that three accelerometers mounted just above the bit are enough to identify
all the bit whirl parameters including whirl frequency, whirl amplitude and bit rotation
speed. But one cannot directly obtain the bit center trajectory in space coordinate if only
accelerometers are used. It is also proved that three contact sensors mounted on the bit
gauge are theoretically enough to estimate the bit whirl parameters except the bit rotation
speed. Two test data are analyzed in this chapter to demonstrate the principle and the
procedure of the methods.

This chapter is based on the work performed by Chen, Géradin and Lamine (1993).

Chapter 8 concludes the results obtained so far in this thesis. Suggestions for future work
are also made.



Chapter 2: An improved dynamic stiffness method

CHAPTER 2:
AN IMPROVED DYNAMIC STIFFNESS METHOD

2.1 INTRODUCTION
2.1.1 State of the Art

A large class of systems occurring in engineering practice consists of one-dimensional beam
and beam-like elements. In some cases, the systems contain a number of elements linked
together end to end in the form of a chain. A typical example is the oil-well drillstring
studied in this thesis.

Various methods for dynamic analysis of beam-like structures have been developed and
widely used during the last decades. Among these techniques, the transfer matrix method
(TMM), the dynamic stiffness matrix method (DSM) and the finite element method (FEM)
are very powerful and very popular.

The transfer matrix method was first proposed by Myklestad (1944, 1945), and later ex-
tended by Prohl (1945) to study the critical speeds of a shaft. Holzer (1948) initially applied
the transfer matrix method to determine the torsional vibrations of rods. Thomson (1950)
applied the method to more general vibration problems. Pestel and Leckie (1963) have
studied systematically the theory and the applications of the method. Numerical difficulties
were also pointed out. Rubin (1964, 1967) has provided a general treatment for transfer
matrices and their relation to other forms of frequency response matrices at element level.

The TMM was used by many researchers during the last decades for different applications.
These include Lin (1967), Lin and McDaniel (1969), Mercer and Seavey (1967), Mead (1970,
1971) and McDaniel (1971a, 1971b). Lund (1974), Bansal and Kirk (1975) have applied the
transfer matrix method in modal analysis for calculating damped natural frequencies and
examining the stability of flexible rotors supported by fluid bearings. In the aforementioned
papers, the shaft or the beam is divided into a number of massless segments and the mass is
lumped at both ends of each segment. This crude approximation results in considerable error
on the predicted natural frequencies. To increase the accuracy, the number of elements used
in the analysis must be increased which on one hand, increases the computational effort
and, on the other hand, may induce numerical instability due to high number of matrix
multiplication.

The most important modification to the transfer matrix method was made by Lund (1967).
The transfer matrix of a shaft was represented in a continuous-system sense. Its advantage
is that the uniform shaft can be made as long as needed so that the number of elements
of the shaft is significantly decreased. As a result, the accuracy is increased and numerical
instability may be avoided. Lee et al (1991) have further improved this method by accounting
for the effects of rotary inertia and gyroscopic moment in the model and doubling the number
of state variables to fit the general orbits of steady-state motion. Later, Chen and Géradin
(1993c) and Chen, Golinval and Géradin (1993) further modified this method for the analysis
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Chapter 2: An improved dynamic stiffness method

of the bending vibration of the drillstrings by taking the axial force and the curvature into
consideration. The effect of torque has also been included by Lee et al (1993a).

In a more recent study, Lee et al (1993b) extended the transfer matrix method to the rotor
mounted on nonlinear bearings. The steady-state analysis of subharmonic, superharmonic
and synchronous vibrations was made. However, a great effort is needed to obtain the global
transfer matrix of nonlinear systems.

The outstanding advantage of the transfer matrix method is that it requires calculations
using matrices of fixed size, independently of the intermediate conditions and the number
of degrees of freedom in the problem. This means that the computational complexity is low
even when dealing with systems of hundreds of degrees of freedom.

The simplicity, however, gives rise to several numerical difficulties in using the method di-
rectly. They can occur first, when calculating higher natural frequencies and secondly, when
intermediate geometric compatibility conditions are very stiff (Pestel and Leckie, 1963). In
addition, only the natural frequencies, mode shapes and harmonic response are available by
this method. The other important dynamic properties such as modal mass, modal stiffness
and frequency response function (FRF) of the system as well as transient responses cannot
be obtained. In addition, the explicit equations of motion of the structure are lost.

At the current state of dynamics, the finite element method (FEM) has proved to be powerful
and versatile for almost all the dynamic problems in engineering. In the FEM, it is well
known that one of the basic assumptions usually made is that the displacements throughout
a structure are uniquely defined by the displacements at the nodes. This assumption is only
valid for static loading, not for dynamic loading when inertia forces are present (Leung, Zhou,
1993). Since the inertia forces are dependent on nodal acceleration, the dynamic element
shape functions should be functions of both nodal displacements and nodal accelerations.
Dynamic element shape functions should therefore be functions of the frequency of vibration
for harmonic motion. Therefore, the FEM is an approximation method and its accuracy
depends heavily on the element type and number. Furthermore, many unwanted degrees of
freedom are used in the FE model.

The dynamic stiffness matrix method (DSM) represents a powerful matrix technique for
exact dynamic analysis. It may be considered as an exact finite element method. This
method was developed in the early 1940s by Kolousek (1973). Being different from the
FEM, the DSM uses the analytical solutions of the governing equations as shape functions
(frequency dependent). Therefore, the obtained dynamic stiffness matrix is exact if the
governing equation of the element is exact. These matrices are in general parametric in
terms of the vibration frequency and the load factor. This fact enables the infinite number
of natural modes to be represented by a finite number of nodal coordinates for continuous
structures of beams. For prismatic beam elements, the exact solution can be obtained by
using any number of discretized elements.

The DSM has been applied with success to frame structures with uniform members (John-
son and Bishop, 1960; Kolousek, 1973) or non-uniform members (Banerjee and Williams,
1985), straight members (Howson et al, 1983), curved members (Pearson and Wittrick, 1986,
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Henrych, 1981), damped beam (Lundon and Akesson, 1983), general variable cross section
members ( Eisenberger, 1990) and other structures (Leung, 1978, 1979). The DSM has also
been applied to response calculation (Leung, 1985,1987). An important progress of enhanc-
ing the applicability of the DSM was made through the algorithm of Williams and Wittrick
(1970) and Wittrick and Willams (1971) to automatically calculate natural frequencies.
A general dynamic stiffness matrix of a Timoshenko beam for transverse vibrations was
presented by Y.H. Chen (1987). A coupled bending-torsional dynamic stiffness matrix for
Timoshenko beam elements has been derived (Banerjee and Williams, 1992). More recently,
this DSM has been applied to flexible multi-body systems for accurate transient response in
forced vibrations (Liu and Lin, 1993). Some of the important characteristics of the dynamic
stiffness matrix as well as the relationship with modal analysis have been studied recently
( Pilkey and Fergusson, 1990, Fergusson and Pilkey, 1992, 1993a). There is a significant
number of references describing this method. Fergusson and Pilkey (1991a,b, 1993b,c) have
reviewed the relevant literature up to 1992. Most of the literature up to the end of 1992
may be found in their reviews.

One of the most important advantages of the DSM is that the degrees of freedom needed
to model a structure is significantly reduced compared to the FEM. This is due to the fact
that a uniform shaft, for example, can be taken as long as needed in the DSM. Although
the method requires considerable effort to build up the dynamic stiffness matrix describing
the basic element in the first instance. Ounce established, however, the matrix can be used
as a standard element as in the case of the FEM.

However, there are some drawbacks associated with the DSM. Firstly, the number of de-
grees of freedom is still high for large structures. Similarly to the FEM, many unwanted
degrees of freedom such as internal and rotational degrees of freedom remain in the model.
Secondly, the calculation of modal parameters requires the solution of a highly nonlinear
(transcendental) eigenproblem:

[D(w)]X =0 (2.1)

To this purpose, some special algorithms should be used, such as the algorithms described
by Williams and Wittrick (1970) and Richards and Leung (1977). The former algorithm
requires calculation of natural frequencies for each individual beam element with fixed ends.

In order to minimize the dynamic degrees of freedom without loss of accuracy, a combination
method was first developed by Dokainish (1972) for plate vibration problems in which the
element transfer matrix was obtained directly from the element stiffness and mass matrices.
In recent years, this combination method has been improved by other researchers (Chiatti
and Sestieri, 1979, Ohgh et al, 1983, 1984, 1993, Degen et al, 1985, Subbiah et al, 1988,
McDaniel et al, 1977, Sankar and Hoa, 1980) for different applications. In this method,
the element or substructure transfer matrix was obtained from the element or substructure
stiffness and mass matrices. The eigenfrequencies and mode shapes were then calculated
from the global transfer matrix. Therefore, it may be considered as an improved transfer
matrix method. However, for beam or shaft systems it seems to be unnecessary to obtain
the element transfer matrix from the element stiffness and mass matrices because the exact
element transfer matrix may be derived directly from the governing equations (Lund, 1976).
Furthermore, because of the nature of the transfer matrix relations used in the method, only
eigenfrequencies, mode shapes and harmonic response can be available by this method.
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2.1.2 The Work Presented in The Chapter

In this chapter, the principles of the transfer matrix method, the finite element method
and the dynamic stiffness method are briefly described. Based on the principles of these
three methods, an improved dynamic stiffness method (IDSM) is developed which is based
on the combination of transfer, dynamic stiffness matrices and finite element method. In
the IDSM, the entire structure is first divided into several substructures according to the
required master degrees of freedom and the boundary conditions of the structure. Each
substructure may consist of a large number of basic elements. The degrees of freedom
for a substructure may be partitioned into two sets. One set is the internal degrees of
freedom, and the other set is the boundary degrees of freedom. The transfer matrix of each
substructure relates only the boundary degrees of freedom. The dynamic stiffness matrix
of the substructure is obtained by rearranging the corresponding transfer matrix. In this
way, the internal degrees of freedom are not used. In other words, a substructure is reduced
exactly to an equivalent element whose nodal coordinates are the boundary coordinates
of the substructure. The dynamic stiffness matrices of equivalent elements become the
basic matrices for assembling the global dynamic stiffness matrix for the original structure.
The order of the system eigenvalue equation is equal to the number of physical boundary
coordinates between substructures. The global matrices are frequency dependent. Because
the dynamic stiffness matrices of the basic elements such as beam, lumped mass and stiffness
elements are exact, the number of modes predicted by the model is not limited by the number
of master degrees of freedom used in the model.

The IDSM is compared with the other three methods through two numerical examples. The
advantages and its flexibility in the modelisation of vibrating structures are pointed out.
The applications of this method in the area of modal analysis are discussed.

2.2 TRANSFER MATRIX METHOD (TMM)

To demonstrate the transfer matrix procedure, let us consider the beam element shown in
Fig.2.1. For node %, we define the state vector:

S; = [X;,60;, M, Fi]T (2.2)

where X;, 0;, M; and F; corresponds to the lateral displacement, the rotation angle, the
moment and the shear force, respectively.

F; Xu F: X,
‘ T E,I,mL l <>
M, 6, M, 6

Fig.2.1: Beam element for the transfer matrix method

For this element, a transfer matrix [T] relates the state vectors at station ¢ and station ¢+1
as follows:

t+1 [T]S (2-3)
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If the original structure consists of n elements linked together end to end, then the overall
transfer matrix for the whole system is obtained by multiplying all the element transfer
matrices. The aim is to relate the state vectors of both ends of the whole structure:

Sn = [T]a[Th=1.00e [Th 81 = [Tg)51 (2.4)
where n is the total number of elements, [Tg] is the global transfer matrix.

It is noted that the overall or global transfer matrix [T4] has the same size as the element
transfer matrix.

Applying the boundary conditions at both ends to equation (2.4), a frequency equation can
be derived from which the system natural frequencies may be obtained. After the natural
frequencies have been found, it becomes easy to calculate the mode shapes from equation
(2.4) by taking arbitrarily one boundary displacement or rotational angle as unity. The
harmonic responses of the system may also be calculated by expanding the transfer matrix
(Pestil and Leckie, 1963).

2.3 FINITE ELEMENT METHOD (FEM)

In the finite element method, the system is divided into n elements. Let us first consider
the beam section shown in Fig.2.2.

Fl X] F2 X2
‘ T B, ImL T D
M, &, M, 6

Fig.2.2: Beam element for dynamic stiffness matrix method

Note that the directions of the forces and the moments in Fig.2.2 are different from those
in Fig.2.1.

In the FEM, the following steps are usually made:
Step 1:

The mass and the stiffness matrices for the bending vibration of the beam shown in Fig.2.2
may be found in most vibration textbooks (for example, Géradin and Rixen, 1994) and are
directly written as (for a Bernoulli-Euler beam):

156 —22L 54 13L

[ e]zm_L —922I 4L* —13L -3L2
420! 54 —13L 156 22L

13L -3L? 22L 4I?

(2.5)
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where m is the mass per unit length, [M €] is the mass matrix of the beam element.

6 -—3L —6 -3L
. 2EI[-3L 21? 3L I
E1=7=| 6 3L 6 31| (2.6)

-3L L* 3L 2I*
Step 2:
The global mass and stiffness matrices are then obtained by applying compatibility and
boundary conditions. This process is achieved by placing the element matrix (after coordi-

nate transformation, if any) at the appropriate location in the global matrix. The assembly
process results in the following global differential equation:

Mi+ Ke=f (2.7)
where M and K are the global mass and stiffness matrices of dimensions 4(n+1) X 4(n +1)
in the case of bending vibration of beam systems, z is the global coordinates vector of

dimension 4(n + 1) and f is the force vector of dimension 4(n + 1), » is the number of
elements.

For harmonic excitation, i.e. f = Fei*! and 2 = Xe**, equation (2.7) becomes:

(K —w*M)X = Df(w)X = F (2.8)
where Df(w) is global dynamic stiffness matrix with dimension 4(n 4 1) x 4(n + 1).
Step 3:
The eigen-frequencies and eigen-vectors can be obtained by solving the homogeneous equa-
tion obtained from (2.8) when F is set to zero. There are various numerical methods to
solve this equation (see for example, Géradin and Rixen, 1994).
Note that the mass and stiffness matrices for the beam element (equation (2.5, 2.6)) in the
FEM are derived based on static shape functions. Therefore, the global dynamic stiffness
matrix DJ(w) in equation (2.8), although being of high in dimension, is not an exact matrix.
Hence, equation (2.7) or (2.8) gives usually approximate results. The only way to increase
the accuracy is to refine the mesh which leads to higher dimension.
2.4 DYNAMIC STIFFNESS METHOD (DSM)

In order to demonstrate how the dynamic stiffness method proceeds, let us still consider the
beam section shown in Fig.2.2. Similar to the FEM, the DSM takes the following steps.

Step 1:
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For the Bernoulli-Euler beam shown in Fig.2.2, the exact dynamic stiffness matrix is ob-
tained directly from the governing equation by Fricker (1983) as follows:

Y31 Zy Zy Zy —Zs X;
Ml _ Z2 Z3 Z5 Zs 01
l=8lz 2z z -z|lx (2.9)
Mz - Z5 Zs - Z2 Z3 02

where
B =EI/(1 - cosbL coshbL)
Zy = a®(cos bL sinh bL + sinbL cosh bL); Z; = a?sin bL sinh bL;
Z3 = a(sinbL cosh bL — cosbL sinh bL); Z4; = —a3(sin bL + sinh bL);
Z5 = a*(cos bL — coshbL);  Zg = a(sinh bL — sin bL);
b= (w?pA/EI)/A
with E= Young’s modulus, I= area moment, p= mass density and A= cross section area.

Note that the elements in the dynamic stiffness matrix are frequency-dependent. Equation
(2.9) may be simply written:
[Dé(w)]X°® = F*° (2.10)

where D®(w) is the element dynamic stiffness matrix, w is angular vibration frequency,
Fe = [F,My,Fy, M2]T and X° = [X1,61,X3,05]7. It can be easily validated that when
w — 0, the element dynamic stiffness matrix [D®(w)] in equation (2.10) becomes the static
stiffness matrix given by equation (2.6).

Step 2 :

Having the element local matrix, equation (2.10), one next calculates the global dynamic
stiffness matrix by assembling all the element matrices as done in the global matrix assembly
of the FEM. First, element local equation (2.10) is cast into global form by coordinate
transformations. Next, the element global matrices of all elements in the structure are
superimposed appropriately to form the unrestrained structure dynamic stiffness matrix.
Finally, any restrained displacements at structure boundaries are accounted for by deleting
the corresponding rows and columns to form the restrained global dynamic stiffness matrix
[Dg]. Then the exact structural dynamic equilibrium equation is obtained:

[F] = [Dy(w)][X] (2.11)
Note that the dimension of the global dynamic stiffness matrix [D,] in equation (2.11) may
be much lower than that of [DJ] in equation (2.8). It is because a uniform beam element

may be as long as necessary without losing accuracy in the DSM.
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Step 3:

The eigenfrequencies can be obtained by:
det[Dy(wn)] =0 . (2.12)

where wy, is the n order eigenfrequency. Due to the high order of the nonlinear eigenproblem,
special algorithms have to be used for large structures (Wittrick and Williams, 1970).

With an w, found from equation (2.12), the associated modal vector X, is calculated from
[Dyg(wn)}Xn =0 (2.13)

where X, is the nth eigenmode.

Step 4:

The modal mass may be obtained by:

my = XT[M(wn)| Xn (2.140)
with the mass matrix: aD
[M(w)] = —_[Tff:;l (2.14b)

If w, is sufficiently far from other natural frequencies, the derivatives can be evaluated
numerically to any desired accuracy (Richard and Leung, 1977). An exact calculation of the
modal mass has also been given by Hallauer and Liu (1982). The stiffness matrix [K(w))
for a given frequency is then obtained by

[K ()] = w*[M(w)] + [Dy(w)] (2.14¢)

Step 5:

The response to harmonic excitation at any frequency w can be obtained by solving equation
(2.11). In fact, [Dg(w)] ! is the exact dynamic flexibility or FRF matrix for the given degrees
of freedom.

2.5 IMPROVED DYNAMIC STIFFNESS METHOD (IDSM)

In order to show the principle of the IDSM, the bending vibration of beam is chosen as
example element.

2.5.1. Derivation of the exact transfer matrix from
the dynamic stiffness matrix of an element

Consider the beam as shown in Fig.2.1 and Fig.2.2. Equation (2.10) may be rewritten in

submatrix form as follows:
Fz) (Df1 sz) (Xz>
= 2.15
( E. D§, D3 X, ( )

-14-



Chapter 2: An improved dynamic stiffness method

where F; = [F1, M)}, X; = [X1,01)}, F,. = [F,M2), X, =[X,,6:] . Dg; are 2 x 2
submatrices, ¢,j = 1,2.

The transfer matrix for the beam element is therefore obtained by:

X\ _(TH T X;
(‘Fr) B (T2el T ) \ kR (2.16)
with T4 = -D$§,"'D§,, TS, = D§, ™"
T5, = —D§; + D5, D5, DYy,  Tfy = —D5, D5,
The transfer matrix of a lumped system with stiffness X and damping C or a lumped system

with mass M can be found in the book written by Pestel and Leckie (1963). They are also
listed in Appendix A for convenience.

2.5.2. Exact transfer matrix of a substructure

Shown in Fig.2.3 is a typical substructure which consists of N elastic supports, N, rigid
masses, N, beam elements and N, disks.

+3

i +1 +2 +4 1+5 6

Fig.2.3: A substructure

The global transfer matrix for the substructure is:
(T°] = (TR)TR-1 ] [TZ](T1] (2.17)

where [TF], ¢ = 1,N, is the transfer matrix of each element, N is the total number of
elements of the substructure and N = Ny + Ny + N,, + N4. The superscripts s and e refer
respectively to the substructure and the element.
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2.5.3. Derivation of the exact dynamic stiffness matrix
from the transfer matrix of a substructure

The global transfer matrix [T] of a substructure relates the forces and displacements at
both ends of the substructure in the following way:

X\ _ (T Ty (X!
(%)=(% %) (% 218)
where F}? and X are the force and displacement vectors at the left end of the substructure,

F? and X are the same quantities at the right end of the substructure. Equation (2.18)
may be rewritten in the dynamic stiffness matrix form:

FPN_ (Din D\ (X}

(F:) = (D& D3, ) \ x2 (2.19)
with D§y = -Tf,'Tfy, Dip =TfH™

Dy = -T5 + THTH T, D3y = ~THTH™

where [D?] is the global dynamic stiffness matrix of the substructure whose elements are
frequency dependent. Note that the global dynamic stiffness matrix of the substructure
has the same dimension as the element dynamic stiffness matrix. In other words, the
substructure is reduced to an equivalent element whose nodal coordinates are only the
boundary coordinates of the substructure.

2.5.4. Exact global dynamic stiffness matrix

The global dynamic stiffness matrix for the entire structure can be assembled using the
above dynamic stiffness matrices of all substructures. The assembly process is the same as
the one applied in the finite element method. After introducing the boundary conditions,
the dimension of the global stiffness matrix can be further decreased. The restrained global
dynamic stiffness matrix is denoted by [Dy(w)). The unwanted or unobserved degrees of
freedom such as rotational dofs can be removed in an exact manner (Leung, 1979). The
global equations of motion is therefore:

F = [D ()X (2.20)

2.5.5. FRF matrix

The frequency response function (FRF) matrix H(w) for the selected d.o.f. can be obtained
by inverting the above global dynamic stiffness matrix. We have

[Hw)} = [Dg(w))™ (2.21)

The matrix [D,] is usually very low in dimension because the internal d.o.fs of all the
substructures are not used. Therefore, the inversion of matrix [D,] is easy to perform. If
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the structure consists of only one substructure, the inversion of [D,] may be avoided by
directly rearranging the transfer matrix.

2.5.6. Modal parameter evaluation

Once the global dynamic stiffness matrix [Dg] of the system is obtained, the natural fre-
quencies are the values of w, for which

[Dg(wn)]Xrn =0 (2.22)
where w,, is the ny), eigenfrequency, X, is the ny, eigenmode.

The algorithm developed by Williams and Wittrick (1970) may become tedious if it is
directly applied for solving equation (2.22). The reason is that in this algorithm the natural
frequencies for each individual beam element with fixed ends should be calculated first.
However, in the IDSM, an ”element” is a substructure which may consist of a large number
of beam elements. Therefore, a newtonian procedure (Simpson, 1984) for solving equation
(2.22) is recommended here.

Writing equation (2.22) in a more general form
[Dg(w)]X =0 (2.23a)

It is obvious that if the assumed frequency w is not one of the eigenvalues of equation (2.23a),

then we have
[Dgw)X =f#0 (2.23b)

Let us partition along the last row and column of [Dy(w)] so that

D Db\ (X 0

g 9 “ )= 2.24
(2 22)(2)-(7) 20
where the vector f is replaced by [0, f], and the orders of Dy; Dg, Xa, Dg, x4 are (n—1xn—1);

(n —1x 1) and (1 x 1), respectively.
The partitioning scheme is flexible in the sense that if, as any eigenvalue is approached,
rq — 0, a rearrangement of the elements of X and therefore of [Dy] may be performed
in order to bring to the z4 position an element that does not vanish. A more detailed

partitioning procedure is given by Simpson (1982). The value of z4, in any case, may be set
to unity (Simpson, 1982). -

With z4 = 1 one has
f = X'[Dg]X = [Dj} - [Dy['[Dg] Dyl = f(w) (2.25)
Since the vanishing of f(w) implies that |D4(w)| = 0, thus an alternative eigenvalue equation
is:
Fw)=0 (2.26)
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Differentiation of equation (2.25) yields

df (w)/dw = Xt%){ (2.27)
Using equation (2.14b), equation (2.27) may be written alterna.tiveb; as:
| df (w)/dw = —2wX [ M(w)]X (2.27a)
where [M(w)] is the mass matrix.

Since the mass matrix [M(w)] is positive definite for all w, the slope of the f(w) is everywhere
negative. The roots of f(w) are the eigenvalues which must be real (for undamped system)
and non-negative. Therefore, from equation (2.25) it is evident that the poles and zeros of
f(w) are necessarily interlaced.

Suppose that wp is an estimate of an eigenvalue, then the Newtonian improved estimate will
be:
wn = wo = F(w0)/ X Hwo)dDy ()] ) X () (2.28)

It is noted that w, may not be an improved estimate of wp if it does not lie between the
poles of f(w) on either side of w. First, one needs to be sure that wg lies between these
poles before the Newtonian process is used. If it does, once wy, is calculated, one needs to
ensure that w, also lies between the poles —and should it not, one rejects it. The reader
may refer to the work done by Simpson (1982, 1984).

Because [D,] is very low in dimension, equation (2.21) may be solved by a straightforward
procedure of calculating det[D4(w)] by inspection method.

The modal mass for mode n may be obtained by (Richard and Leung, 1977):
m? = XT[M(w,)] Xn (2.14a)

The frequency-dependent mass and stiffness matrices may be calculated from the dynamic
stiffness matrix by equation (2.14).

Based on the reduced IDSM model, all the modal parameters such as natural frequencies,
mode shapes and modal masses in a large frequency range can be calculated. The detailed
procedures were described by Chen and Géradin (1994a,1994b).

2.5.7. Forced response

There are two main ways to calculate the steady-state response under any type of excitation:
modal superposition method (MSM) and direct time integration method (DTIM). However,
if the model is established by the IDSM as presented above, both the MSM and the DTIM
are not convenient due to the fact that the matrix elements are frequency dependent. Only
in the case of harmonic excitation, the DTIM may be applied to the IDSM model after the
global mass and stiffness matrices have been obtained using equation (2.14).
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In this section, an FFT-based method is proposed.

The response in frequency domain is:
X(w) = [H@)F(w) (2:29)

Theoretically, the FRF matrix obtained in section 2.5.5 is valid not only for harmonic
excitation but also for other types of excitation. That is, equation (2.29) still holds for
arbitrary excitation in which X (w) and F(w) are displacement and force vectors in frequency
domain. Performing IFFT on equation (2.29), we have:

2(t) = if FULH(w)F () (2.30)

where z(t) is the displacement vector in time domain (assuming zero initial conditions). In
Equation (2.30), the FRF matrix [H(w)] may be calculated in advance and stored in the
computer for a given system because it depends only on the eigenproperties of the system.
Therefore, for different types of excitation, it is not necessary to recalculate the FRF matrix.

Both lumped systems and continuous systems were studied using the IDSM and the proce-
dure was described by Chen, Golinval and Géradin (1994c).

2.5.8. Recovery of mode shape and response amplitudes at arbitrary locations

Since the IDSM does not use most of the internal degrees of freedom, and since the size of
the dynamic element can be very long compared to the conventional element, the ability to
recover the mode shape and to compute the response at some internal nodes and at arbitrary
locations within an element is sometimes necessary. This is realized through the following
two steps:

Step 1:

The mode shape and response amplitudes can be recovered at the internal dofs within a
substructure. Consider the substructure shown in Fig.2.3. The mode shape or response
amplitudes at both ends have been obtained by equation (2.21) or equation (2.29). Now we
want to calculate the mode shape or response amplitudes at node j within the substructure.

The state vector at node j can be easily obtained by the transfer matrix between node j

and the left end node:
S; = [T1;[T]5-1.wre- TS (2.31)

where S is defined by equation (2.2).

Using equation (2.31), the displacement, rotational angle as well as the internal forces at
node j can be obtained.

Step 2:

In order to compute the mode shape or the response amplitude at arbitrary locations within
an element, it is necessary to obtain first the dynamic shape function. As an example,
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consider the bending vibration of a Bernoulli-Euler beam whose dynamic stiffness matrix
has been obtained (equation (2.9)). The dynamic shape function is (Liu and Lin, 1993):

Ni(z) = %(Al sin bz + Aj cos bz + Az sinh bz + A4 cosh bx) (2.32a)
Ny(z) = —}IT(BI sin bz + By cos bz + Bj sinh bz + By cosh bx) (2.32b)
Ni(z) = %(Cl sin bz 4+ C3 cos bz + Cj sinh bz + C4 cosh bz) (2.32¢)
Ny(z) = %(Dl sin bz + D; cos bz + D3 sinh bz + Dy cosh bz) (2.324)

and H, A;, B;, C; and D;, i=1,2,3,4 in equation (2.32) are

H = 2b(—1 + cos bl cosh bl)

A; = cos blsinh bl + sin bl cosh bl; Az = —1 — sin blsinhbl + cos bl cosh bl;
Az = — cos bl sinh bl — sinbl cosh bl; A4 = —1 + sin blsinhbl 4 cos bl cosh bl;
By = —1 + cos bl cosh bl + sinblsinh bl; By = cos blsinhbl — sin bl cosh bl;
By = —1 + cos bl cosh bl — sinblsinh bl; By = — cos bl sinh bl + sin bl cosh bl;
Ci = —sinbl —sinhbl; C3 = — cos bl + cosh bl;

C3 = sin bl +sinh bl; Cy4 = cos bl — cosh bl;

Dy = —cosbl — coshbl; Dy = sin bl — sinh bl;

D3 = cosbl — cosh bl; Dy = —sin bl + sinh bl;

where b = (w?pA/EI)'/*

The displacement function at an arbitrary location z in harmonic vibration can be obtained

from:
V(z) = [Ni(z) Na(z) Na(z) Ny(z))X (2.33)

where X is the nodal displacement vector.

2.5.9. Dynamic force identification

The dynamic force in frequency domain may be directly estimated by equation (2.20). The
corresponding time history can be easily obtained by performing IFFT on equation (2.20):

£(&) = if ft([Dg(w))X (w)) (2.34)

It should be noted at this stage that the force identification procedure based on equation
(2.34) has the following advantages:
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(1.)  The global dynamic stiffness matrix in equation (2.34) uses only the coordinates of
excitation locations. Therefore, the matrix [D,] is always a square matrix. In other words,
the number of measured responses is the same as the number of excitation forces. This
reduces much of the experimental work.

(2.) Using equation (2.34) to estimate the forces is straightforward and does not require
the inversion of the global matrix. The ill-conditioning problem associated with the usual
force identification algorithms may be avoided.

(3.) The model uses directly the coordinates of the excitation points as the master degrees
of freedom, model reduction is not necessary. Although some of the rotational dofs may

remain in the model, they can be deleted from equation (2.34) in an exact manner.

(4.) No modal parameter extraction is needed.

2.6 COMPARISON OF THE METHODS VIA NUMERICAL EXAMPLES
Example 1: Free vibration analysis

In order to make a direct comparison of the above described four methods, namely the
TMM, the FEM, the DSM and the IDSM, let us study the free vibration of the non-uniform
beam shown in Fig.2.4.

—— —
S —

A A

Fig.2.4: A single-span beam with non-uniform cross sections

The first four eigenfrequencies are calculated using the four different methods. It is found
that the TMM, the DSM and the IDSM gives exactly the same results since the exact
matrices are used in these methods. Therefore, only the results calculated by the FEM
(Samcef, 1994) and the IDSM are listed in Table 2.1.

Table 2.1: Natural frequencies (Hz) of example 1

Mode w1 W w3 Wy
FEM 9.99 48.94 121.86 231.42
IDSM 9.99 48.69 121.83 231.25

In the FEM model, 18 beam elements were used, the corresponding global matrices are
36 X 36 in dimension. In the DSM, only 6 beam elements were needed, the global matrices
are therefore 12 x 12. The matrices used in the TMM and in the IDSM are always 4 x 4 in
dimension. The restrained global matrix in IDSM is only 2 X 2 in dimension.
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From this example, it is seen that both the TMM and IDSM deal with low order matrices
and give exact results. In the TMM, however, the equations of motion of the original system
are lost. The IDSM keeps the explicit equations of motion (in the case of example 1, the
generalized coordinates are the rotational angle at both ends).

Example 2: Modeling of a cantilever beam

The simple cantilever beam shown in Fig.2.5 (600mm X 25.5mm x 6.0mm) is used as the
second example.

This example is taken from the work carried out by Lee and Dobson (1991) where the
purpose was to validate a direct measurement method for structural mass, stiffness and
damping properties. We choose this as an example because of the availability of the results
obtained by other modeling techniques and experiment. The lumped masses on the beam
have the purpose to simulate the attached accelerometers.

The purpose here is to build up a model with three degrees of freedom (translation degrees
of freedom at node 1,2,3) for the system shown in Fig.2.5. These degrees of freedom were
also measured during the experiment. The detailed description of the modeling procedure
is given in a previous report (Géradin and Chen, 1994). Only the main results are repeated
here.

Fi X, F X2 F X3

e = T

/ 600 mm

»

Fig.2.5: A cantilever beam with lumped masses

Sub. 1 Sub, 2 Sub. 3

E m
Fig.2.6: Three substructures

Because the internal degrees of freedom, X3, Xz, X3, should be kept in the equations of
motion, the TMM can not be applied in this case. The difference between the IDSM and
the DSM in this case is not obvious, only the IDSM and the FEM are compared.

In the FEM, 24 beam elements are used which leads to 50 degfees of freedom. In order to
establish the three degrees of freedom model, 47 degrees must be removed from the FEM
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model. Two reduction methods are applied, namely the static condensation (SCM) and the
modified dynamic condensation (MDCM) (Lee and Dobson (1991)).

In the IDSM, the beam is divided into three substructures as shown in Fig.2.6. Therefore,
according to the principle of the IDSM, the IDSM based model uses only six degrees of
freedom, i.e., three translational and three rotational dofs. The three rotational dofs can be
further removed in an exact manner (Leung, 1979).

Table 2.2: Eigenfrequencies regenerated by different methods, Hz

Mode w1 (53] w3 wy Wp We

SCM* 13.52 84.24 236.15 — — —

MDCM** 12.65 83.32 238.73 435.10 674.81 964.20

IDSM 13.48 84.06 233.08 467.63 763.89 1129.24

Full FEM 13.72 85.08 233.99 477.53 771.89 1135.05

*: Static Condensation Method; **: Modified Dynamic Condensation Method.

The eigenfrequencies regenerated by the above models are listed in Table 2.2. It is seen that
the model established by the IDSM, which has only three degrees of freedom, can predict
all eigenmodes in a large frequency range. The results are comparable with the full FEM
results in which 24 elements were used (50 degrees of freedom).

2.7 DISCUSSIONS AND APPLICATIONS OF THE IDSM

The proposed method (IDSM) was originally developed for linear oil-well drillstrings. How-
ever, its application to beam-like structures can be done in a straightforward manner. So
far the method has been applied to the following dynamic problems:

(1) Modal parameter evaluation

It is well known that the correctly predicted number of eigenvalues based on the FEM model
is equal to or less than half the number of degrees of freedom in the model (Géradin and
Rixen, 1994). If the frequency range of interest is high the number of degrees of freedom
used in the FEM model can be very large.

In contrast, the IDSM can yield exact solutions using any number of elements. The accuracy
of the results are not dependent on the refinement of the mesh. The number of exactly
predicted eigenmodes may be much higher than the number of degrees of freedom used in
the model. Therefore, in the IDSM one can always handle low dimension matrices and save
much computational effort in this manner. The mode shape amplitude at the slave nodes
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(internal nodes) and arbitrary locations within an element can be recovered using the theory
described in section 2.4.8.

(2) Model reduction

One problem occurs when the FEM model and DSM models are compared with the ex-
perimental one due to the large difference in the numbers of coordinates involved in both
investigations. To solve this problem, model reduction techniques or modal expansion tech-
niques have to be used. That is, the high dimension model is reduced to a lower dimension
one in terms of master degrees of freedom. This reduction process may induce additional
errors. In order to achieve reasonably accurate results, the master DOFs must be selected
with care, otherwise some of the lower frequencies in the eigen-spectrum may even be lost
(Mottershead and Friswell,1993). Different sets of masters may be required for different
modes because the distributions of energy in the coordinates are different from mode to
mode.

However, if the IDSM is used for modeling a structure, the structure may be directly mod-
elled with the measurement coordinates as the global coordinates. In this sense, no reduction
procedure may be needed. But it does reach the objective of the model reduction. The ap-
plication of the IDSM to model reduction was described by Géradin and Chen (1994), Chen,
Géradin and Lamine (1994a).

(3) Forced response calculation

Various methods for the determination of transient response of one-dimensional vibration
structures such as beam or shaft systems have been developed and widely used during the
last decades. Among these techniques, the modal superposition method (MSM), the direct
time integration method (DTIM) are widely used (Géradin and Rixen, 1994).

In the finite element method (FEM), the number of degrees of freedom (dof) is usually very
large which can lead to matrices [M], [C], [K] of large dimension. The use of the MSM
requires to solve first the corresponding free vibration problem in order to get the modal
parameters. The Duhamel integration and the decomposition into generalized coordinates
and forces are required. The effectiveness of the MSM is remarkable as long as fundamental
modes are predominant in the response (Géradin and Rixen, 1994). However, in the opposite
case where the frequency spectrum requires to include a high number of modes so as to ensure
good convergence, the procedure of calculating the response by this method is often tedious.

The DTIM, which is based on finite time differences, allows to take care of high frequency
components in a straightforward manner. It is also a powerful method for nonlinear sys-
tems. However, the parameters of the time integration process are to be adjusted correctly
according to accuracy and stability requirements. For large structures, this method can
become very time consuming,

The IDSM is further extended to the forced response analysis of the one-dimensional struc-
tures, such as beam or rotor-bearing systems. The frequency response function (FRF)
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matrix between any two points of the structures is obtained by inverting the correspond-
ing dynamic stiffness matrix. Because the dynamic stiffness matrix obtained by the IDSM
is usually very low, exact FRF matrix may be obtained. In order to calculate the forced
response, the dynamic equations in frequency domain are transformed to time domain by
the inverse fast Fourier transform (IFFT). The detail procedure was described by Chen,
Golinval and Géradin (1994c).

(4) Dynamic force identification

The identification of exciting forces using the corresponding responses has received consider-
able attention in recent years. The reason is that in many situations the direct measurement
of the excitation can be very difficult in practice or even sometimes impossible. Many tech-
niques for force identification have been developed, for example, among others, the sum
of weighted accelerations technique (Gregory et al., 1986, Priddy et al., 1988, Priddy et
al 1989, Wang et al, 1987), and the deconvolution technique (Hillary and Ewins, 1984).
H.Park and Y.Park (1994) have studied the arbitrary impact force identification, including
the location and the time history of the impact force, using the wave propagation theory.
Almost all the force identification algorithms require (a) the measurement of the responses
(displacement, velocity or acceleration) at several locations on the structure due to the un-
known force, and (b) a model of the structure. While the response may be easily obtained
by direct measurement using transducers, the establishment of the structure model becomes
a key issue in the force identification. There are three types of structure models which may
be used in the force identification: spatial model (mass, damping and stiffness matrices),
modal model (natural frequencies and mode shapes) and response model (or frequency re-
sponse function matrix) (Ewins, 1988). If the modal model or the response model is used,
the force identification process requires inevitably the inversion of global matrices which
tend to be very ill conditioned. That is, very small errors in measurements generate large
errors in estimated forces, especially at the frequencies close to resonance and anti-resonance
conditions (Starkey and Merrill, 1989). Although efforts have been made to overcome this
difficulty, for example the pseudo inverse technique (Fabunmi, 1985) and the singular-value
decomposition (Elliott, Juang, Robinson, 1988), no significant progress has been achieved
to the author’s knowledge.

The use of the spatial model, usually established by finite element method (FEM), may
offer significant advantages in some cases because it avoids the necessity to invert matrices
(Dobson and Rider, 1990). However, the FEM model makes use of a large number of degrees
of freedom (dof), but most of the dofs are not necessarily needed, especially those dofs at
which no force is applied and no response is measured. In order to compute the excitations,
the FEM model has to be reduced by model reduction technique so that the response needs
only to be measured at a limited number of points. The reduction process may introduce
errors as pointed out by many researchers (e.g., Leung, 1978, Freed and Flanigan, 1990).

Under the condition of knowing the number of excitations and their locations, it is found
that the use of the IDSM for force identification has some advantages. The IDSM technique
developed for force identification (Chen and Géradin, 1994d) bypasses the processes of
modal parameter extraction, global matrix inversion as well as model reduction and hence
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eliminates many of the approximations and errors which may be introduced during these
processes.

(5) Rotor-bearing systems and branched beam-like systems

The application of the IDSM to rotor-bearing systems and to branched beam-like systems
is straightforward. The principle was described by Chen and Géradin (1994c) and Chen,
Golinval and Géradin (1995, to appear).

(6) Plate vibrations

The principle of the IDSM can be easily extended to the case of 2D and 3D plate vibrations.
However, the description of the procedures exceeds the scope of the thesis. Details were
given by Chen and Géradin (1994e).

2.8 CONCLUSIONS

An improved dynamic stiffness method is proposed in this chapter to model the beam
structures directly at the required master degrees of freedom. What makes the present
approach so simple and useful is that a substructure, which may consist of a large number
of basic elements, can be always reduced exactly to an equivalent element whose nodal
coordinates are the boundary coordinates of the substructure. The internal degrees of
freedom of the substructure are not used in the model. This leads to an drastic reduction
in the required degrees of freedom.

It is obvious that the present approach is different from the transfer matrix method and from
the dynamic stiffness matrix method. In the transfer matrix method, the explicit equation
of motion of the system has disappeared. Only the boundary conditions are related by
the global transfer matrix. In the dynamic stiffness matrix method, on the other hand,
the internal degrees of freedom in a substructure have to be used which leads to high
order dimension. The present method is also different from the Dokainish combination
method. Firstly, the exact stiffness matrix is used in the present method while in Dokainish
combination method finite element matrices are used. Secondly, the Dokainish’s method is
actually an improved transfer matrix method because the eigen-properties are obtained from
the global transfer matrix. Only eigenfrequencies, mode shapes and harmonic responses are
available in Dokainish’s method. In the present method, the explicit equation of motion
is obtained and all the modal parameters such as eigenfrequencies, mode shapes, modal
masses, modal stiffness, and FRF matrix can be calculated. Therefore, the present method
may be considered as an improved dynamic stiffness matrix method.

The present method has also been applied to transient dynamic response analysis, dynamic
force identification and to rotor-bearing and branched beam-like systems.

Compared to other methods, the IDSM has the following advantages:
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(1) Numerical difficulties present in the usual transfer matrix method may be overcome.
This is due to the fact that the number of elements in a substructure is low and the very stiff
intermediate condition may be taken as boundary conditions directly in the global matrices.

(2) The system can be modeled exactly with arbitrary degrees of freedom, most of the
internal degrees of freedom being automatically avoided. Therefore, the dimension of the
global matrices is greatly reduced. This fact is very attractive for engineering applications.
For example, the axial vibration model of a 5000 meter length drillstring may have 1000
dofs if the FEM is used, and only 2 dofs if the IDSM is used.

(3) The method handles only small matrices, hence, the computation effort is reduced
considerably without loosing any accuracy.

Like any other method, the IDSM has also some disadvantages:
(1) At the current time, the IDSM can be applied only to linear systems.

(2) Although the IDSM may be applied to plate vibrations (Chen and Géradin, 1994e)
or more complicated structures, some of the advantages of the IDSM may disappear. For
example, when the required master degrees of freedom are randomly distributed over the
plate, and the external force are distributed over the plate, then the order cannot be reduced
by the IDSM method.
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CHAPTER 3:

LINEAR AXIAL AND TORSIONAL VIBRATIONS OF DRILLSTRINGS

3.1 INTRODUCTION
3.1.1. An Overview

The vibration of oil-well drillstring includes axial, torsional and lateral vibrations. In most
cases, these three vibrations are coupled through drillstring large deflection and bit formation
interaction (Besaisow, 1986, Dunayevskey,1985). However, when dealing only with linear
vibration, the coupling effects may be negligible. Therefore, the three kinds of vibration,
namely axial, torsional and lateral vibrations may be considered separately.

It is well known that drillstring dynamics plays an important role in the oil well drilling
practice. Poor drillstring dynamic behaviors will cause many problems, such as drilling
failures, bit damages. In addition, drillstring vibrations affect the rate of penetration (ROP),
the reliability of MWD (Measurement While Drilling) systems and the drilling direction.
That is probably why so significant efforts are being expanded in the drilling dynamics
presently.

The importance of drillstring vibration has not risen at the beginning of the drilling industry
development. For a long time, the design of the drillstring was based on the static analysis
such as stress distribution and static buckling. However with the increase of power trans-
mission and the increase of rate of penetration, which became possible after the invention
of PDC (Polycrystalline Diamont Compact) bit, and with the need of cost reduction by
pushing the drilling equipment up to limits, the vibration problem becomes more than just
a side effect. Indeed, vibration was found in the drilling field as the main source of BHA
(Bottom Hole Assembly) failures.

For PDC bits, understanding and controlling vibration is of crucial importance. That is
because the shocks and vibrations are very detrimental to PDC cutters. In some cases,
shocks and vibrations can unable PDC bit to drill medium and hard rocks (Rixen, 1992a).

Much of the work about the dynamics of the drillstring has been directed toward the de-
velopment of analytical and numerical models designed to predict the behavior of rotating
and vibrating BHA and drill strings. For linear vibrations, three types of models have been
developed in the past, namely analytical models, FEM and transfer matrix models.

A large part of early research work based on analytical model is focused on the buckling,
axial and torsional vibrations of drill strings, long vertical pipes, etc. (Dareing and Livesay,
1968, Huang and Dareing, 1968, 1969, Dareing, 1984a,b). Although the model used in their
analysis includes all the elements from the bit to rig of a drillstring, it usually considers the
drillstring as having a uniform cross section.

Millheim and Apostal (1981a,b) were the first to implement complex three dimensional
dynamic models of a rotating BHA to study the BHA dynamics based on the FEM model.
More recently, Apostal et al (1990) developed a FEM based, forced-frequency-response
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model (FFR model) for linear vibration analysis of drill strings. The FFR model can
determine the force frequency response (Harmonic excitation) of a BHA due to imposed
load and/or displacement excitations anywhere along the drill string. However, like any
other FEM models, the FFR model has some disadvantages as described in Chapter 2.
The applications of the FEM based models to drilling fields are therefore limited due to
significant computational efforts.

A research team at MIT leaded by Prof. Vandiver developed a model based on transfer ma-
trix method for axial vibration analysis of drill strings and for the design of shock absorbers
(Lee, 1991, Vandiver et al, 1993). The model is used also for studying the effects of surface
and down hole boundary conditions on the vibration of drill strings (Clayer, Vandiver and
Lee, 1990). As pointed out in Chapter 2, the most important advantage of the transfer
matrix model is that the dimension of the global matrix is independent on the number of el-
ements. However, the limitation is also obvious, namely, only eigen-properties and harmonic
response can be calculated.

3.1.2. Outline of the chapter

The IDSM described in Chapter 2 is applied to linear vibration analysis of drill strings.
Axial, torsional vibrations are investigated separately in this chapter. Since the differential
equation of motion for a basic element for the axial and torsional vibrations are similar, only
axial vibration is described in detail. The same procedures can be followed for torsional
vibration.

The whole drillstring (from bit to rig) is reduced exactly either to a SDOF model with
the bit displacement as the generalized coordinate for free, forced vibration analysis and for
shock absorber design, or to a two DOFs model with the displacements at the bit and surface
measurement point as the generalized coordinates for identification of bit forces and motions
by surface measurement. Based on the reduced models, the free and forced vibrations
are studied. Exact eigen-frequencies are calculated. In the forced vibration analysis, the
frequency-dependent damping is taken into account. The principle of estimation of down-
hole bit forces and motions using surface measurement is described. Finally, the design of
the shock absorber and its influence on the drillstring dynamics are discussed.

3.2 AXIAL VIBRATION ANALYSIS
3.2.1. Mechanical model of drillstring

Fig.3.1 shows a diagram of a typical drill string model. The topside boundary condition
is modeled with an equivalent lumped mass-spring-damper system (Clayer, Vandiver and
Lee, 1990). The bit is assumed to be free and an equivalent force is applied on it. Other
boundary conditions at the bit such as an equivalent spring with damping can also be
introduced without any difficulty. The equivalent mass, M,, is the total mass of travelling
block, power swivel and other equipment. The following values are assumed:
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Fig.3.1: Mechanical model of the drillstring
K,=1.0 x10'N/m, M,=23765 Kg, C,=40000 Ns/m

where subscript a denotes the axial vibration parameters. The geometric data of the drill-
string are listed in Table 3.1.

Table 3.1: Geometry of the drillstring of Fig.3.1

Section Nr. 1 2 3 4 5 6 7

R; (inch) 14 14 14 14 14 14 14
R, (inch) 6.0 4.0 2.5 3.0 4.0 4.5 5.5
Length (meter) 5 5 200 200 50 40 30

3.2.2, Basic frequency-dependent matrices

From Fig.3.1 it is seen that there are three kinds of basic element for axial vibration: a
lumped stiffness element with damping, a lumped mass element and a continuous beam
element. Their associated transfer matrices or dynamic stiffness matrices are given below
(Pestel and Leckie, 1963, Yang and Pilkey, 1992):

-30-




Chapter 3: Linear azial and torsional vibrations of drillstrings

(1) Transfer matrix of a lumped stiffness K, and damping C,:

= (3 MOKeis00) o

where the subscripts a denotes the axial vibration.

(2) Transfer matrix of a lumped mass M,:
m 1 0
[Ta ] = (_MawZ 1) (32)

(3) Axial dynamic stiffness matrix [D,] for a continuous beam:

1/tan(f) 1/sin(6
[De] = @ ( 1// sin((O)) 1; sinEO;) (33)

where @ = EAG/L, 8 = L\/p(w? — 2iyw)/E, v is the damping constant, w the angular
frequency, L the length of the beam, A the cross section area of the beam, p the mass
density of the beam.

The damping coefficient « is described in detail in the next section.

The above matrices are the basic matrices for the axial vibration analysis of drill strings
using the IDSM described in Chapter 2.

3.2.3. Damping mechanisms for axial motion

Damping is an essential parameter in determining the response and resonance amplitude.
The main sources of damping of extensional waves are probably (Aarrestad et al 1986):

(a) Breathing effects of the pipe in the confined fluid;

(b)  Viscous losses due to the interaction with the drilling fluid;

(c) Frictional forces due to wall contact;

(d) Bit/formation interaction;

(e) Losses in the suspension at the top of the drillstring;

(f) Dissipation in shock absorbers, if any.
The friction forces are usually non-linear. However, if the non-linear terms are small, it can
then be modeled by an effective linear coefficient. In this chapter, we deal only with linear

damping models.
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There are two kinds of damping models: frequency-independent and frequency-dependent.
The frequency-independent one was proposed by Dareing and Livesay (1968), Kreisle and
Vance (1970).

The frequency-dependent model was proposed by Squire and Whitehouse (1979) based on
the study of damping mechanisms of acoustic radiation and of viscous losses in the drilling
fluid. According to their analysis the damping coefficient due to radiation is:

Tr = 0 g pjwky (34)
whereas the damping coefficient due to viscous losses is:

Yo = w(ri + 10)A/2wpsn (3.5)

where 19 and r; are the outer and inner radius (meters) of the drillstring, respectively. py
is the density of mud (kg/m?), 7 is the viscous coefficient of the mud, and v is the Poisson
ratio of the drillstring. The coefficient & takes a value between 0 and 3 (usually k,=2).

It is seen that both +, and 7, are functions of frequency. The damping coeflicient is then

Y=+ % (3.6)
The numerical values given by equation (3.4) and (3.5) show that the viscous losses v, are
negligible in comparison to the radiation damping ~,.

The frequency-dependent damping model is believed to be more realistic than the frequency-
independent one (Aarrestad et al, 1986).

3.2.4. Free axial vibrations
(1) Dynamic model

The free axial vibration analysis includes the calculation of eigenfrequencies and mode
shapes. To this end, the drillstring shown in Fig.3.1 may be represented by an equiva-
lent SDOF (single degree of freedom) model with bit axial displacement as the generalized
coordinate for a given frequency using the IDSM described in Chapter 2. The following
steps are used:

Step 1:

The drillstring consists of 9 elements, i.e. 7 beam elements, 1 lumped mass element and
1 lumped spring element with damping. Their corresponding frequency-dependent matrix
(transfer matrix or dynamic stiffness matrix) are listed in section 3.2.2. The global transfer
matrix is therefore obtained by:

[T] = [TRITS)....[T%] (3.7)

Step 2:

-32-




Chapter 8: Linear azial and torsional vibrations of drillstrings

The global dynamic stiffness matrix obtained without introducing any boundary conditions
is derived by rearranging the global transfer matrix [T¢] using equation (2.19). It is a 2 X 2
matrix. After introducing the boundary conditions at the top end, the restrained dynamic
stiffness matrix reduces to a scalar for a given frequency. Hence, the dynamic equation of
motion is: '

Fb = dg(w) Xt (3.8)

where F? and X ® represent respectively the axial force and the axial displacement response
at the bit, dg(w) is the restrained dynamic stiffness matrix (a frequency-dependent scalar in
this case). The superscript b refers to the bit and the subscript a denotes the axial vibration.

Based on the restrained dynamic stiffness matrix dJ(w), the free vibration of drillstring can
be analyzed.

(2) Natural-frequencies

Table 3.2 gives the first seven natural frequencies predicted by the IDSM model and by
FEM model. In the FEM model, 40 elements (Samcef Software, beam element type 1) are
used.

Table 3.2: Eigenfrequencies (Hz) predicted by IDSM and FEM

Mode w [5)) w3 Wy Ws We wr
IDSM 1.194 3.615 7.293 12.843 17.446 22.394 26.701
FEM 1.194 3.615 7.299 12.887 17.568 22.584 27.709

Fig.3.2 depicts the transfer function at the bit predicted by the IDSM model (equation (3.8))
with small damping. It is found that the axial eigenfrequencies are always within the oper-
ational band. When the axial excitation frequency, for example the three pattern excitation
for tricone bit (will be described in next section), is equal to one of the eigenfrequencies,
resonance will happen and hence large dynamic loads will be induced. This problem may
be partly solved by placing a shock absorber above the bit. The effects of a shock absorber
on the dynamics of the drillstring will be discussed in section 3.2.7.
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Fig.3.2: Transfer function predicted by the IDSM model

It should be noted that although the IDSM model uses only one dof, the eigenvalues pre-
dicted by the IDSM model are exact values. On the other hand, the FEM using 40 degrees
of freedom gives only approximate results.

3.2.5. Forced axial vibrations
(1) Axial excitations

It is clear that the axial excitation source is the bit/formation interaction. It is therefore
dependent on the bit type and the formation drilled. For tricone bits, for example, axial
excitation is mainly produced by bottom hole surface unevenness, the so called three-lobe
pattern (Besaisow and Payne, 1986, Dareing et al, 1983, Wolf et al, 1985 Aarestad et al,
1986 ). In other words, if the rotation speed is w, then the excitation frequency is 3w.
Hence, for tricone bits, critical speeds are well within general operating range. If harder
rocks are drilled by tricone bits, strong axial vibration may occur because of lower damping
and rougher multi lobe pattern.

For the PDC bits, the excitation mechanisms are more complicated. The dynamic interac-
tion between PDC cutters and formation may be one of the sources.

In addition, the variation of the weight on bit (WOB) and the fluctuation of the mud
pressure (Dareing et al, 1983) may also be the excitation sources. In some cases the rock-bit
teeth impacting and local formation singularities (Lutz et al, 1971) may induce small high
frequency sollicitations.
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Generally, from the above analysis it may be concluded that the actual excitation is a
combination of non-random harmonic loads superimposed to random vibrations (Skaugen,

1987, Rixen, 1992a).
(2) Frequency domain response

It has been shown that the dynamic stresses caused by axial vibration are maximum on the
bit (Dareing et al, 1983). Therefore, in this section the whole drillstring shown in Fig.3.1
may be modeled with one degree of freedom, i.e., with the bit axial displacement as the
generalized coordinate. This is the case described in section 3.2.2..

Fig.3.3 shows the frequency responses with different damping levels. It is seen that the
frequency dependent damping has a significant effect on the high frequency modes. It is
because the damping constant calculated by equation (3.6) is almost a linear function of
vibrating frequency. Another fact which can be observed from the figure is that the first
two eigenmodes are difficult to be damped out. Note that the first two eigenfrequencies
are usually in the range of operational speed of the drillstring. Therefore, the first two
eigenmodes play an important role in the axial vibration control of the drillstring.

-16

Log. amplitude

-18f

-20F
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Frequency, Hz

Fig.3.3 : Frequency responses with different damping
—i ky=05; --tky=10; --:ky=2;..0k =3
(3) Time domain response

Fig.3.4 shows the down hole bit axial responses under sine and triangular excitations, re-
spectively. For comparison, the responses obtained by the finite element model, i.e. Samcef
software (Samtech, 1994) are also shown. In the IFFT, 4096 points and frequency step
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Af = 0.05 Hz are used. In this figure, both IDSM and FEM use frequency-independent
damping (y = 100N s/m) because in the FEM model it is difficult to deal with frequency-
dependent damping. It is seen that the results obtained by the two methods agree very well.
However, the CPU time needed by the present method is greatly reduced.
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b): Downhole bit response under triangular excitation
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Fig.3.4: Down hole bit axial response under two different excitations
——: IDSM with IFFT; -.-.-.: HHT integration

3.2.6. Identification of dynamic bit axial force and motion

During the drilling, it is very difficult or expensive to measure directly the down hole bit
forces and motions. In this section, we propose a method to identify the down hole bit axial
and torsional forces and responses using the surface measurements based on the IDSM.

(1) Modeling procedure

Because the measurements are performed often at the surface, it is necessary to establish
the model with the coordinates at the surface and at the bit as the generalized coordinates.
To this end, following steps are used:

Step 1:  The whole drillstring is divided into two substructures as shown in Fig.3.1b.
Substructure 1 is further subdivided into four elements (1 spring-damper element, 1 lumped
mass element and 2 beam elements). Substructure 2 is subdivided into five beam elements.

Step 2: The element dynamic stiffness matrices are transformed into element transfer
matrices using equation (2.16). The global transfer matrices for each substructure, [T'}] and
[T?], are obtained by multiplying all the element transfer matrices.
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For substructure 1:  [T}] = [T4][T5][T2)[T1]
For substructure 2:  [T?] = [T5][Ts)...[Ts]

The global dynamic stiffness matrices for each substructure, [D1] and [D?], are obtained by
rearranging the matrices [T] and [T?] using equation (2.15).

Step 3: The global dynamic stiffness matrix [D,] for the whole drillstring may be assem-
bled from [D1] and [D?] by applying the standard assembly procedure of the finite element
method. It is noted that the unrestrained global dynamic stiffness matrix has 3 x 3 di-
mension in this case. After introducing the boundary conditions at the topside, one finally
obtains the dynamic equilibrium equation:

(%) =5 (52 9)

where subscript b and m represent respectively the bit and the measurement point, and [Dj]
is the restrained global dynamic stiffness matrix. It is of interest to point out that the force
F,, and displacement X,, can be measured at the surface during drilling, therefore, the bit
displacement X}, and bit force F}, can be predicted by equation (3.9).

(2) Identification principle

Equation (3.9) can be rewritten in the form

Xo)\ _ (AWw) BW)\ [ Xm(w)
(F:(w)> B <C(w) D(w)) ( Fm(:’)) (3.10)
where A(w), B(w),C(w), D(w) are scalar complex elements obtained by rearranging the
matrix [Dg].

Performing IFFT on equation (3.10) yields
zp(t) = if filA(W)Xm(w) + B(w)Fn(w)] (3.11a)
fo(t) = 6 FUC()Xim(®) + D(w)Fn(@)] (3.118)

where z(t) and fy(t) are respectively the down hole bit axial displacement and force in
the time domain. In equation (3.11), the functions A(w), B(w), C(w) and D(w) can be
calculated and stored in advance because they depend only on the drillstring eigenproperties.
The surface measurement force f,,,(t) and displacement z,,(t) have to be transformed to the
frequency domain by the FFT before using equation (3.11). The IFFT and FFT procedures
are extremely fast, therefore the real time bit motion and force, z4(t) and fi(t), may be
identified while drilling.

In order to compare the results obtained by the present method with those obtained by the
finite element method (Samcef,1994), the frequency-independent damping is considered here.
The damping force per unit length, v, is taken as 100 Ns/m according to Aarrestad (1986).
However, the damping mechanism in the drillstring is usually frequency-dependent. The
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frequency-dependent damping can easily be taken into account in the analysis without any
difficulty because both the dynamic stiffness matrix and the transfer matrix are frequency-
dependent.

(3) Identification examples

Fig.3.5 and Fig.3.6 depict the predicted dynamic bit axial displacement and force using the
IDSM-based method.

0.01 T T T T L} T T

©
=]
<]
2]

Amplitude, m
(=)

ol L 1 1 1 'l 1 tilme' s
0.01 7.5 8 8.5 9 95 10
a): Dynamic axial displacement

Amplitude, N

L time, s
8 8.5 9 9.5 10
b): Dynamic axial force (WOB)

6 6.5 7 7.5

Fig.3.5: Identified dynamic down hole bit axial displacement and force
: true value; ......: predicted

The assumed bit exciting forces (true values in the figures) are sine (Fig.3.5) and triangular
(Fig.3.6) forces, respectively. They are also shown in the figure. The displacement and force
at the surface measurement point are first calculated by the Mecano software using the
HHT technique. From the figure, it is seen that both the bit displacement and bit force are
predicted with satisfactory accuracy. The difference between the true and predicted values
may be explained as follows. In the IDSM-based method, the input force and response at
surface measurement are actually calculated by using Mecano software (Samtech, 1994).
As will be pointed out in chapter 6, the beam element in Mecano is nonlinear. Therefore,
nonlinear effects are taken into consideration in the responses and forces. When these
values are used as the inputs of the IDSM-based linear model, the outputs must have errors.
However, this will not influence the practical application of the method because in practice,
the inputs of the IDSM-based linear model are measured directly during drilling,.

-38-




Chapter 8: Linear azial and torsional vibrations of drillstrings

0-01 L] L) T L} T L} L]
£ 0.005
)
©
2 0
a
5 -0.005
t N 1 1 1 N time, S
001 6.5 7 75 8 8.5 9 95 10
a): Dynamic axial displacement
4
x 10
-4
g
2
a
£
<
. ) . L time, s

6 6.5 7 75 8 8.5
b): Dynamic axial force (WOB)

9 9.5 10

Fig.3.6: Identified dynamic down hole bit axial displacement and force
——: true value; ......: predicted

3.2.7. Shock absorber design and its effects on the axial dynamics

The purpose of the shock absorber is to reduce the dynamic loads on the drillstring, to
enhance drillstring and bit life and to increase penetration rates by minimizing the shock
and vibration experienced by the drillstring and the bit during drilling operations.

Like most of the dynamic absorbers, the shock absorber for drillstring is designed so that
one of the natural frequencies (usually the first one) is detuned from a drill bit excitation
frequency by choosing appropriately the stiffness constant. Therefore, there are two issues in
the design of a shock absorber for drillstring. The first issue is the design of the stiffness and
damping of the shock absorber. The second issue is the placement of the shock absorber
in the drillstring. Usually, the shock absorber is placed near the bit as close as possible
because the largest dynamic forces occur at the bit (Dareing, 1984, Vandiver et al, 1993).

The determination of the stiffness and the damping of a shock absorber is affected by many
factors which include well depth, rock type, BHA design, bit type, RPM, WOB and so on.
For example, softer springs are usually required with roller bits than with diamond or PDC
bits due to the lower vibration frequencies and larger displacements with roller bits.

Although the use of shock absorber is common in practice, the design of the shock absorber
and the implementation in the drillstring are often based mainly on the experience of the
designer or on some simple models (for example, Kreisle and Vance, 1970). Only recently,
Lee (1991) has investigated the design of a shock absorber based on the transfer matrix
model.
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In this section, the design of the shock absorber and its effect on the axial dynamics of the
drillstring is studied based on the IDSM model. Because the largest dynamic force often
occur at the bit, we are concerned with the effect of the absorber on the bit vibrations.
Therefore, the entire drillstring is reduced exactly to a SDOF with the bit displacement as
the generalized coordinate. The model procedure is exactly the same as described in section
3.2.4, except that the shock absorber is taken into account here. The consideration of the
shock absorber does not increase the dimension of the global matrix. As shown in Fig.3.7,
the shock absorber is directly placed above the bit.

I
ﬂ ﬂ |

@)

=

(a) () (c

Fig.3.7: Drillstring with and without shock absorber
(a): Without absorber; (b): Constant bit force; (c): Constant bit displacement.
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Two cases are analyzed. The first case studies the influence of the shock absorber on the
bit amplitude. The second case considers the influence of the shock absorber on the bit
dynamic force. Three types of shock absorbers are studied, their parameters are:

Sub No.l: K = 80000 Ib/inch and C; = 800 Ns/m
Sub No.2: K3 = 50000 Ib/inch and C; = 500 Ns/m

Sub No.3: K3 = 30000 lb/inch and C3 = 300 Ns/m

Case 1: Influence on the bit displacement

In this case we are interested in the influence of the shock absorber on the bit axial displace-
ment. Therefore, the transfer function with a constant force input at the bit is calculated
based on the IDSM model. The predicted peaks represent the resonances of the BHA with
a free boundary condition at the bit as shown in Fig.3.7b.

Fig.3.8 depicts the transfer functions under the condition of three types of shock absorber.
From the figure, it is seen that (1) The first eigenmode dominates the response, any kind of
shock absorber has almost no influence on the first mode. In other words, it is very difficult
to detune the first eigenfrequency by a shock absorber. (2) At most of the frequencies,
the amplitude is amplified when a shock absorber is used. In other words, the dynamic
displacement at the bit is increased due to the shock absorber. The softer is the spring of
the absorber, the larger is the amplification factor.
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Fig.3.8: Influence of shock absorber on the frequency response at the bit
—: without sub; - -: sub type 1; -.-.: sub type 2; ....: sub type 3
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Case 2: Influence on the bit dynamic force

In this case we are interested in the influence of the shock absorber on the bit dynamic
force. To this end, we specify a constant displacement input at the bit and calculate the
corresponding dynamic force amplitude at the bit.

Foree per unit disp. (N/m)

3
N

0 5 10 15 20
Frequency, Hz

Fig.3.9: Influence of shock absorber on the dynamic force at the bit
—: without sub; - -: sub type 1; -.-.: sub type 2; ....: sub type 3

Shown in Fig.3.9 is the predicted dynamic force amplitudes when different shock absorbers
are used. It is obviously seen that the dynamic force is reduced significantly by the shock
absorber. The softer is the spring of the absorber, the larger is the reduced factor.

From the above analysis, it may be concluded that the shock absorber can reduce signifi-
cantly the dynamic force on the bit. However, at the same time, the displacement of the bit
is increased. Some of the previous work on shock absorbers, for example, Kreisle and Vance
(1970) and Dareing (1984), concluded that a shock absorber reduces the dynamic bit force
through detuning the natural frequency from excitation frequency. This conclusion was ob-
tained on the basis of the simple model of the drillstring, usually only the BHA. However,
from our full model, namely from bit to rig, one may conclude that it is very difficult to
detune the natural frequencies of the drillstring. The shock absorber does reduce the bit
dynamic force with the cost of increasing the bit displacement.

3.3 TORSIONAL VIBRATION ANALYSIS

Since the differential equation of motion for a basic element and the boundary conditions
for the axial and torsional vibrations are similar, the theory described in section 3.2 may be
directly expanded to torsional vibration analysis.
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3.3.1. Mechanical model

The mechanical model of the drillstring for torsional vibration is exactly the same as shown
in Fig.3.1a except that the equivalent lumped mass, spring and damping are replaced re-
spectively by the equivalent polar mass moment, Jp, equivalent torsional spring constant
K; and damping constant C;. These parameters are assumed to take the following values
(Clayer, vandiver and Lee, 1990):

Jp,=2000 Kgm? K;=400 Nm/rad C;=8000 Nm/s
3.3.2. Basic frequency-dependent matrices

As in the case of axial vibration, there are also three kinds of basic elements in the torsional
vibration of drillstring, namely the lumped torsional spring with damping, the lumped polar
mass moment and the continuous beam element.

(1) Transfer matrix of a lumped torsional spring K; with damping C}

[TF] = <(1, 1/ -{ iwct)) (3.12)

where the subscripts ¢ denotes the torsional vibration, ¢ = /—1.

(2) Transfer matrix of a lumped polar mass moment J,

[Tt"‘]=( ! (1)) (3.13)

2

(3) Torsional dynamic stiffness matrix for a beam

If we replace FA by GJ, E by G, respectively in equation (3.3), we obtain the torsional
dynamic stiffness matrix for a beam element.

3.3.3. Free torsional vibration
(1) Dynamic model

For the free vibration analysis, the drillstring system can be reduced exactly to an equivalent
single dof model with the bit angular displacement as the generalized coordinate. The mod-
eling procedure for torsional vibration is exactly the same as in the case of axial vibration.
One can also obtain the dynamic equilibrium equation in the form:

M} = di(w)8? (3.14)

where M} and 6% represent the torque and the torsional displacement at the bit, df(w) is
restrained dynamic stiffness matrix. The superscript b refers to the bit and the subscript ¢
denotes the torsional vibration.
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Based on the restrained dynamic stiffness matrix df(w), the free and forced vibrations of
drillstring may be analyzed.

Natural-frequencies

(2)

Table 3.3 gives the first eight undamped torsional natural frequencies predicted by the
present model and by FE model. In the FE model, 40 elements (Samcef Software, beam

element type 1) are used.

Table 3.3: Torsional eigenfrequencies (Hz) predicted by IDSM and FEM

Mode w1 ws w3 Wy ws we wy
IDSM 0.0645 0.715 3.979 7.615 10.495 13.287 15.848
FEM 0.0645 0.734 4.097 7.863 10.859 13.775 16.555

Fig.3.10 depicts the transfer function at the bit predicted by the present model (equation
3.14).
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Fig.3.10: Transfer function predicted by the model

From Tab.3.3, it is seen that the torsional natural frequencies are much lower than the axial
natural frequencies. It means that the torsional degree of freedom of a drillstring has a
low associated stiffness and a relatively high inertia. It is found that frequency-dependent
damping is small for low frequency, therefore, high torsional vibration amplitude may easily
be achieved.
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The forced responses, the estimations of down-hole bit torque and angular motion as well as
the design of torsional shock absorber (if necessary) can also be investigated. The procedures
developed for axial vibration can be followed for the parallel studies of torsional vibration.

3.4 CONCLUSIONS

As pointed out in the introduction of this chapter, the study of linear axial and torsional
vibrations of drillstring is not a new subject. The analytical model and the model based on
transfer matrix are often used. The analytical model can consider only simple cases such as
uniform drillstring. Although the transfer matrix based model can give accurate solution
for free vibration such as eigen-frequencies, mode shapes and harmonic response, the other
model parameters such as modal mass, modal stiffness cannot be obtained. Another main
disadvantage associated with the transfer matrix based model is that the explicit equations
of motion of the original system are lost. This disadvantage makes the procedure of the
estimation of down hole bit forces and motions using surface measurements very tedious
because the global transfer matrix relates only the boundary ends of the original system.

In this chapter, the axial and torsional vibrations of the drillstring are studied by the IDSM
developed in Chapter 2. It is demonstrated how the disadvantages of the traditional transfer
matrix method are overcome by the IDSM.

Compared to the transfer matrix method and to the finite element method or the dynamic
stiffness method, the IDSM has the following advantages for axial and torsional vibrations
of drillstrings:

(1.)  For free vibration, the whole drillstring can be exactly reduced to a single degree of
freedom with the bit displacement (either axial or torsional) as the generalized coordinate.
The reduced model can predict exactly the eigen-frequencies. The other modal parameters
can be also calculated based on this model.

(2.)  For estimation of down-hole bit forces and motions, the whole drillstring can be
modeled with two degrees of freedom, one is the bit displacement and the other is the
displacement of the surface measurement point. In other words, the forces and motions at
the bit and at the surface measurement point are related explicitly.

(3.) The consideration of shock absorber changes neither the procedure of the analysis, nor
does it change the dimension of the global matrix. This fact makes it possible to design the
shock absorber based on the exact reduced model of drillstring. An important observation
is made based on the exact model that it is difficult to detune the eigenfrequency (especially
the first one) through the use of shock absorber for the drillstring. The shock absorber
reduces the bit dynamic force with the cost of increasing the bit dynamic displacement.
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CHAPTER 4
LINEAR LATERAL VIBRATION AND BUCKLING OF BHAS

4.1. INTRODUCTION

The lateral vibration of drillstring has become a project of investigation later than axial
and torsional vibration because it does not appear uphole (Chin, 1988, Shyu, 1990). Lateral
vibration can only be observed downhole because the travelling speed of lateral waves being
low, it takes many wave lengths for the vibration to reach the top of the drillstring (Dareing,
1983, Wolf et al, 1985). The lateral motion is thus completely damped out by wall contact
losses and by structural and fluid damping along the drillstring. However, downhole mea-
surements have given clear evidence that severe lateral vibrations occur in the BHA (Deily
and Dareing, 1968, Vandiver et al, 1988, Wolf et al, 1985).

For the lateral vibration analysis, the finite element method (FEM) seems to be the most
powerful and versatile. However, as pointed out in chapter 2 and chapter 3, the FEM model
requires usually a large number of degrees of freedom which limits its application to the
oil-well fields.

In this chapter, the IDSM developed in chapter 2 is directly applied to the lateral vibration
and buckling analysis of drillstring. Based on the consistent equations of motion of rotating
Timoshenko shafts subject to axial loads (Choi, Pierre and Ulsoy, 1992) and following the
similar procedure used by Lee et al (1991), an exact transfer matrix is developed which
includes the effects of rotary inertia, gyroscopic, transverse shear and axial loads. The axial
load may either be constant or distributed along the shaft. The transfer matrix for a curved
beam is also derived. Using the IDSM, the BHA system can be modeled with arbitrary
selected degrees of freedom. The free and forced vibrations for a typical BHA are studied
in detail. The buckling loads for different BHA systems are calculated.

4.2, LINEAR LATERAL VIBRATION
4.2.1. Mechanical Model of BHA

The BHA (Bottom Hole Assembly) used for the drilling of oil and gas wells is often made up
of different sizes of drill collars, stabilizers and down hole tools. It is usually subject to large
axial compression force (or WOB). The main purpose of drill collars is to apply force to the
drill bit for penetration. Compression developed within drill collars causes them to buckle
inside the wellbore and this creates side loads on the bit. It is necessary to use stabilizers to
control the direction of the borehole and to increase the buckling stability. Depending on
the location of the stabilizers, BHAs can be categorized as building, holding and dropping
assemblies (Dareing, 1988).

The building assemblies, as shown in Fig.4.1, are used to increase hole angle or to build
angle. In this assembly the stabilizers are placed so that side forces on a drill bit push the
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bit upward while the bit drills ahead. The selection of a given building assembly depends
on the desired curvature to be drilled.

@A) ®) ©

Fig.4.1: Building assemblies

The main purpose of holding assemblies is to drill straight sections of well. To this end,
stabilizers are positioned within drill collars so that relatively small side forces are developed
at the bit (Fig.4.2).
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Unlike building and holding assemblies, dropping assemblies do not have near bit stabilizers
as shown in Fig.4.3. The drill bit stands alone and is pushed downward by the weight of
drill collars suspended between the bit and the first stabilizer. The dropping assembly is
sometimes called pendulum assembly. This kind of assembly is used mostly for vertical
wells.

(A) (B) ©

Fig.4.2: Holding assemblies
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(A) ®B) ©

Fig.4.3: Dropping assemblies

The effects of the stabilizers on the directional drilling have been studied based on the static
mechanics (Millheim, 1978a,b, 1979a,b,c,d). However, it is obvious that the placement of
the stabilizers also affects the dynamic behaviors and buckling stability. These effects are
studied in this chapter.

4.2.2. Exact Transfer Matrix of a Straight BHA Section

(1) Governing Equations

Let us first examine a uniform shaft subject to constant compression axial load as shown
in Fig.4.4. For such a shaft, the consistent equations of motion have been derived recently
using the finite strain beam theory by Choi, Pierre and Ulsoy (1992).
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X

Fig. 4.4: Rotating Timoshenko shaft subject to axial load

In the X7 plane:

X ( P, p) aix + p? 9%X  pAdX _ 2pw( 9%y p 63}’)
8zZ* ‘KG  E’8Z%0t2 ' KEG 8t* ' EI 012 E ‘8zt KG 813
P P 3X pP 38X  P? 39X 2P P? P?  pAd%X
e - - — =0 (41
+EI( + KAG)aZ2 EIKG 82  E2AI 822 +( FA ~ FAKAG T (EA)2)EI a2 (4.1a)
In the YZ plane:
Y p £y 8ty + pt 8YY pA Y 2pw( B3X p a3x)
8zZ* ‘KG ' E’8Z2t2 ' KEG 8t ' EI 0t? E ‘6223t KG 813
P P  3%Y pP 8%y  P? 8y 2P p? Pt pABY
— —_—) - - —— =0 (41b
+EI(1+ KAG)az2 EIKG 812 E2AI 822 +( A~ Takac t (EA)Z)EI a2 (4.15)

with the following quantities: E is the Young’s Modulus, G the shear modulus, K the shear
factor, p the mass density, A the cross section area, w the rotation speed of the drillstring
and P the axial compression load.

It is noted that not only the gyroscopic moments but also the axial load terms are consis-
tently captured in the above equations.

(2) Exact Transfer Matrix

The steady-state solutions of equation (4.1) may be represented in the form

X(Z,t) = X4(Z)sin 2t
Y (Z,t) =Y.(Z)cos

(4.2)

where the subscripts s and ¢ stand for the sine and cosine components, respectively.
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where (Q is the whirling angular frequency.

Substituting equations (4.2) into (4.1) would result in two homogeneous equations as follows:

In the XZ plane

diX, P2 P2 d2X, P2t pAQ? 20w d2Y. | 2p%w0Q8
(B4 o - X,
dz? +( E +KG) dz? (KGE EI et =5 a7z T KGE *°
P P 42X, pPQ? P? 42X, pAQ%2, 2P P p?
57t ®Ag) dz  FIRG " T TPAI 422~ EI  BEA FAKAG T (EA)? )Xo =0 (430)

In the YZ plane
diy, +( o2 + P02 )szc +( Pt pAQ? 20w d2X, = 2p°wQ3

dz4 E ''KG’'dZ® ' ‘KGE EI E dz? KGE °

P P _d%Y. pP? P? d%. pAQ? 2P p? P?

Ye +

+_ﬁ(1 + KAG) dz2 - FIKG ¢ E2AT dz2 EI (—ﬂ - EAKAG + (EA)z )}’C =0 (4‘3b)
The solutions of equations (4.3) take the form
X.=U e)\Z
o (4.4)
Y.= Vce}‘z

where U,,V, are arbitrary real constants and A are the roots of the determinant equation

M+ fN+g RN +E

B 4k My fagg|TO (4.5a)
with
_ 92 92 P P2 P2
f =%+ %e + &1+ *icEr — Tar
_ ot _ pAQ? _ pPQ? A 2P0? P20? P2p0?
9=%er — *Fr — f1xe T 51°54 + FiiARe — Tar
h= 2pwQd k= 222w03
-TE = "KGE
Equation (4.5a) is equivalent to the following two equations:
Xi — b1A2 +c = 0 (45b)
M—bA2 4 =0 (4.5¢)

where by =h—f, c=g—k, bo=—-(f+h), ca=g+k.
Let us consider first equation (4.5b). The following two cases are considered.
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Case 1: /b2 — 4¢c; > by. This is true for ¢; < 0. Physically, this case would correspond
to lower frequency vibrations. Numerical investigation has shown that this is the case for
most drill strings. The solutions for A are given by:

A=FA, 10N
in which

A = \/bl + Vbli —4q
- 2

A _\/—b1+\/b12—461
2__.
2

Case 2: \/bli ~—4c¢; < by. This is true for b > 0, and ¢; > 0. Physically, this case would
correspond to higher frequency vibrations. The solutions of equation (5b) in this case are
given by:

A =2,

in which

,\1 _ \/bl + \/b% -—401
B 2

) %m-J@—%
2 = - a

2

Numerical investigation has shown that this case may happen only at very high frequency.
This is not the case of drillstring applications.

Equation (4.5¢) can be similarly considered following the above discussions.

Combining the solutions of equations (4.5b) and (4.5c), the roots of the characteristic func-
tion of equation (4.5a) may take the form:

A=), i), A, EiAg
for a constant value of w (see also Lee, Kang, Liu, 1993, Zu and Han, 1992).

In the same way as the displacements, the slopes, moments and shear forces may be defined
as follows:

a(Z,t) = a,(Z)sin Qt
B(Z,t) = B(Z) cos
My(Z,t) = Mys(Z)sin Ut
My(Z,t) = Myc(Z) cos i
Q2(Z,t) = Quzs(Z)sin Qt
Qy(Z,t) = Qye(Z) cos
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Let us define the state vector by:

S = [X.n Yc, Qg, ﬂc, M:z:s, Myc, sta ch]t

The state vector on the right hand side of the shaft is related to the state vector on the left
hand side by the following matrix equation:

S; = [T18i1 (4.7)
where [T'] is the transfer matrix of a shaft element with dimension 8 X 8 and '
[T] = [A] ' [V)[A] (4.8)

The matrices [A] and [N] are given in Appendix B.

4.2.3. Exact Transfer Matrix of a Curved BHA Section

In actual drilling, the curvature of the drillstring is very common due to the combined effects
of gravity, axial force, eccentricity of the collars and the non homogeneity of the formation.

(1). Equations of Motion

Fig.4.5 shows a circularly in-plane curved shaft and coordinate system. A local coordinate
system, X Z , is used. The axis Z is tangent to the curved axis of the shaft. The following
assumptions are made: (1) The material is elastic and homogeneous; (2) The local cross-
sectional dimensions are small compared to the local radius of curvature; (3) Every cross
section is rigid in its own plane; (4) Transverse displacements in the cross section plane are
much larger than the longitudinal displacement, the condition of inextensibility 6Z/9X +
X/R = 0 is therefore hold.

Fig.4.5: Curved beam subject to axial force

According to the Hamilton’s principle, a set of governing differential equations of motion for
the curved thin-walled beam without shear deformation has been developed by Yang and
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Kuo (1986). Following the same procedure adopted by Yang and Kuo (1986) and Leung
and Zhou (1993), neglecting the terms higher than the second order of smallness, and taking
the shear deflection and rotary inertia into consideration, the equation of motion is finally
obtained as follows:

otx (L+£) atx + p? a4x+(pA 2p )32X
8Z%* “KG ' E’8Z%0t2 ' KEG o1t EI ~ ER?’ o012
P P 38X 2 98X 1 P
(1 = —+—=)X=0 4.9
+EI( + KAG)aZ2 NEYZ +(R4 + EIR2) (4.9)

In which

E—Young’s Modulus; G—Shear Modulus; K—Shear factor; p—mass density; A—Cross
section area; P—Axial compression load; R—Radius of the curvature.

It is noted that the effects of curvature, axial load, shear deflection and rotatory inertia are
included in the above equation in an explicit manner,

It is seen that equation (4.9) is similar to equation (4.1). Therefore, using the same procedure
described in the above section, the transfer matrix can also be derived. The obtained transfer
matrix for the curved beam is given in Appendix C.

4.2.4. Transfer Matrices of Stabilizer and Bit
(1) Transfer matrix of stabilizer

The stabilizer may be modeled as a spring support as shown in Fig.4.6. The transfer matrix
[T’s¢] for such a support may be directly written as if the couple terms are not considered:

/ 1 0 000000\
0 1 00000 O
0 0 100000
0 0 01000 0
[Tee] = 0 0 001000 (4.10)
0 0 000100
Koo +1QC,, 0 000010
\ 0 Kyy+mcyy000001/

where Kz, Ky, are stiffnesses in X and Y directions, C,, and Cy, are the damping con-
stants, {2 is whirling frequency.
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A X

V<

Fig.4.6: Model of a stabilizer

(2) Transfer matrix of bit

Compared to the flexibility of the BHA, the bit may be considered as a lumped mass. The
transfer matrix T3] is:

/1 0 00000 0
0 1 000000
0 0 100000
0 0 010000

[Ml=1 0 001000 (4.11)
0 0O 000100
MO 0 000010
\ 0 —M2 0000 0 1/

where M, is the lumped mass of the bit.

4.2.5. Mud-drillstring interaction

The drilling fluid confined between the drillstring and the hole-wall is submitted to a highly
complicated motion. When lateral vibration occurs, the confined fluid is squeezed so that a
complicated flow takes place and interacts with the structure (Rixen, 1992).

It is obvious that the mud-drillstring interaction is a very complicated phenomenon. How-
ever, under some conditions, the interaction effect may be represented by an added mass and

a fluid damping coefficient (Chen, Wambsganss and Jendrzejczy, 1976, Allen, 1987, Jansen,
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1990). According to Allen (1987), the effective density of the string is:

(Crmdo + Ai)

where pyuq is the mud density, Cy, is the added mass coefficient (usually equal to 1), A4,
and A; are areas defined by the outer and inner diameters of the drillstring, respectively.
It can be seen that the added mass increases when clearance decreases because the fluid is
more squeezed. If the mud-drillstring interaction is taken into account, the mass density pin
equation (4.1) should be replaced by the effective density pess given in equation (4.12). The
added fluid damping is very complicated to estimate. It is usually taken as an equivalent
damping value.

4.2.6. Modeling of boundary conditions

In lateral vibration analysis, the drill pipes above the BHA are usually not modeled. It
is because the BHA dominates the lateral vibration (Shyu, 1989). In practice, there are
three kinds of boundary conditions for the upper end of the BHA. The first one considers
the contribution of the pipe above the BHA (Rixen, 1992a). This contribution is equivalent
to lateral translation and bending springs (Fig.4.7a). However, the equivalent springs are
difficult to determine. The second one is to fix the bending degrees of freedom and to release
the lateral displacement (Fig.4.7b). The third one may be the simplest which fixes all the
degrees of freedom at the upper end of the BHA (Fig.4.7c).

On the other hand, the boundary conditions at the bit may be modeled either as a spring
(Fig.4.7d) or as free (Fig.4.7e). The spring model may not represent the reality if the bit is
whirling and creates a over gauged hole. In this case, it might be more accurate to consider
the bit as free (Rixen, 1992a).
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(a) (b) (c)

(@) (e)

Fig.4.7: Upper and bottom boundary conditions of BHA

4.2.7. Free Lateral Vibration
(1) Dynamic model

Fig.4.8 shows a typical BHA system used for simulation. The geometry is listed in table
4.1.

Table 4.1: Geometry of the BHA of Fig. 4.8 (meters)

Section Nr. 1 2 3 4 5

Out Radius 0.085725 0.085725 0.085725 0.1016 0.1016
Inner Radius 0.071438 0.071438 0.071438 0.071438 0.071438
Length 3.81 19.812 10.67 10.67 6.238

The stiffness of the stabilizer is taken as 106 N/m.
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Stabllizer

Bt

NONONNANN

Fig.4.8: A typical BHA system

The upper end (left end in Fig.4.8) is modeled as a clamped end and the bit is assumed free.
Because the lateral vibration can only be measured by the MWD system which is placed
near the bit, in order to explain the measurement data, it is reasonable to model the BHA
with the bit lateral displacements as the generalized coordinates. The following steps are
needed according to the principle of the IDSM developed in Chapter 2:

Step 1: The whole BHA is divided into 10 elements (4 stabilizer, 5 shaft elements and 1
mass element) according to the discontinuities and the locations of the stabilizers. A uniform
section can be taken as long as possible due to the exact element transfer matrix. Because
the internal nodal coordinates are not needed, the BHA is treated as one substructure. The
transfer matrix of this substructure is

[T,] = [T1o][To]-...--[T1] (4.13)
where subscript s denotes substructure.
Step 2: The global dynamic stiffness matrix [D,] can be obtained from [T§] using equation

(2.19). Note that the dimension of [D,] is 8 x 8 in this case. After introducing the boundary
conditions at the left end, one finally obtains the dynamic equilibrium equation:

P X?

F? Y?

]Myb = [Dg(w,, P)lax4 g (4.14)
& T

My Oy

where [Dy(w,(}, P)] is the restrained global dynamic stiffness matrix which is a function of
rotation speed w, whirling speed §2 and axial force P, F?, F;, M? and M:} are the forces
and moments acting on the bit, X°, Y?, 62 and 03 are the corresponding displacements and
rotation angle of the bit. The superscript b represents the bit, subscript z and y denote the
directions in the coordinate system.

Step 3: The unwanted rotational degrees of freedom, 62, 03, may be eliminated by solving
the linear set of equation (4.14) and setting their corresponding moments M?, M}I’ to zero.
Finally, we obtain:

(11% ) = [D2(w, 2, P)] (i/(: ) (4.15)

It is important to note that the system shown in Fig.4.8 is exactly reduced to two degrees
of freedom with displacements X° and Y at the bit as generalized coordinates for a given
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frequency and rotation speed. It is also noted that the reduced dynamic stiffness matrix
[Dy(w, Q, P)] of the system is both frequency and rotation speed dependent due to the gyro-
scopic effect. The frequency response function (FRF) matrix [H(w, 2, P]) = [Dz(w,Q, P)]™?
determines completely the dynamic behavior of the system.

Step 4: The other frequency-dependent matrices such as mass matrix, gyroscopic matrix
and stiffness matrix as well as the other modal parameters can be obtained from the dynamic

stiffness matrix [D;] (see Chapter 2, 2.4.6).
(2) Eigen-frequency analysis

(a) Influence of rotation speed
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T T 22
o o
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Fig.4.9: Natural frequencies versus rotating speed of the BHA
——: Present method; oooooo: FEM (Samcef)

Fig.4.9 depicts the first four natural frequencies predicted by the model versus the rotation
speed. For comparison, the FEM results calculated by samcef software (Samtech, 1994) are
also given. It is seen that (1) The results predicted by the model agree well with those
predicted by the FEM model. (2) As long as the rotation speed {2 is small enough (usually
50-400 rpm in practice), the gyroscopic effects may be negligible. Under this condition, the
rotating drillstring may be studied as a static beam.
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(b) Influence of WOB
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Fig.4.10: Natural frequencies versus WOB
———: Present method; oooooo: FEM (Samcef)

Fig.4.10 shows the influence of the WOB on the natural frequencies. With the increase of
the WOB, the natural frequencies decrease. It is seen that the WOB decreases the first,
second and third natural frequencies by about 41.7%, 35.6% and 8% respectively. Since the
first three natural frequencies are usually within the range of rotation speed, the effects of
WOB must be taken into account.

(c) Influence of curvature

The BHA used in the above analysis is used here. In order to describe the curvature
explicitly, the degree of curvature of drillstring is described by a factor £ which is defined

as. -

L

Fig.4.11: Definition of curvature
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£=h/L (4.17)

In Fig.4.11, L is the length of the BHA and the curvature takes circular form.

The transfer matrix for a curved beam subject to axial force has been derived above and
is given in Appendix C. It is assumed that the stabilizer supports the BHA always in the
radial direction (perpendicular to the local longitudinal axis of the curved drillstring).

Following the same procedure as described in the above section and neglecting the gyroscopic
effects, the in-plane vibration of the curved BHA can be modeled by one degree of freedom
system (for a given frequency) with the bit in-plane displacement X b as the generalized
coordinate.

Table 4.2: Influence of curvature on the natural frequencies (Hz)

£ wy wy w3 Wy ws we

0.0000 1.836 2.169 3.994 4.797 5.302 8.496

0.0437 1.835 2.169 3.993 4.796 5.302 8.494

0.0882 1.831 2.169 3.990 4.792 5.299 8.490

0.1340 1.825 2.168 3.985 4.785 5.296 8.484

0.1820 1.816 2.158 3.978 4.775 5.290 8.474

0.2332 1.805 2.147 3.970 4.762 5.284 8.462

0.2887 1.792 2.132 3.960 4.746 5.276 8.447

0.3501 1.776 2.120 3.948 4.728 5.266 8.429

0.4195 1.758 2.110 3.934 4.707 5.256 8.409

0.5000 1.739 2.100 3.920 4.683 5.245 8.386

Table 4.2 shows the influence of the curvature on the first six natural frequencies of the
BHA. The natural frequencies decrease slightly with increasing curvature. Fig.4.12 depicts
the influence of the WOB on the natural frequencies of curved drillstring. With the increase
of the WOB, the natural frequencies decrease.
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Natural Frequency, Hz
L34

WOB, Kg
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‘
x10
Fig.4.12: Natural frequencies of curved BHA versus WOB (¢ = 0.4195)

(d) Combined influence of curvature and WOB

From above results, it is seen that both the WOB and the curvature decrease the natural
frequencies. Now we study the situation in which the curvature and the WOB are considered
simultaneously.

Table 4.3: Combined effects of curvature and WOB on natural frequencies (Hz)

Conditions w1 Wy ws Wy ws we

WOB=0, ¢=0 1.836 2.169 3.993 4.797 5.302 8.496
WOB=0, £=0.4195 1.758 2.110 3.934 4.707 5.256 8.409
WOB=2E4 Kg, ¢£¢=0 1.081 1.435 3.757 4.085 4.946 8.179
WOB=2E4 Kg, £=0.4195 1.051 1415 3.689 4.023 4.928 8.102

Table 4.3 gives the natural frequencies in four different cases. If only the curvature
(6 = 0.4195) is considered, the first frequency is decreased by 4%. The WOB (20000
Kg) decreases the first natural frequency by 41 %. When the curvature (£ = 0.4195) and
WOB (20000 Kg) are taken into account simultaneously, the first natural frequency may
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be decreased by 43%. Compared to the effect of WOB, the effect of the curvature may be
negligible.
(e) Influence of surrounding mud

Table 4.4 gives a direct comparison in the cases of with and without the surrounding mud.
The mud is taken as water. It is obviously seen that the surrounding mud decreases the
eigenfrequencies, especially for the first one.

Table 4.4: Influence of surrounding mud on lateral eigenfrequencies (WOB=0)

Mode w1 (1)) w3 Wy

Without mud 1.836 2.169 3.993 4.797

With mud 1.404 1.855 3.390 4.065

4.2.8. BHA Whirl Trajectory
(1) Exciting mechanism

Lateral vibration is mainly excited by centrifugal loads generated by unbalanced mass distri-
bution around the rotation axis. The mass imbalance may be induced by axisymetry default,
component misalignement, lateral deflection. Therefore, if the contact between drillstring
and hole-wall is not considered, the lateral vibration initially results in synchronous forward
whirling. The contact between drillstring and hole-wall will be considered in Chapter 5 and
Chapter 6. '

(2) Whirl trajectory

In order to study the bit whirl trajectory, an improved transfer matrix method (ITMM),
instead of the IDSM, is used in this section. This is because the ITMM allows one to
simulate the elliptical whirling orbit which may be more realistic than the circle orbit. The
detailed description of the ITMM applied to bit whirl trajectory prediction has been given
by Chen and Géradin (1993c).

In the ITMM the steady-state solution of equation (4.1) is assumed:

X(Z,t) = Xc(Z) cos Qt + X,(Z)sin Q1
Y(Z,t) = Ye(Z) cos Qt + Ys(Z) sin Q¢

(4.17)

This solution form leads to an expanded transfer matrix with 16 x 16 in dimension.
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The whirling motion of the bit is assumed to be known and is taken as an exciting source
here in order to simulate the effects of the bit induced motion on the different points of the

BHA.
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Fig.4.13: Nonsynchronous forward whirl orbits of the four stabilizers
——: WOB=0; -.-.-.: WOB=16000 Kg; w = 2Hz,) = 6Hz2
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It is assumed that the bit has an eccentricity with Mye, = 0.1 Kgm and the bit center has
a known whirl orbit represented by X = rcos Qt and Y = rsin (¢, where r = 0.001m.

From the superposition of the unbalance response and the bit whirl response, the multi-
lobed whirling orbits for various bit whirling motions at the four stabilizers (Fig.4.8) are
obtained by the transfer matrix method and shown in Fig.4.13 and Fig.4.14. In Fig.4.13, the
rotation speed w and the forward whirl speed § are taken respectively as 2 Hz and 6 Hz.
In Fig.4.14, the rotation speed w and the backward whirl speed {2 are taken respectively as
2 Hz and -8 Hz.

It is observed that under the same excitation, the whirl orbits of different points on the
BHA are different. The trajectories may supply useful information for the stabilizer design.

4.3. BUCKLING ANALYSIS

The BHA is usually subject to large axial compression force or weight on bit (WOB). The
magnitude of WOB has a significant influence on the rate of penetration (ROP) and on the
drillstring failures. Therefore, it is very important to estimate the critical loads before the
planning of drilling and during drilling,.

The buckling analysis of drillstring was first recommended by Lubinski (1950) for vertical
wells. Two kinds of buckling, i.e., sinusoidal and helical bucklings were analyzed since 1950
by different authors (Dawson and Paslay, 1984, Mitchell, 1986, Chen and Lin, 1990, Wu
and Juvkam-Wold, 1993, 1994a,b). In these works the drillstring was treated as a con-
stant cross-section shaft and the influence of the stabilizers on the critical load was usually
ignored. Recently, Heisig (1993) studied the drillsting buckling using the finite element
method (FEM) for vertical and horizontal wells. Although the FE model may include many
factors such as stabilizers, contact between drillpipe and hole wall, the application of the
method to drilling fields is limited due to its high computation cost.

In this section, the buckling of the drill strings is studied by the IDSM with emphasis on
the influence of the locations of the stabilizers.

4.3.1. Special Problems
Three special problems associated with drill strings are considered:

(1) The drillstring may be divided into two parts. The upper part (drill pipe) is subject to
extensional load and the lower part or BHA is subject to compression load;

(2) The compression load is generated by the weight of the lower part. Therefore, the
compression force is linearly distributed along the BHA;

(3) The length of the compression part increases with the weight on bit. This makes the
buckling analysis difficult if standard FEM software is used because the geometry of the
system is a function of the buckling load.
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4.3.2. Analysis Procedure

There are two ways to calculate the buckling loads of the drillstring. The first way is to
observe the disappearance of the natural frequencies for a given load. For example, if the
first eigenfrequency disappears for a given load P;, then P; is'the first critical load. If the
load is continuously increased, one may find the second and higher critical loads. Obviously,
the procedure of this method is exactly the same as the case of free lateral vibration analysis,
but the effects of rotation speed can be disregarded. This method may be tedious if the
calculated critical mode number is high.

The second way is to calculate directly the critical load and is described as follows. The
stiffness matrix [K¢] of a Timoshenko beam subject to axial load has been developed by
Howson (1983) and is given in Appendix D. According to the principle of the IDSM, the
BHA can always be reduced to an equivalent low order system. Let [K(P)] be the global
stiffness matrix (usually 2 X 2 in dimension), the critical load may directly be obtained by

solving the following equation:
det[K(P)] =0 (4.18)

The buckling modes may be obtained as below:

(1)  The displacement vectors at both ends are calculated by solving the following linear
equation for a given critical load P:

[K(P)]X =0 (4.19)

(2.) The displacements at a given internal node are then calculated by the transfer relation
between the end node and the internal node

S; = [T3]So (4.20)
where .9; is the state vector of the internal node ¢ and 5y is the state vector of the end node.

(3.) The mode shape within an element (or between two nodes) can be recovered by the
shape function given in Chapter 2.

Usually the knowledge of the mode shapes for drillstring is not as important as the knowledge
of the buckling loads. The IDSM for buckling analysis of beam structures has been validated
by Chen and Géradin (1994g).

4.3.3. Critical Loads for BHA
For sake of simplicity, the following assumptions have been made:

(1.) The influence of the rotation speed of the drillstring is neglected because the rotation
speed is usually low (60-400 rpm).

(2.) The plane in which the buckling occurs is the plane of smallest flexural rigidity. This
simplifies the 3D problem to a 2D problem.
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(3.) The buckling mode is not constrained by the hole radius drilled. In other words, the
contact between the drillstring and the hole wall is not considered. In practice, if such
contact occurs due to the buckling, the drillstring operates in postbuckling mode and hence
is theoretically unstable.

(4.) The influence of the hydrostatic pressure is neglected.
(5.) Only the compression part (BHA) is analyzed.

As outlined above, the compression load of the BHA is generated by its weight. This fact
leads to the whole length of the BHA being the function of the WOB. For sake of simplicity,
the geometries of the lower two drill collars are fixed (parameters in Table 4.5) and only
the length of the third part (Ls in Fig.4.15 ) is a function of WOB. This function may be

determined by:

Mi+ My + Mz =WOB (4.21)

where M; = wL;p(R; — 1), i=1,2,3, with R;, r; and L; being the outer radius, inner radius
and the length of the corresponding section (Fig.4.15) and p the mass density.

"R L R, 1, L, R, 1, L,

Fig.4.15: Geometry of the BHA

Table 4.5: Geometry of the BHA of figure 4.15 (meters)

R1 T L1 R2 Lz Ra L3

0.1397 0.07143 10 0.1143 20 0.1016 Eq.(4.21)

T3 =T =T1
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Table 4.6: Buckling loads (Newton) of building assembly (Fig.4.1)

Type Py P, P Py

A 86592 136178 152650 193850
B 97477 152150 192350 218950
C 173400 206450 239950 268750

The stabilizers are modeled as elastic supports with stiffness £ = 10 N/m. The upper
node is supposed to be clamped. Three kinds of bottom hole assemblies, namely building
assembly (Fig.4.1), holding assembly (Fig.4.2) and dropping assembly (Fig.4.3) are studied
here. Tables 4.6, 4.7, 4.8 list respectively the first four buckling loads of the different types
of assemblies.

Table 4.7: Buckling loads (Newton) of holding assembly (Fig.4.2)

Type P P, P; Py

A 173050 212050 238750 273250
B 161950 191750 231350 258750
C 155950 167750 187580 206950

Table 4.8: Buckling loads (Newton) of dropping assembly (Fig.4.3)

Type P, P, P Py

A 142250 175550 213750 240650
B 173650 206650 240450 269050
C 140250 174850 212650 239750

The main roles of the building assemblies are to increase the hole angle or to build the angle.
From table 4.5, it is seen that the buckling capacity of the building assembly increases with
the number of the stabilizers. Type A in Fig.4.1 is the weakest.

Holding assemblies are used to drill a straight hole. Table 4.6 shows that the type A in
Fig.4.2 has the strongest buckling capacity.
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The buckling capacity of the dropping assemblies is almost of the same level as the holding
assemblies but with fewer stabilizers. In the drilling practice, a general rule for the deter-
mination of the number of stabilizers is "the fewer the better” (Dareing, 1988). Therefore,
dropping assemblies should be recommended in vertical wells.

4.3.4. Discussions about the buckling loads

The boundary conditions at upper and bottom ends of the BHA have a very big influence on
the vibration behavior (Clayer, Vandiver, Lee, 1990). There is no doubt that the buckling
loads depend strongly on the boundary conditions. In the above analysis the upper end is
supposed to be fixed. Introducing other boundary conditions at both upper and bottom
ends will not change the analysis procedures.

The hydrostatic and buoyancy forces are neglected in the analysis. However, they can easily
be taken into account in the program without any difficulty.

Most of the recent work on drillstring buckling analysis were based on the assumption that
the hole wall confines the buckling development. Therefore, the sinusoidal buckling and
helical buckling will occur successively if the load is large enough. In this case, the contact
between drill pipe and hole wall is, of course, very important. The FEM analysis may be
the only way to obtain accurate buckling loads if contacts are taken into account.

4.4. CONCLUSIONS

The lateral vibration of the drillstring and buckling of the BHA are modeled exactly using
the IDSM developed in Chapter 2 which leads to more accurate determination of modal
parameters and buckling loads than those available from the FE approach. For lateral
vibration, the drillstring is modeled as an equivalent two degrees of freedom system for a
given frequency and rotation speed. The axial force (WOB) has a significant influence on
the lateral vibration. Both the WOB and curvature decrease the lateral natural frequencies
of the drillstring. The influence of the rotation speed may be neglected.

An outstanding advantage of the method for buckling analysis is that the size of the global
stiffness matrix is the same as the size of the element stiffness matrix, irrespective of the
number of elements. This fact makes it possible to calculate the buckling loads and modes
during drilling.

Three types of BHA are studied. The results show that the locations of the stabilizers have
a significant influence on the buckling loads, especially on the first one.

The simplicity of the method makes it possible to analyse the vibration and buckling of the
drillstring during drilling.
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CHAPTER 5:

BIT WHIRL KINEMATICS AND BACKWARD WHIRL DUE TO BIT-
HOLEWALL CONTACT BY LUMPED MODEL

5.1. INTRODUCTION

In chapter 4, the linear lateral vibration including the free and forced vibrations are ana-
lyzed. Due to the nature of linear vibration, the bit- holewall contact, the stabilizer-holewall
contact, as well as the drillcollar-holewall contact were not considered.

Actually, because the drillstring is designed to rotate from 60 ~ 400 rpm for conventional
tricone and PDC bit drilling, the lateral vibration, strictly speaking, should include both
bending and whirling vibration.

It is well known that the bending vibration is mainly excited by unbalanced mass distribution
of the bit and the drillstring. Therefore, bending vibration initially results in synchronous
forward whirl, i.e., the string rotates as a whole around the well axis in the same direction
and with the same speed as it rotates around its proper axis [Rixen, 1992]. However, as
the vibration amplitude increases, not only the bit, but also the stabilizers and even the
drillcollar will be in contact with the holewall (Fig.5.1).

Stabilizer

(a) (b)
Fig.5.1: Drillstring in bore-hole. (a) Straight; (b) Curved.

In this case, the wall friction force may be able to change the forward whirl motion to
backward whirl motion (Jansen, 1992).
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There is an enormous established literature on the subject of whirling vibration of rotor
systems. For example, among others, Crandall (1987) has shown that the continuous contact
between rotor and stator can involve forward or backward whirling. The analytical and
experimental investigations of the backward whirl due to rotor-stator contact (Lingener,
1990, Crandall, 1990, Crandall et al, 1993) have lead to the conclusion that stable backward
whirl may occur under some conditions. Jansen (1991, 1992, 1993) studied the whirling and
chaotic motion of drillstring using the rotor dynamic theory and found that the stabilizer-
holewall contact, drillcollar-holewall contact as well as the bit-holewall contact can induce
backward whirl.

Based on the observation at the drilling fields, Brett et al (1989) found that the backward
whirl motion is an important source of PDC bit premature damage, because backward whirl
can generate high impact loading on PDC cutters. The downhole measurements have also
given clear evidence of bit whirl motion during drilling (Vandiver et al, 1988, Shyu, 1989).

However, because of its complexity, the bit whirl phenomenon is not completely clear. In
this chapter, the PDC bit whirl kinematics is described first. The relationship between the
cutter path, the bottomhole shape and whirl speed are obtained. The bit whirl kinematics
is not only useful for PDC bit designer but also is the basis of bit whirl identification by

experiments (discussed in chapter 7).

The dry friction induced steady-state backward whirl motion is studied both analytically
and numerically based on a simple model. The formula to calculate the whirl speed and the
whirl radius have been derived in a closed form. It is shown that once backward whirl is
initiated, the whirl frequency is not only dependent on the rotation speed, but also on the
eigenfrequency of the system. The maximum backward whirl frequency is limited by the
eigenfrequency of the joint drillstring-formation system. The analytical results are compared
with the experimental work performed by Lingener (1990) and Crandall (1990) for a flexible
rotor.

The work presented in this chapter is based on Chen, Rixen and Géradin (1992, 1994) and
Chen, Golinval and Géradin (1994a, 1994b).

5.2. BIT WHIRL KINEMATICS

5.2.1. Definition of bit whirl

The bit whirl motion is such that the center of the bit rotates about the hole center at a

speed Q. This whirl speed Q may be different from bit rotation speed w both in magnitude
and in direction. They may have the following relationships:

Q =w—— synchronous forward whirl;

Q=mw, m>0, m#1—— nonsynchronous forward whirl;
Q = —w ——  synchronous backward whirl;

Q=-mw, m>0, m#1——nonsynchronous backward whirl;

-71-



Chapter 5: Whirl kinematics & backward whirl due to bit-holewall contact by lumped model

5.2.2. Cutter trajectory during bit whirling

In order to describe the cutter trajectory during bit whirling, two coordinate systems are
used (Fig.5.2). The first coordinate XY}, Z), is the inertial frame, fixed in the formation. The

second coordinate X,Y;Z; rotates with the drill bit at a constant speed w. The subscripts
h and b represent the hole and the bit respectively.

Fig.5.2 shows the parameters of whirl motion, in which

Oy, is the geometrical hole center;

Oy is the geometrical center of the bit body;
Ry, is the hole radius;

Ry is the bit radius;

w is the rotation speed of the bit around Op;

(2 is the bit whirl speed around O;

74,0, are the polar coordinates of any' point in the reference system X,0;Y;;

A o
LA
S/ P
ot X")
Bit

Hole

Fig.5.2: Bit whirl motion

Let us assume that the Oy X}, and Oy X, axes coincide at £ = 0. At any time t, the coordinate
of any point in the absolute frame X, 0.Y} is:
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Xn = AR cos(Qt) + 7 cos(f. + wt)

(5.1)
Y, = ARsin(Qt) + . sin(f, + wt)

where AR is called whirl radius and in the case of bit-holewall contact AR = R;, — Ry. The
first part of equation (5.1) is the bit center trajectory which is a circle with AR as its radius
and Q as its angular frequency.

Equation (5.1) is the general equation of any cutter path. After the bit and hole radii have
been determined, the path of any cutter is dependent only on the whirl speed  and bit
rotation speed w.

Fig.5.3 and Fig.5.4 depict respectively the cutter trajectories during bit forward whirl motion
and backward whirl motion.

100}
so}
£ o
-50}
-100}
-100 -50 0 50 100
mm

Fig.5.3: Forward whirl path of cutters, w = 1Hz, Q@ = 4Hz, AR = 5mm
: e = 115 mm; ---0 o = 80 mm; ...l 7. = 40 mm
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100}
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-100}
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mm

Fig.5.4: Backward whirl path of cutters, w =1Hz, ) = —4Hz, AR = bmm
—: 7. =115 mm; -~ 7. = 80 mm; ......: 7. =40 mm
5.2.3. Overlap condition of cutter path

Let A and B be any two cutters on the bit body. They are located on the same circle 7; but
cutter B has a phase lag, a, relative to cutter A. Hence for cutter A, according to equation
(5.1) we have

X}, = AR cos(§2t) + 4 cos(b, + wt)

(5.2)
Y, = ARsin(€t) + r4 sin(d, + wt)
Similarly, for cutter B we have:
X}p = AR cos(§2t) + 75 cos(6 + wt) (5.3)
Y? = ARsin(Qt) + ry sin(6y + wt) '
where 0y and 6, , r, and 7, are related by:
01, = 0,1 -
(5.4)

Ta =Tp=T1
where « is taken positive.

The so called overlap condition is such that during bit whirling, cutter A and cutter B have
the same path, i.e., cutter B moves always following the path of cutter A in the absolute
coordinate system XY, Z;.
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Let ¢; be the relative time for cutter B to move to the position of cutter A in consideration
of whirling and rotation of the bit. Then at any time ¢y one must have following relationship
for overlap condition:

Xbt=to4+t)=Xt=1t)

(5.5)
Y2t =to + t1) = Y2(t = to)
Inserting equations (5.2), (5.3), (5.4) into equation (5.5), we have:
wh =«
(5.6a)
Qt =27n
It leads to the following overlap condition:
w
a=2rm=, n=3=x1,23... (5.60)

Q
where n is a positive integer for forward whirl, and a negative integer for backward whirl.

The physical interpretation of condition (5.6b) is fairly obvious: indeed, the only way for
point B to reach the same position as point A while the bit is whirling is that the bit has
whirled an integer number of rounds while B has undergone an angle displacement « relative
to the bit, hence n/Q = /27w, yielding equation (5.6b).

When the bit has Z cutter edges (usually Z=34,5...), then « is equal to 27/Z for conven-
tional bit. In this case, the overlap condition is:

=nZ (5.7)

g|o

Equation (5.7) means that when the bit center rotates about the hole center at a speed
equal to nZ times the bit rotation speed itself, the cutters having the same radius move
along the same path and overlap thus each other.

To verify the overlap condition, Fig.5.5 and Fig 5.6 shows the cutter path under the condition
of Q/w = —4 = —1 x4 and Q/w = 4 = 1 x 4, respectively. It is proved that the cutters
having the same radius have the same path even during the bit whirling.

-75-



Chapter 5: Whirl kinematics & backward whirl due to bit-holewall contact by lumped model
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Fig.5.5: Backward whirl path of cutters, w = 1Hz, Q) = —4Hz, AR = 5mm
All the cutters have the same radius positions but with different angle 6,
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Fig.5.6: Forward whirl path of cutters, w = 1Hz, = —4Hz, AR = dmm
All the cutters have the same radius positions but with different angle 6,

5.2.4. Number of hole lobes

According to equation (5.1), the path of any cutter can be rewritten in the polar coordinate
system:
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R =+/(z? + y?) = /AR? + 12 + 2ARr, cos[(Q/w — 1)t — 0] (5.8)
Equation (5.8) shows that the number of hole lobes N is:
0 :
N =abs(— —1) (6.9)
w
For the bit having Z edges, we have:
N =abs(nZ - 1) (5.10)
where 7 is an integer, n = £1,2,3......
This conclusion can be tested from Fig.5.3 and Fig.5.4.
The number of hole lobes may be used as an information to identify the whirling speed of

the bit. From equation (5.9), the whirling frequency Q can be obtained when rotation speed
of the bit and number of hole lobes are known.

5.2.5. Rolling factor k

(1) Rolling factor k for backward whirl

If there is no slip between the bit gauge and the wall, then the instantaneous center of
rotation will be the contact point at that time during backward whirling. In this case, we
have:

(Rh — Rb)Q + Ruw=0 (5.11)
So: Q R
b

- 5.12

w (Rr — Rs) (5.12)

Note that equation (5.11) and equation (5.12) are based on the assumption that the wall is
rigid, i.e., no deformation during whirling. If wall deformation is considered, Ry, — Ry should
be replaced by whirl radius AR. Section 5.3 gives a detailed description of this case.

Generally there is some slip between the bit and the wall, and the instantaneous center is
no longer the contact point. In this case, let 7o, be the distance between the bit center and
the instantaneous center, then r, < Rj. It has the following meaning: the instantaneous
center of rotation of the bit is on the circle of radius 7. In the case of backward whirl the
instantaneous center C must be outside the distance of 0,05, Fig.5.7a. We have:

Q Tw

2w 5.13

w (Rh - Rb) ( )
Let k = 7y /Rp, then we have

L k (5.14)

w  Ri/Ry—1
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If k£ = 1, there is no slip between bit and wall (pure roll). If £ = 0, there is no whirling
motion of the bit. Usually, 0 < k < 1. We call k rolling factor.

®)

Fig.5.7: Distribution of sliding velocity. (a) Backward whirl; (b) Forward whirl
The sliding velocity between bit gauge and wall is defined by
Vo =w(By — 1y) = wRy(1 - k) (5.15)

The sliding velocity Vj, is a linear function of k. The larger the Vi is, or the larger the factor
k is, the larger is the bit wear.

From equation (5.14) it is seen that backward whirl speed §} is dependent on bit rotation
speed, the radius of bit and hole, and the rolling factor k.
(2) Rolling factor k for forward whirl

In the case of forward whirl the instantaneous center of rotation of the bit must be inside
the distance of 0,0, (Fig.5.7b). Similarly we have:

Q k

W Ru/Ry—1 (5:16)
where k = —7,, /Ry, usually, —1 < k < 0.
The sliding velocity between bit gauge and wall is defined by:
Vi =w(Ry — 1) = wRy(1 — k) (6.17)
If k = 0, V; reaches its minimum value
Vimin = wRy (5.18)
If k = —1, V; reaches its maximum
Vimaz = 2wRy (5.19)
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In practice, synchronous forward whirl usually occurs. In this case the sliding velocity is:

V; =wR (5.20)

It is noted that the sliding velocity Vy for forward whirl is always larger than V; for backward
whirl.

Now let us consider two cases, i.e., synchronous forward whirl and backward whirl with no
slip. In the first case, the bending stress frequency (£ — w) is equal to zero and the sliding
velocity V7 is equal to QR),. In the second case, the bending stress frequency is |€}] + |w]
and the sliding velocity is equal to zero. It means that synchronous forward whirl generates
large wear but no bending fatigue, while backward whirl with no slip implies no wall contact
wear but high dynamic bending fatigue (Shyu, 1989, Rixen, 1992a).

Generally, forward whirl generates larger wear but smaller bending fatigue than backward
whirl.

5.2.6. Velocity and acceleration of the cutters

From equation (5.1), it is easy to obtain the velocity of the cutter:

X = —ARQsin Qt — 7w sin(f, + wt)
Y = ARQcos Qt + 7w cos(f, + wt) (5.21)

v= \/ (X2 + Y2)
X = —ARQ? cos Qt — r.w? cos(6, + wt)
Y = —ARQ? sin Ot — r.w? sin(f. + wt) (5.22)

a= \/)'("2 +Y2)

Equation (5.22) will be used in chapter 7 to identify the whirl parameters by using ac-
celerometers.

and the acceleration:

5.3. BACKWARD WHIRL INDUCED BY BIT-HOLEWALL CONTACT

5.3.1. Equation of motion

For sake of simplicity and without missing the major characteristics, the following assump-
tions are made for the analysis of the whirling vibration of a drillstring:

(1) The drillstring is rotating at a constant rate w.
(2) The bit can deflect only in the plane perpendicular to the drillstring axis.
(3) The borehole has a perfect circular cross-section.
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(4) The contact between bit and borehole obeys the Coulomb friction law.
(5) Only the contact between bit gauge and borehole is considered.
(6) The rock or formation removal process is not considered.

Two coordinate frames are used (Fig.5.8). The first frame XY Z is the inertial frame, fixed
in the formation whose Z axis is the longitudinal axis of the hole. The second frame, zyz,
rotates with the drill bit at a constant rotation speed w and its z axis is the longitudinal
axis of the bit.

Y
y A
Ff FC
X
O u
y wt F
o)) X
On
Bit
Hole

Fig.5.8: Coordinate systems and forces

In Fig. 5.8, with X and Y defined as the horizontal displacements of the bit, and with M, K,
C defined as the equivalent mass, the equivalent bending rigidity of the drillstring, and the
equivalent damping coefficient, the equations of motion of transverse drillstring vibration
are expressed as:

IM]U + [C)U + [K]U = F° + F + F* (5.23)
where U = [X,Y]T.

It is noted that the gyroscopic effect of the rotating drillstring is neglected in the equation
due to the low rotation speed (60 ~ 400 7pm). In the above equation, F¢, F/ |, and F*
represent the contact restoring forces, friction forces, and unbalance forces, respectively.
They are described as follows.
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(a) Contact Forces

The contact forces are due to the clearance between the bit gauge and the hole wall. A
typical model for the contact forces is shown in Fig.5.9(a). The contact force acts as a
linear spring with a deadband threshold region. For displacement below the deadband
threshold, the contact force is zero. Mathematically, the contact force can be described as:

Fe=K.y(1- —A,’—:c)r (5.24)

where 7 = 1if r > Ar, otherwise, ¥ = 0; r is the instantaneous whirling radius.

Ap*

® (b)

Fig.5.9: Contact model with deadband nonlinearity

Let A
K. = K.(1- 7’) (5.25)

then the contact forces in the X and Y directions are:

FS =-K.X

(5.26)
Fy =-KY
(b) Friction Forces
Since the bit is rotating relatively to the hole wall, a friction force is induced:
Ff = Sp F° (5.27)
where . is the coefficient of friction. .5 is the sign function defined by:
S = sign(rQ + Ryw) (5.28)

where 7 is the whirling amplitude, R, the bit radius, {2 the whirl speed and w the rotation
speed.
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The need to introduce the sign function is obvious. Due to the whirling motion of the bit,
the direction of the slip velocity of the bit gauge changes with time. The introduction of the
sign function makes the direction of the friction force be always opposite to the direction of
the slip velocity of the bit gauge at the point of contact with the borehole wall.

The friction forces in the X and Y directions are:
Ff = Sp.K.Y

(5.29)
Ff = —S#cKeX

(¢) Unbalance Force

The unbalance force is produced by the eccentricity of the bit. Its amplitude is given by:
F* = myew? (5.30)

where m;, is the mass of the bit and e the eccentricity.

In this study the direction of F* is assumed to coincide with the bit local axis z for the sake
of simplicity.

Based on the above discussion, the equations of motion of transverse drillstring vibration
are expressed as follows:

MX +CX + KX = —K X + Sp.K.Y + mpew? coswt

. (5.31)
MY +CY +KY = -K.Y — Su.K.X + mpew? sin wt

It is noted that in the above equation, K. is function of X and Y (equation (5.25)). Hence,
equation (5.31) is a nonlinear equation.
5.3.2. Analytical Solutions For Steady-state Backward Whirl Motion

There are two forms of solutions of equation (5.31): forward whirl motion and backward
whirl motion. We look only for the backward whirl motion in this section.

To this end, a complex variable is introduced:
R=X +1iY =re¥ (5.32)
In addition, two assumptions are made:

(i) The bit is always in contact with the hole wall, and therefore ¥ = 1. This assumption is
necessary for existence of backward whirl motion. Indeed if no contact exists with holewall,
the dry-friction induced backward whirl vibration will be never happen.

(i) The bit unbalance force F* = mpew? may be negligible compared to the whirling
unbalance force F® = MrQ?, in which r is the whirl radius and  is the whirl angular
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speed. This is true in practice because the bit unbalance mass and eccentricity are usually

small.

Substituting equation (5.32) into equation (5.31), we obtain the equations of motion in polar
complex form as follows: '

M(@F —r0*) + Ci+ Kr + K (r — Ar) =0 (5.33a)
M(rb + 26) + Crb + SpcKo(r — Ar) =0 (5.33b)

Under the condition of steady-state backward whirl, we have:
=9, #=0, #=0 (5.34)

Inserting equation (5.34) into equation (5.33a), we get the whirl radius:

_ K.Ar
T = (KT K.) - M® (5.35)
In the case of backward whirl without slip, the whirl kinematics gives:
Q= —-I%w (5.36)
Inserting equation (5.35) into equation (5.36), we get the whirl angular speed:
_ Ryw(K + K. — MQ?)
&= K.Ar | (5:37a)
Or in another form:
ma? - EA0 (k4 k) =0 (5.37b)
wa ¢ ’

Solving equation (5.37b) and taking only the negative solution of Q (backward whirl), we
have:

Ar
2wa

Ar
Qw) = —4/wd + (W —w})¥( )+ (w3 — wf)m (5.38)

2 _ K+K 2 _ K
where w? = £££< and w? = £

Substituting equation (5.38) into equation (5.35), we have:

_ K.Ar
@)= KT K, - M)

Equations (5.38) and (5.39) give the closed form solution for steady-state backward whirling
motion. It is seen that both the whirl speed € and radius r are functions of the rotation
speed w, the geometry of the drillstring (equivalent stiffness K, bit radius R;) and the hole
conditions (hole clearance Ar and equivalent formation stiffness K.).

(5.39)

If w =, from equation (5.38), we get the possible maximum backward whirl speed:

K+ K,
M

[ maz = w2 = (5.40)
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In other words, there is an upper limit frequency for backward whirl. This upper limit
frequency is equal to the eigenfrequency of the joint drillstring-formation system.

5.3.3. Numerical simulation conditions

Shown in Fig.5.10 is a commonly used BHA in the field. The modal parameters of the first
mode are obtained using the finite element method (Samtech, 1994) as follows:

Eigenfrequency w;=2.22 Hz;
Modal mass M = 1095.0K g;
Modal stiffness K = 213124.5N/m

Modal damping ratio is assumed to be 0.05

D=171.45 mm o D=203.2 mm .
d=714375 mm Sbilizer s mm  Bit

e pr—

[ ] _ 1

3429 m 17.16 m

A 4

Fig.5.10: Drillstring used in the simulation

The hole wall is supposed to be isotropic around the bit and the contact stiffness K, is
taken equal to 107 N/m. The mass participation of the hole wall is not considered. If the
bit or drillstring remains in close contact with the hole wall, the eigenfrequency of the joined

system should become
[K + K,
Wy = 17 (541)

The bit radius (R) is taken to be 100 mm and the deadband (dr) in Fig.5.9 is 5 mm. The
friction coefficient between bit and hole wall, x., and mass eccentricity, e, are varied so that
the backward whirl can be initiated.

An automatic step size Runge-Kutta-Fehlberg algorithm with a pair of 4th and 5th order
formulas was used in order to solve the differential equation (5.31) numerically. In the
analysis, the initial conditions are equal to zero, i.e., the bit center coincides with the hole
center at £t = 0.
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5.3.4. Numeriecal results

As stated before, we are not concerned with the initiation mechanism of backward whirl.
What we are interested in is the possibility of steady state backward whirl. Therefore, in
the numerical simulation the unbalance force is assumed to be large enough (about 1000
N) so that the bit can always be in contact with the hole-wall (r > AR). Such a high
mass unbalance force may be unpractical for the drillstring because the rotation speed is
low. However, the side unbalance force generated by the bit/formation interaction during
drilling may be as high as 5000 N depending on the bit type and the operating conditions
(Chen and Géradin, 1993a).

(1) Influence of friction coefficient

Fig.5.11 and Fig.5.12 show respectively the influence of friction coefficient on the backward
whirl frequency and amplitude. The whirl speed is obtained from the numerical integration
results as follows: ]
XY -YX
YT

If Q is positive, forward whirl occurs. Otherwise, backward whirl occurs.

Q= %(atan(%)) - (5.42)

6 15
B 4 5:' 10
® ® 5
[ a
g 2 & o
= =
E Z
g0 E
2 time, s 10 time, s
0 10 20 (v} 2
a) Uc=0.2 b) Uc=0.35
15 15
210 10
T s ® 5
@ (0]
Q. Q.
g O 20
é -5 é -5
. . . .time.s |
10O 2 4 100 1 2 3
c) Uc=04 d) Uc=0.55

Fig. 5.11: Influence of friction coefficient on the
backward whirl frequency (w = 0.4 Hz)

There is a critical friction coefficient below which synchronous forward whirl occurs (Fig.5.11a)
and above which backward whirl occurs (Fig.5.11b,c,d). In Fig.5.11b,c,d, all the backward
whirl frequencies converge to about 6.63 Hz. On the other hand, after backward whirl is
initiated, its amplitude converges to about 6 mm (Fig.5.12b,c,d). It means that once initi-
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ated, the backward whirl frequency and amplitude do not depend on the value of the friction
coefficient.

This observation coincides with the analytical solutions given by equation (5.38) and (5.39).
The backward whirl speed Q given by equation (5.38) and radius r given by equation (5.39)
do not depend on the friction coefficient. If the above parameters are input to equation
(5.38) and equation (5.39), the obtained backward whirl speed and radius are exactly the
same as those obtained by numerical simulation.

3 -3
6 x 10 8 x 10
£ Eg
24 El
© °
g g4
£2 £
= z2
0 time, s 0 time, s
0 10 20 0 2 4
a) Uc=0.2 b) Uc=0.35
3 3
8x 10 Bx 10
Eg Eg
3 £
84 g4
52 52
0 time.s | 0 time, s
0 2 4 0 1 2 3
c) Uc=0.4 d) Uc=0.55

Fig. 5.12: Influence of friction coefficient on the
backward whirl amplitude (w = 0.4 Hz)

Fig.5.13 depicts the steady state backward whirl motion with constant amplitude and con-
stant frequency after it is initiated. The amplitude is always larger than the clearance Ar.
It means that during backward whirl, the bit is always in contact with the hole wall.
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Fig.5.13: Steady-state backward whirl motion (w = 0.8 Hz, p. = 0.3)
(2) Influence of rotation speed

Fig. 5.14 shows the influence of rotation speed of the drillstring on the backward whirl
frequency (Fig.5.14a) and on the whirl radius (Fig.5.14b).

w/fuwy
1% 0.5 1 1.5 2 2.5 3 35 4
(a) Backward whirl speed
15 L} L T T L L T
&  10f
<
~
£
5 L
w/wy
c 1 1 1 [l L 1 L
0 0.5 1 1.5 2 25 3 35 4

(b) Backward whirl radius

Fig.5.14: Influence of rotation speed on backward whirl motion
—: Analytical solutions; ooo: Numerical simulation.
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It is observed that:
(1) The backward whirl frequency increases nonlinearly with the rotation speed;

(2) There is an upper limit frequency for backward whirl. This conclusion agrees well with
the analytical prediction and also with the experimental results given by Lingener (1990)
and Crandall (1990);

(3) The whirl amplitude is increased almost proportionally with the rotation speed.

(4) The backward whirl frequency is related to the rotation speed and to the whirl am-
plitude by the following relation:

Q= ——w (5.43)

In oil well drilling, it was usually accepted that the backward whirl frequency without slip

can be given by:
a=-%, (5.44)
Ar
It means that the backward whirl frequency increases proportionally with the rotation speed
and may be very high if Ar is very small. Unfortunately it is unlikely to observe such high

backward whirl frequency in practice. Hence, the use of equation (5.44) may be questionable.

The differences between equation (5.44) and equation (5.43) are obvious. In equation (5.44),
Ar is constant and the predicted backward whirl speed increases proportionally with the
rotation speed. In equation (5.43), on the other hand, the predicted backward whirl speed
is nonlinearly related to the rotation speed because the whirl amplitude 7 is a function of
rotation speed w.

5.4. CONCLUSIONS

In this chapter, the PDC bit whirl kinematics and the backward whirl vibration due to bit-
holewall contact are studied both analytically and numerically. The bit whirl kinematics is
not only useful for PDC bit designers but also the basis of whirl parameters identification
by downhole measurements.

From the bit whirl dynamics, it is seen that

(1) Dry friction can induce steady-state backward whirl with frequency @ = —Ryw/r(w)
and with a very large amplitude r(w).

(2) The maximum possible backward whirl frequency is the eigenfrequency of joint drillstring-
formation system.

(3) The friction is responsible for the initiation of backward whirl. However, once initiated,
the backward whirl frequency and amplitude do not depend on the friction coefficient.

(4) The differences between equation (5.44) and equation (5.43) are obvious. In equation
(5.44), Ar is constant and the predicted backward whirl speed increases proportionally with
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the rotation speed. In equation (5.43), on the other hand, the predicted backward whirl
speed is nonlinearly related to the rotation speed because the whirl amplitude r is a function

of rotation speed w.

(5) The single mass-spring model used in this study may be too simple to be able to explain
completely the backward whirling motion because a realistic assembly will exhibit several
resonance frequencies in the range of rotation speed. This is a subject that will be studied

in chapter 6 using finite element method.
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CHAPTER 6

A FURTHER STUDY OF BACKWARD WHIRL DUE TO BIT-HOLEWALL
CONTACT BY FEM

6.1 INTRODUCTION
6.1.1 Outline of the problem

In Chapter 2 to 4, the drillstring system is considered as a linear rotor-bearing system. The
linear model is helpful to understand and to explain some important dynamic behaviors.
Because of its simplicity, the linear model is also helpful to design the BHA system such as
the placements of the stabilizers, the design of shock absorber and so on.

However, the drillstring is confined in a hole being drilled. During drilling, the drillstring
may be curved due to the combined effects of gravity, WOB, TOB, the bit unbalanced side
force and the non-homogeneity of the formation. In addition, some of the point along the
drillstring may be in contact with the holewall. Therefore, strictly speaking, the drillstring
is a nonlinear system. Following nonlinear phenomena are important:

(1) The nonlinearities induced by bit-holewall contact, stabilizer-holewall contact, BHA-
holewall contact. These contacts introduce friction forces and a nonlinear restoring force
(nonlinear stiffness). The friction coefficient is a dominant factor in this case. These contacts
may be the main sources of bit backward whirl motion and stick-slip motion.

(2) The nonlinearties induced by bit-formation interaction. This is different from the
contact induced nonlinearity. The bit-formation interaction may generate a very complicated
force function which depends on, for example, the type of the formation and the bit, the
cutter wear conditions and the operational parameters. The drilling forces are usually
nonlinear functions of bit displacements and/or velocities. In addition, the bit-formation
interaction is one of the coupling mechanisms because of interdependence of the drilling
forces on the bit.

(3) The geometrically nonlinear behavior of the drillstring (Rixen, 1992). The drillstring
structure is peculiar in the sense that its diameter to length ratio is very small so that it
may be submitted to very large static deflections caused by axial compressive loading and by
contact forces. Therefore, the drillstring can not be considered as straight and planar. The
geometric non-linearities will appear in the sense that axial displacement will also involve
bending and torsion along the drillstring. For the same reason, torsion generates bending
and axial movements, and bending induces axial and torsional displacements. It can be thus
seen that large displacement in drillstrings is the origin of geometric nonlinearities. The
geometrically nonlinear behavior is also the source of the linear and parametric coupling
(Rixen 1992, Shyu, 1989).

Modeling of the bit-formation interaction was initiated in 1987 in an effort to investigate
the wear condition of PDC cutters (Glowka, 1987). Warren and Sinor (1989a,b) developed a
similar 2D PDC bit model based on actual bit measurements. In a 2D model, it is assumed
that the area of cut for any cutter on the bit is constant for a full revolution of the bit.
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Hence, the bottom hole geometry is adequately described with just two dimensions. The
constant area of cut assumption allows the force calculations for each cutter to be made
only as it passes a fixed radial rock plane, thus the force on any cutter is also constant for
a full rotation of the bit. This assumption is only valid for steady-state bit performance in
homogeneous rock. '

To be able to take the complex motions of the bit such as bit whirling motion into account,
Behr and Warren (1991) developed a 3D PDC bit model which has the capability to evaluate
cutter loading under the condition of nonhomogeneous rock and bit whirl. For the purpose
of PDC bit dynamic analysis, Langeveld (1991) has developed a 3D bit/formation model
which can calculate the instantaneous bit drilling force. A fully 3D model for PDC bit
has been also developed by Chen and Géradin (1993a). This model has been successfully
applied to bit force calculation, stability analysis of anti-whirl PDC bit (Chen and Géradin,
1993b), random bit force analysis (Chen and Géradin, 1992b) and PDC bit optimal design
(Chen, Lamine et al 1993). However, the 3D bit-formation model has not been successfully
combined with the drillstring dynamic model at this stage. Difficulties exist in updating
the bottomhole condition and in the convergence of time integration. This remains a future
research subject.

The linear and parametric couplings due to geometrically nonlinearities of the drillstrng
have been studied by Shuy (1989).

It is shown in Chapter 5 that the bit-holewall contact may induce steady-state backward
whirling. However, the single-mass-spring model may be unable to explain the complex
whirling vibration. In order to better understand the nonlinear dynamics, especially the
contact induced vibration, Hersig (1993) and Jansen (1993) have respectively established
a FEM model for the drillstring. The contact between the drillstring and the holewall is
modeled by a penalty function. Axial friction force is neglected in their model. Because the
explicit time integration algorithm is used in Jansen’s thesis, numerical instabilities may
exist when strong nonlinearities occur (Jansen, 1993, pp177).

Simulation of the contact between drillstring and holewall at LTAS of University of Liége has
been initiated in 1987 by Raeymakers and Géradin (1988) and later by Parisis and Géradin
(1990). The work, namely the BHA project, consists of modifying the Mecano module of the
Samcef software to adapt this module to the study of the behavior of the BHA. The initial
goal of the project was the prediction of drilling direction. The contact element acts like an
infinitely rigid disk which runs against an elastic cylindrical wall. During the contact the
transverse and axial friction forces are taken into account. Although many modifications
have been made during the second phase of the BHA project (Parisis and Géradin 1990),
numerical difficulties still exist. In addition, the developed contact element is for static and
quasi-static analysis and not for dynamic analysis.

6.1.2 The work of this chapter

The main purpose of this chapter is to develop a contact element for the simulation of
drillstring holewall contact and to implement this element to the general multi-body dynamic
analysis software, namely, Mecano module of Samcef (Samtech, 1994). The contact element
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is located at some selected node along the drillstring. If the contact at one node occurs,
the contact element at this node is introduced. In this way, all the contact points along the
drillstring can be determined.

This chapter describes first the computational aspects behind the Mecano software. Sec-
ondly, the development of a contact element for dynamic analysis is described in detail.
This contact element is based on the one developed by Parisis and Géradin (1990). Finally,
the applications of the contact element to the drillstring are performed. Several numerical
examples are given.

6.2 COMPUTATIONAL ASPECTS OF THE MECANO PROGRAM

Mecano is a software commercialized by Samtech, based on the research work carried out
at LTAS (Aerospace Laboratory, University of Liége, Belgium). Although, it is tailored
for multi-body systems, Mecano is suitable for dealing with static and dynamic, linear and
nonlinear beam structures because it is based on the finite rotation concept and contains a
nonlinear beam element. It is not the aim of this chapter to give a detailed description of the
Mecano software (see Cardona and Géradin, 1987). However, it is necessary to understand
the basic principle used in the software.

6.2.1. The Nonlinear Beam Element

The beam element developed in Mecano is geometrically exact, large displacement /small
strain finite element which takes the shear effects into account. The element can undergo
large rigid body displacements and rotations. Because the element is derived in 3 dimen-
sional space, the axial, lateral and torsional couplings of the drillstring may be analyzed.
6.2.2. Hilber-Hughes-Taylor (HHT) o-Method

The general equations for a linear or a nonlinear system take the form:

Mq + gint — gext (61)
For linear systems,
g™ (a,4) =Kq+Cq (6.2)
For nonlinear systems,
int
K agq (6.3a)
int
C= agq (6.3b)

where M, K, C are the mass matrix, stiffness matrix and damping matrix, respectively, gi®t

and g are the internal and external force vectors, respectively. q is displacement vector.
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The one step Newmark integration scheme is implicit on accelerations and interpolates
displacements and velocities between time steps 7 and n 4 1 according to coefficients 8 and
v and time step length h:

q'n+1 = (.ln + (1 - 7)hdn + 7h£l'n-+1 ' (6'40')

. 1 . .
dnt1 = qn + hqn + (5 - ﬂ)hZQn + ﬂhz Adn+1 (6'4b)

where h is the time increment, § and - are two free parameters of the method.

Instead of directly substituting the above scheme (6.4) into equation (6.1), Hilber, Hughes
and Taylor have proposed an elegant way to introduce numerical damping without degrading
the order of accuracy. In the HHT method, the time-discrete equations are modified by
averaging elastic, inertia and external forces between both time instants. Therefore, if
we know the displacements, velocities and acceleration at time t,, the displacements and
velocities at time #,4, are given by equation (6.4). The acceleration at %541 is obtained by
solving the following equation:

Mint1 + (1 — )ity +ogir = (1 - a)g5s + agi™ (6.5)

where « is the numerical damping coefficient. If the parameters are chosen so that a = 0 ~
1/3, 7= 0.5 + a and 8 = 0.25(1 4 e)?, the result is an unconditionally stable second order
schema (Géradin and Rixen, 1994).

Because the presence of the internal forces term g"t, the implicit equation (6.5 ) is usually
nonlinear in qn+1. We have thus to solve it by using an iterative method such the Newton-
Raphon method (Cardona and Géradin, 1987). The iteration matrix of the Newton-Raphson

process is:
1

v
S=—M+—+ - a)K .
B + ,Hhc+(1 a) (6.6)
An automatic control of time step size has also been introduced in version 5.0 of Mecano
(Samtech, 1994). The time step control algorithm is based on the comparison of the HHT
interpolation scheme and the Taylor development to the third order. This scheme saves
much computational time because it takes larger time steps where the solution is more

slowly changing.

6.2.3. The User Element

The user element in Mecano allows to introduce an element with variable number of nodes
and a behavior law programmed by the user himself to meet his specific needs and appli-
cations. This behavior law may be function of time and depends on nodal displacements,
velocities and accelerations of the element.

This very general approach guarantees a good opening of the package. In practice, the
element is written in a Fortran subroutine, the programming of which is made easily by
resorting to the library of general subroutines available in the software. This element has
been used to simulate the 2 dimensional bit/formation contact problems (Chen, Rixen and
Géradin, 1994).
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6.3 A CONTACT ELEMENT FOR BHA DYNAMIC ANALYSIS

6.3.1 Problem Description and Assumptions

In order to simulate the contact between drillstring and holewall, two essential issues are
important. The first issue is how to determine the contact point along the drillstring at a
given time. The second issue is how to introduce the contact law after the contact occurs,
such as friction force evaluation, contact stiffness.

Consider Fig.6.1. There are two coordinate systems. The global coordinate system, zyz, is
fixed in the space.

Fig.6.1: Drillstring and the hole drilled

The movement of the drillstring is expressed in terms of this cartesian coordinate. The hole
geometry may be determined according to the initial position of the drillstring. In other
words, the tangent of the initial curvature of the drillstring is a good representation of the
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hole curve itself. This assumption is reasonable because the hole is drilled by the movement
of the drillstring,.

The second coordinate system is a local coordinate frame which is represented by the disk
normal direction n at the disk center. The initial coordinate of the disk center, z¢, 30, 20,
is the reference point of this contact element. It is assumed that the normal disk vector n
has the same direction as the tangent direction of the reference point and does not change
during the vibration simulation. It is also assumed that the contact occurs only in the disk
plane (reference plane).

In summary, the following assumptions are made for the sake of simplicity without loss of
the main characteristics:

(1) The disk is infinitely rigid without mass.
(2) The cross section of the hole in the disk plane is circular.

(3) The vibration of the disk is small so that its normal vector n may be considered to be
constant during the simulation. Therefore, the disk normal direction may be determined by
the reference point.

(4) The disk is rotating around its normal vector n with a constant speed w. Thus the
rotating vector is w = wn.

(5) The Coulomb friction law is applied at the contact point.

6.3.2 Contact Condition

Let us consider the local coordinate at the contact point (Fig.6.2).
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Fig.6.2: Model of disk-holewall contact

At time t, the reference point moves from A(zg, o, %) to B(z,y,z). Therefore, the element
displacement is
d=(z—2z0 y—% 2z—2)" (6.7)

The projection of the displacement vector d on the vector n is given by

(z — zo)n? + (¥ — yo)nanz + (2 — 20)n1n3>
6.8)

dn = (d [ n)n = ((II) bt 20)n1n2 + (y - yo)'n% + (Z - zo)n2n3
(z — zo)nana + (y — yo)nana + (2 — 20)nf
where n = (n; ny n3)7.
The transversal displacement d is then:

—(z — zo)mna + (y — 90)(1 — n3) — (2 — 20)nzma
—(z — zo)nans — (¥ — Yo)m2ns + (2 — 20)(1 — n)

(z — 20)(1 = n?) — (y — yo)nane — (2 — z0)n173
dy=d—d, = (6.9)
If the module |d¢| is greater than the clearance AR = Rj, — Ry, i.e., if
ld¢e] — AR >0 (6.10)
then there is a contact between the disk and the holewall.
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The unit vector of d¢ may be determined by:

dy %1
u= m = Us (6.11)
U3 .

The unit vector u represents the contact direction. In the following sections, it will be shown
that the unit vectors u and n are the two basic vectors for determination of the contact
forces.

6.3.3 Forces Induced by Contact

As shown in Fig.6.2, the contact between the massless disk and the holewall will generate four
forces, i.e., elastic force, damping force, transversal friction force and longitudinal friction
force. They are expressed below.

(a) Elastic force

The elastic forces or the restoring forces induced by the contact between the disk and the
holewall are due to the elasticity of the holewall. Shown in Fig.6.3 are three kinds of models
for the elastic forces, i.e., the linear spring model, the hard spring model and the soft spring
model.

AForce

Harder spring

Linear spring

Softer spring

Penetration
>

Fig.6.3: Elastic force models

For displacement below the deadband threshold, the elastic force is zero. Mathematically,
the modulus of the elastic force can be described by

_ J ke(|de] — AR)™, if contact occurs;
fe= {0, otherwise. (6.12)
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where k. is the stiffness of the holewall at contact point and AR is the clearance between
the disk and the holewall. The value of m is:

> 1, hard spring model (usually m=3/2); (6.13)

1, linear spring model;
m =
<1, soft spring model (usually m=2/3);

The direction of f. is shown in Fig.6.2. Therefore, the elastic force vector is:

( fewa )
fe = feu=| feus (6.14)

feus

(b) Damping force

The damping force modulus is:
fa=Cuw (6.15)

where v; is the modulus of the disk velocity in the contact direction. If v is the velocity
vector of the disk center, v; can be written:

v = veu= v + vaus + vaus (6.16)
where v = (v vy wv3)T.
The damping force vector is then:

faup
fa = fqu= (f,,nm) (6.17)

faua

(¢) Transverse friction force and moment
The modulus of the transverse friction force is:

fe = w(fe + fa) (6.18)

This force lies in the disk plane. In order to define its direction, however, two cases have to
be considered:

Case 1: Static analysis

In this case, the direction of the transverse friction force can be determined by the disk

rotation:
fi = ft(ll X n). (619)

It is noted that the disk rotating vector w coincides with the vector n.
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Case 2: Dynamic analysis

In the case of dynamic analysis, the disk rotates around its center, meanwhile, the disk
center vibrates. It means that the contact velocity at the contact point includes two terms:
(1) the term v* induced by disk rotation w and (2) the term v* induced by the vibration
of the disk center. These two terms can be evaluated respectively as follows:

v = Ry(u X w) (6.20a)
vii=v—(veu)u (6.20)

Therefore, the contact velocity is:
vi= vt 4yt (6.21)

Finally, the transversal friction force vector in the dynamic case is:

vt
ft = —ftm (622)

In order to avoid the singularities in the computation, equation (6.22) is modified by
— i if [vt] > €
ft — ftF,Tl‘, . . i lV I =" (623)
—fi(2 - -’v—l)"?, otherwise.
where € is a small value, usually equal to 10~3.

Because the friction force acts at the surface of the disk, it generates an additional friction
moment. For both static and dynamic analysis, this additional friction moment is obtained
by

m; = Ry(u x f) (6.24)

(d) Longitudinal friction force and moment

The force modulus is:

fi=wm(fe + fa) (6.25)
The longitudinal velocity at the contact point is:

vy=ven=vn + vang + vana (6.26)

Therefore, the longitudinal friction force vector is

fi = Sifin (6.27)
where
1, ifvy <0
S1 = sign(v) = { 0, ify=0; (6.28)
-1, if v >0
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In order to avoid the singularity of the derivative at v; = 0, equation (6.28) is modified by

V| H > .
5= { T if o] 2 ¢ (6:29)

2-8)%, ifju|<e

Like as the transversal friction force, the longitudinal force generates also an additional
moment which can be given by

fiSiRa(nous — nauz))
(6.30)

m; = fiSiRy(n X u) = (fzSIRd(mul — n1ts)
fiSiR4(nyug — nyuy)

6.3.4 Element Matrices

Because the disk is massless, only stiffness and damping matrices are needed for the contact
element. The stiffness and the damping matrices are the sum of four terms, respectively:

K = Ko+ Ka + K{ + K} (6.31)
C=C.+Cq+Ci+Cl (6.32)

where K¢,Kq,K},K! are stiffness matrices corresponding to the elastic force, damping
force, transverse friction force and longitudinal friction force, respectively. Ce,Ca,C§,Ch
are damping matrices associated with these forces. These matrices are derived below.

(a) K. and Ce

According to equations (6.3) and (6.14), we have the stiffness matrix Ke:

. O(feu;)  Of. ou; . .
K.(i,j) = —= = v+ fee—m, 1,7=12,3. 6.33
where o old|
e = f,—4 6.34
0g; dq; (634
with s
aldt' =Uj; — Z UEN LT (6.35)
0gj k=1
and o
% _ 61'.1' - ninj — ”’i_alﬁl (6 36)
dg; |de| '
with §;; is the Kroneker’s symbol and q =(z y 2).
The damping matrix C, is obviously a zero matrix:
Cuij) = 2B g ;i 2103 (6.37)
94;
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(b) Kgqand Cy
Based on equation (6.17), the stiffness matrix Kgq is:

a(fdut) u _aﬂ

Ka(i,j) = =22 aqj ’+fdaq,-’ i,j =1,2,3. (6.38)
ith
w1 a_fd-—c(’v au1+vau2+v8u3) (639)
dg;  ~ '0q; | 'dg = 0g '

and g—;‘;— is given by equation (6.36).

The associated damping matrix Cgq is

Ca(3,3) = a(—gzzi) = cuiu;j (6.40)

(¢) Kt and C}

Tt is seen that the transverse friction induces a nodal friction force and an additional moment.
Therefore, the associated internal force vector has 6 components. Two cases are considered.

Case 1: Static analysis
In the static analysis, the internal force vector is:

fe(naug — nau3)
ft(n1u3 - n3u1)

int _ f; _ ft(nz'lh - nluz)
8" = (mt = t, Rt (6.41)
ftRans
ftRana
If we note that: 6 af 6f
= (5 “), j=1,2,3. (6.42)
and of, of
o0, =128, .
a—q'; = 94; pecuj, J=1,2,3 (6.43)

the matrix K} and C} are obtained from:

) 7] ou 7]
Ki(1,5) = f (nauz — ngu3) + fi(na5— 2 _ nzi{’
0g; 0g;
6u1

. 0f Oug
¢ _ _ 2
K;(2,5) = 9a; (n1us — nawr) + fe(mam— 34, n3 9a;
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ou Ous
K:(3,5) = (n2u1 - nyug) + ft("h% - n1%)
K}(i,]) = Rd%nn i1=4~ 6, (644)

dg;
C}(l,j) = peui(naty — naus)
C}(Z,j) = peui(nius — naug)
C4(3,7) = pecu;(nauy — nyus)
Ci(i,7) = cptRaujmi, i=4,5,64 =1,2,3. (6.45)

Case 2: Dynamic analysis

In the case of dynamic analysis, the expression of the transversal friction force, equation
(6.23), is more complicated than that of the static case. The internal force vector is:

gint = ( b ) (6.46)

m;
where f; and m; are given by equations (6.23) and (6.24).

The stiffness matrix is:
agznt

6.47
BQJ ( )

I(f(z’])

where i =1~6, j=1~3.

And the damping matrix is:
6gznt

.7

Cf(z,j) (6.48)

where 1 =1~6, j=1~3.

The explicit expression of the above stiffness and damping matrices have been derived by
using the symbolic computation software Maple V (Maple V, 1993).

() X! and C}

The internal force vector associated with the longitudinal friction force is obtained by com-
bining the nodal force and moment:

Sifimy

Si1finz

f; S1fina
= = 6.4
&l (ml) flSle(nzua—’nauz) ( 9)

fiSiRa(nauy — nyug)
fiSiRa(nyug — nauy)
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The stiffness matrix is explicitly given by:

Ki(i,5) = Qﬁn,-s,, i,j = 1,2,3.
dg;

a o
.Kf(4 ) = f RdSI(nz’u,a - ’n3’u2) + f,RdS,(nz— — N3 31;2
j
f Ous
(5,_7) —RdSl(na’ul - n1u3) + f,RdS; (ng - n3—3——)
dq; q;
afi o
Kf(6 9= _fRdS,(nlug —ngtup) + f;RdSI(ng— —n3 81(;1
J
where
0 2 08
dg;  9g;

The damping matrix is:
Cf(z,j) wieSiuing, 1,7 =1,3;

Cf(4,J) = meSiuj Ry(naus — naus)
C}(5,4) = pieSiu;j Ra(naur — n1ua)
C-If(ﬁ,j) = meSiuj Ry(niug — nauy)

6.4 BACKWARD WHIRL DUE TO BIT-HOLEWALL CONTACT

6.4.1 Assumptions and Simulation Conditions

(6.50)

(6.51)

(6.52)

The purpose of this section is to study the possibility of steady-state backward whirl due to

bit holewall contact. To this end, following assumptions are made:

(1.)  Only bit-holewall contact is taken into account. The other possible contacts between
drill collar and holewall, stabilizer and holewall are all disregarded. These contacts will be

studied in a forthcoming report.

R=85.725 mm
r=35.7188 mm

2m | : 6m | 2m

NBit
Stabilizer Holewall

Fig.6.4: A BHA system

(2.)  The stabilizer is assumed as a rigid supporter for simplicity. Its stiffness can be taken

into account without any difficulty.
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(8.) The axial vibration is not considered.

T Fext

Fig.6.5: FE model for the BHA system

Fig.6.4 shows a BHA structure used for simulation. The geometry is also given in the figure.
Fig.6.5 depicts the FEM model of the BHA system. The clearance is taken as 1 mm and
the stiffness of the holewall is 5 X 107 N/m. The friction coefficient y; is taken as a variable
parameter whose special value will be given in the corresponding figures.

Table 6.1: Eigenfrequencies (Hz) of the BHA system

Mode w1 ws w3 wy
Without contact 14.97 24.12 33.72 86.99
With contact 24.12 33.72 86.99 326.18

The modal properties of the BHA system are calculated by the module DYNAM of the
Samcef software (Samtech, 1994). Table 6.1 lists the first 4 eigenvalues in the cases of with
and without contact, respectively.

6.4.2 Steady-state Backward Whirl

The bit-holewall contact leads usually to synchronous whirl of the BHA. However, under
certain conditions, such contact can lead to backward whirl, i.e., a rolling of the BHA along
the inner surface of the holewall in the opposite direction of the BHA rotation. Fig.6.6
depicts an example of steady-state backward whirl due to bit-holewall contact. In the figure,
the rotation speed w = 3 H 2, the friction coefficient p; = 0.5. The bit keeps always in contact
with the inner surface of the holewall by applying an external force F,g; = Foezp(iwes: ).
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x 10 x10

unit: m
(=]

unit: m
(=]

-5 5

ime, s fime. s |
0 0.5 1 0 0.5 1
a): X-disp. b): Y-disp.

x10°

100

50

[=]
unit: Hz
(=]

-50

-5 o 5 1% 05 1
c) Tra]ecloryx 10° d): Whir speed

Fig.6.6: Steady-state backward whirl motion
pt=05,w=3Hz

The influences of friction coefficient, the external exciting force, the contact damping, the
elastic stiffness as well as the rotation speed of the BHA on the backward whirl motion are
discussed below.

(a) Friction coefficient

The effects of friction coefficient y; on the backward whirl motion are shown in Fig.6.7 and
Fig.6.8 in which the rotation speed w = 3 Hz and the clearance is AR = 1 mm. When
gt = 0.3, the motion is synchronous forward whirl (Fig.6.7a) with radius r = 1.1 mm
(Fig.6.82). Note that the whirl radius r is greater than the clearance AR. In other words,
the bit is in contact with the holewall, but no backward whirl occurs.
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Fig.6.7: Influence of friction coefficient on the
backward whirl frequency (w = 3H2)
(a): pt =0.3, (b): pe =0.45. (c): pt = 0.5. (d): pe = 0.6.
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Fig.6.8: Influence of friction coefficient on the
backward whirl radius (w = 3H2z)
(a): pe =03, (b): pe = 045. (c): pe = 0.5. (d): pe = 0.6.
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Fig.6.9: Influence of friction coefficient on the
backward whirl frequency (w = 1Hz)
(a): pe = 0.3, (b): p¢ = 0.45. (c): pe = 0.5. (d): pe = 0.6.

3 -3

gX 10 aX10
E £
hel o
g g
EW E1
2 =2

time, s fime. s
% 0.5 1 % 05 1
(a) (b)
-3 -3

X 10 X 10
E E
- ©
g g
E1 E1
2 s

o time, s | 0 time, s

0 0.5 1 0 05 1
(0 @

Fig.6.10: Influence of friction coefficient on the
backward whirl radius (w = 1Hz)
(a): pe =03, (b): pe =045. (c): pe = 0.5. (d): p: = 0.6.

If the friction coefficient is increased to yu; = 0.45, the backward whirl motion with a constant
speed (Fig.6.7b) and a constant radius (Fig.6.8b) occurs. The radius in backward whirl (4.2
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mm) is much larger than that in forward whirl (1.1 mm). For further increase of the friction
coefficient to p; = 0.5 and u; = 0.6, the radius and speed of the backward whirl motion do
not change. Similar observations can also be made when we change the rotation speed to
w =1 Hz (Fig.6.9 and 6.10).

These observations depict that (1) There is a critical friction coefficient below which syn-
chronous forward whirl occurs and above which backward whirl occurs. (2) Once initiated,
the backward whirl speed and radius do not depend on the value of the friction coefficient.
These two facts coincide with the conclusions made in chapter 5 where a lumped model is
used. The first fact may explain why the bit with low friction pad does not move backwards
in most cases.

(b) External force

In order to ensure that the bit is always in contact with the holewall, it is necessary to apply
an external force on the bit in the simulation. In practice, this force may be generated by
bit /formation interaction. In fact, the side force generated by bit/formation interaction
during drilling may be as high as 5000 Newton depending on the bit type and the operating
conditions (Chen and Géradin, 1993a). For the sake of simplicity and in order to simulate
the bit side force, the assumed external force is taken the form

Fe:z:t = FOezp(iweztt) (653)

where Fy is amplitude and w,,; is angular frequency.
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Fig.6.11: Influence of external force type on the
backward whirl frequency (w = 1H2)
(a): Fo = 3000N, wezy = 1Hz. (b): Fy = 3000N, weye = 3H 2.
(c): Fo = 4000N, weze = 1Hz. (d): Fy = 3000V, weq: = THz.
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The angular frequency weg: is usually not the same as the rotation speed of the bit except
the case of bit unbalance force.
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Fig.6.12: Influence of external force type on the
backward whirl radius (w = 1Hz)
(a): Fo =3000N, wezt = 1Hz. (b): Fo = 3000N, wezt = 3H 2.
(c): Fo = 4000N, wezt = 1Hz. (d): Fo = 3000V, wegt = THz.

Fig.6.11 and 6.12 show the influence of the external forces on the backward whirl motion.
Four different types of external force types are considered with different amplitudes and
frequencies. It is seen that in spite of the external force type, the backward whirl motion
has almost the same speed and the same radius. The small difference may be due to the
numerical accuracy. Therefore, the external force has no influence on the backward whirl
motion. The only requirement on the external force is that its amplitude must be large
enough in order to put the bit in contact with the holewall.
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(¢) Contact damping

Whirl speed, Hz

Whirl radius, m

[y

Fig.6.13: Influence of contact damping on backward whirl motion
w=1Hz, p; = 0.6, —: c¢=0; -.-.: ¢ = 1.5 x 10°sN/m

Fig.6.13 shows the influence of the contact damping on the backward whirl speed and radius.
In the figure, the contact damping is assumed to be 1.5 X 10° sN/m and the stiffness is
1.5x 10" N/m. The contact damping has almost no influence on the whirl speed (Fig.6.13a)
but reduces a slightly the whirl radius.

(d) Contact stiffness

The value of the contact stiffness k. is dependent mainly on the kind of formation being
drilled. k. is lower for soft formation and higher for hard formation.

In the drilling practice, the bit may have opportunities to meet many kinds of formation.
To simulate this situation, simulations have been performed for the contact stiffness k. =
104, 108, 107, 108N/m , respectively. In all these cases, the friction coefficient pu; is
taken as 0.5. The shaft is rotating at speed w = 1 Hz and the clearance is 1 mm.
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Fig.6.14: Influence of contact stiffness on whirl speed
(a): k. = 104 N/m; (b): k. = 108N/m; (c): ke = 107N/m; (d): k. = 10°N/m;
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Fig.6.15: Influence of contact stiffness on whirl radius
(a): k. = 10:N/m; (b): k. = 108N/m; (c): k. = 10" N/m; (d): k. = 10°N/m;

Fig.6.14 and 6.15 show respectively the whirl speed and radius under the condition of dif-
ferent contact stiffnesses. For the stiffness k. = 10*N/m and k. = 10°N/m (Fig.6.14 a,b),
the whirl is forward (£ > 0). This is due to the fact that the friction force induced by
the contact is not enough to move the shaft backwards when k. is low. For the stiffness
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k. = 10"N/m and k. = 108 N/m (Fig.6.14 c,d), the whirl is backward (2 < 0). It means
that there is a critical stiffness (for a given friction coefficient y;) below which forward whirl
occurs and above which backward whirl occurs. This fact may explain why backward whirl
occurs often in the cases of hard formations. Another observation is that with the increase
of the stiffness, the backward whirl speed increases. This is because the eigenfrequencies
of the BHA system under contact have been changed. This means also that the backward
whirl speed induced by the contact is dependent on the eigen-properties of the BHA system.

(e) Rotation speed

Rotation speed w of the BHA is one of the two most important control parameters in the
drilling field (the other is WOB). Fig.6.16 depicts the influence of the rotation speed of the
BHA on the backward whirl speed and radius, respectively. In the figure, k. = 1.5 x 107,
p: = 0.5, AR = 1lmm. During the simulation, we find that it is very difficult to generate
backward whirl motion if the rotation speed is lower than 1 Hz. Once initiated, the speed
of the backward whirl is greater than the lowest bending eigenfrequency of the BHA system.
More clearly, there is a minimum backward whirl speed which is near to but greater than
the lowest bending eigenfrequency of the BHA system. This fact is not predicted by the
single mass model given in Chapter 5. However, the fact agrees with the experimental
observations made by Lingerner (1990) and Crandall (1990) for backward whirl due to
rotor-stator contact.

With the increase of the rotation speed, the backward whirl radius r(w) increases propor-
tionally. A least square fitting has been made for the relationship between the rotation
speed and the whirl radius. The function obtained is:

r(w) = 1.2338w + 0.4908, mm (6.54)

Once the backward whirl is initiated, its speed always follows the following relation:

Qw) = _rTu)— (6.55)

where Ry is the disk radius. In the practice, a very large penetration into the formation
for the bit is very difficult. After the penetration is large enough, slide must occur at
the contact point. Therefore, the whirl speed will be smaller than the value predicted by
equation (6.55). In this sense, the backward whirl speed is also limited for the continuous
model. However, which parameters determine the maximum backward whirl speed is not
clear so far.
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Fig.6.16: Influence of rotation speed on the backward whirl motion
—: FEM results; ooo: fitting results; k. = 1.5 x 107, y; = 0.5, AR = lmm

6.5. CONCLUSIONS

In this chapter the backward whirl due to bit-holewall contact is investigated by finite
element model. The bit-holewall contact is modeled by a special contact element which can
be used not only for static but also for dynamic analysis. The following conclusions may be
made:

(1) The bit-holewall contact can lead to steady-state backward whirl under certain condi-
tions. These conditions include a large bit side force and friction coefficient. However, once
initiated, the backward whirl motion does not depend on the values of side force amplitude
and friction coefficient.

(2) There is a critical friction force below which forward whirl occurs and above which
backward whirl occurs. In other words, there is a critical friction coefficient (for a given
formation stiffness) or a critical formation stiffness (for a given friction coefficient). This
fact may explain why a PDC bit with low friction pad can resist backward whirl and why
backward whirl occurs often in the hard formations.

The above conclusions agree with the conclusions made in chapter 5.

(3) Once initiated, the backward whirl frequency is greater than the lowest bending eigenfre-
quency of the BHA system in the case of contact. In other words, there is a lowest backward
whirl speed which is near to but greater than the first bending eigenfrequency of the system.
This fact is not predicted by the single mass model given in chapter 5.
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(4) The backward whirl radius is almost proportional to the rotation speed. However the
backward whirl speed seems to be limited by a maximal value (Fig.6.16). After the whirl
radius is large enough, slide at the contact point must occur. It is because a very large
penetration into the formation for the bit is difficult in practice.

The contact element developed in this chapter may also be used for analysis of rotor-bearing
systems such as the whirling motion due to rotor-stator contact.
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CHAPTER T7:

EXPERIMENTAL IDENTIFICATION OF DOWNHOLE BIT WHIRL DUR-
ING DRILLING

7.1, INTRODUCTION

As discussed in chapter 5, bit whirl and particularly bit backward whirl, has an adverse
effect on the rate of penetration (ROP) and causes heavy dynamic loading of the cutters in
general and of the gauge cutters in particular. This heavy dynamic loading of the cutters
reduces the overall bit life, especially in harder formations.

Recently, there has been much interest in the elimination of the bit backward whirl during
drilling. One way is to use anti-whirl PDC bit (Brett et al, 1989, Sinor, 1990, 1992, Clegg,
1992). However, both laboratory and field tests have shown that the anti-whirl PDC bit
may still whirl under certain conditions depending on the weight on bit (WOB) applied, the
bit rotation speed (RPM) and the actual hole size drilled (Langeveld, 1991, Shyu, 1989).

Another more popular way to eliminate the backward whirl is to change the WOB and/or
the RPM when whirl is initiated. Hence, the identification of bit whirl during drilling
becomes a critical issue.

There are three main difficulties in the identification of bit whirl during drilling. The first
one is that the bit whirl can not be detected directly at the surface as mentioned in chapter
4. The second one is that the sensors must be mounted on the rotating drillstring or
on the bit body. This makes it complicated to obtain directly the bit center trajectory
which is very useful in the identification of bit whirl. The third one is that there are many
excitation sources acting on the drillstring and on the bit due to the dynamic interaction of
the bit/formation.

Some noticeable work has been done in the bit whirl identification using measured bending
moment and acceleration (Vandiver et al, 1988, Shyu, 1989) or using the hole pattern drilled
(Brett et al, 1989). However, these attempts were focused only on the bit whirl frequency
identification. In fact, not only the whirl frequency but also the whirl radius (or hole radius),
the bit center trajectory and the instantaneous bit rotation speed are important in order to
eliminate the whirl motion during drilling.

In this chapter several methods have been developed to identify bit whirl motion (including
whirl frequency, whirl radius, bit rotation speed, bit center trajectory) using accelerometers
and contact sensors. The contact sensors are used here to measure the distance between
the bit gauge and the hole-wall. Two identification examples are given using laboratory
experimental data. The analysis shows that in most cases the contact sensors can give more
reliable results than the accelerometers because the later are considered to be too sensitive
to other excitations.
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7.2 BACKGROUND THEORY

According to the bit whirl kinematics described in chapter 5, the coordinates of any point
on the bit body can be expressed in the absolute frame X,0,Y} (Fig.5.2):

X1 = AR cos(§2t) + 7. cos(f. + wt)
Yy = ARsin(t) + 7. sin(f. + wt)

(7.1)

where AR is called whirl radius. The first part of equation (7.1) is the bit center trajectory
which is a circle with AR as its radius and ) as its angular frequency.

The corresponding acceleration is :

Xn = —ARQ? cos Ut — rw? cos(f, + wt)

(7.2)
Yh = —ARQ? sin Ot — r.w? sin(f, + wt)

The bit center acceleration, or bit acceleration, is obtained by inserting r. = 0 into equation
(7.2):

thit = —ARQ2 cos §Mit

) (7.3)
Yipiz = —ARQ? sin Q¢

Its amplitude is

it = 4/ X}y + Vi = ARQ? (7.4)

Note that equations (7.2) express the acceleration components of any point on bit body
in the fixed coordinate system X;,0.Ys. On the other hand, the acceleration may also be
projected on the bit rotating coordinate system X;0,Y;:

N

X, = —ARQ? cos(w — Q)t — 7w cos b,

(7.5)
Y, = ARQ? sin(w — Q)t — rw? sin b,

There is no difficulty to verify that equation (7.5) and equation (7.2) express the same
absolute acceleration of the same point on the bit body. However, the acceleration projected
on the bit coordinate system can be directly measured by mounting the accelerometer on
the bit body.

The bit center acceleration projected on X;0,Y} is obtained by inserting r. = 0 into equation
(7.5):

Xbbit = —ARQ? cos(w - Q)t

) (7.6)
Viie = ARQ? sin(w — Q)¢
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Its amplitude is:

ait = Vngit + Y} = AR’ (7.7)

From above equations it is noted that the bit whirl motion can be fully described by three
parameters (we call them latter whirl parameters):

(a) Dit rotation speed w;
(b)  bit whirl speed €

(c)  whirl radius AR.

7.3. BIT WHIRL IDENTIFICATION BY ACCELEROMETERS
7.3.1. Bit rotation speed w
According to equation (7.5), two accelerometers at the two opposite locations (6, = 0° and

6. = 180°) on the bit body should measure the following acceleration components in the
rotating bit coordinate system:

az1 = —ARQ? cos(w — Q)t — Ryw?

(7.8)
az = —ARQD? cos(w — Q)t + Ryw?
Where R, is the radial position of the accelerometer in the bit coordinate system.
From equation (7.8), we obtain the bit rotation speed:
w = [%2 " 8a1 (7.9)

2R

It means that only two accelerometers placed at opposite locations are sufficient to obtain
the bit instantaneous rotation speed w.

7.3.2. Bit whirl speed

Method 1: Frequency domain

From equation (7.8) it is seen that the accelerometer signal should contain the angular
frequency (w ~ ). Hence by performing the autospectrum of either ag or a., one can

obtain the frequency difference (w — Q), and thus determine the whirl speed Q.

However, this method may be difficult to apply to the case of synchronous forward whirl
because (w — §2) = 0. In that case method 2 may be useful to overcome this difficulty.
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Method 2: Time domain

The bit center acceleration in the X direction (in X;0:Y} system) may be obtained from
equation (7.8) as follows:

agzs = (g1 + az2)/2 = —ARQ? cos(w — Q)¢ (7.10a)

The bit center acceleration in the Y; direction (in X;,0,Y; system) is obtained directly from
another radial accelerometer located on the bit center (7. = 0 in equation 7.5) :

ayp = ARQ? sin(w — Q)t (7.100)

Finally we have the unwrapped phase angle:

#(t) = arctan =2 + go = (w0 ~ Rt + b (7.11a)
zb
and its derivative:
d¢
prial Akt (7.118)

where ¢ is a constant depending on initial conditions.
Hence, (w — Q) can be deduced by performing a linear least square fitting on ¢(¢). If the bit

rotation speed w is known,  can be determined. Theoretically the unwrapped phase angle
should be constant in the case of synchronous forward whirl.

7.3.3 Whirl radius AR

According to equations (7.4) or (7.7), the bit center acceleration should be:
ay = ARQ? (7.12)

Hence, we have:
AR = a,/Q? (7.13)

ap = y/a%, + azb (7.14)

where a; is measured by:

7.3.4. Bit center trajectory

The bit center acceleration components obtained by the accelerometers are described by
equation (7.10). Performing twice time integration on ag and ay under the zero initial
conditions we obtain:

ARQ?

Ty = @07 cos(w — Q)t (7.15a)
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_ —ARQ?

However, the absolute bit center trajectory is the first part of equation (7.1), i.e.:

sin(w — Q)t (7.150)

X} = AR cos(Qt)

(7.16)
Y? = ARsin(t)
The difference between equation (7.15) and (7.16) means that one can not directly obtain
the actual bit center trajectory by twice integrating the accelerations azy and ayp measured
by the accelerometers mounted on the rotating bit body.

7.3.5. Practical considerations

In the drilling field, even under good controlled laboratory conditions, the outputs of ac-
celerometers may be polluted by noise and other excitations, particularly in the case of
backward whirl in which the bit shocks may be dominant.

Taking the noise and other excitations into consideration, the outputs of accelerometers
should be expressed as follows:

Az = —ARchos(w - Q)t — Ryw? + a,
azz = —ARQ? cos(w — Q)t + Ryw? + b, (7.17)
ay = ARQ? sin(w — Q)t + ¢,
Where ay,,b,,c, represent the terms induced by the noises and all other excitations.

If the outputs of accelerometers are of shock type, the terms of an,bn ¢, in equations (7.17)
may be dominant. Without any further treatment of raw data, the results obtained by the
above methods may be questionable. In practice, the following steps should be performed
to treat with the raw data provided by accelerometers:

(1) For the estimation of the bit rotation speed w, the high frequency contents of the
signals delivered by the accelerometers should be filtered using a digital lowpass filter before
using equation (7.9). This is because in equation (7.17) the term corresponding to the bit
rotation speed w, i.e. Rjw? is theoretically a constant, thus with zero frequency. In practice,
it is unlikely for the bit rotation speed to vary with time at high frequency. Hence, the cutoff
frequency may be taken very low for this purpose.

(2) For the estimation of frequency difference (w — ) and whirl radius AR, a lowpass
filter should also be used to filter the high frequency caused by other excitations. In this
case, however, the cutoff frequency should be taken higher than the frequency w — Q.

(3) Before using equation (7.13) to estimate the whirl radius AR, the constant terms
contained in ag and in ay, (equation 7.10) should be taken out as follows:

Ggp = Qgp — mean(az) (7.18a)
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ayb = ayp — mean(ay) (7.18b)

It is because that the geometry position of the accelerometers may have errors. This step
is very important because any error of a; will lead to the same order error on AR.

(4) Before integrating twice the bit center acceleration components azs, ayp to obtain the
bit center trajectory (equation 2.15) it is necessary to use the so called time domain average
technique to take out the random errors (white noise) contained in the raw data.

Since the frequency of white noise cover a very wide frequency range, the lowpass filter is
not able to filter it completely.

The principle of the time domain average technique is described as follows.

Let z(t) be the output of the accelerometer. It consists of a periodic signal f(t) and white
noise n(t), or:

z(t) = f(£) + n(t) (7.19)

Dividing the raw data z(t) into N intervals, written as z;(t),z2(t),.....,Zn(t), the length of
each interval, T, is the periodicity of f(¢). By summing all of the NV intervals, and noting
that the white noise n(t) is not correlated with z(t), we have:

z(t;) = Nf(t;) + VNn(t;) (7.20a)

Its average is:

y(t:) = f(t:) + n(t:)/VN (7.200)

Equation(19b) means that after performing the time average the white noise contained in
the raw data is decreased by v/N times. If we know exactly the periodicity of f(z), we may
track it from the raw data.

7.4. BIT WHIRL IDENTIFICATION BY CONTACT SENSORS
7.4.1. Working principle of contact sensor

The contact sensor has been recently developed by DBS and is specially used for bit whirl
identification.

The contact sensor is of micro resistivity type with DC signal excitation and has the shape
of a thin disk of radius 5 mm. A carbide steel cylinder with a beveled bottom is used for
construction of the central contact. Zirconia serves as a rugged material to insulate the
contact sensor from the bit body. The zirconia insulator is also beveled on the bottom and
is pressed fit into the bit body with an ?O” ring contacting the beveled portion. Then the
contact sensor is pressed fit into the zirconia insulator. The bit body serves as an electrical
return for the contact sensor.

The contact sensor itself may be considered as a perfect conductor and its surrounding
medium (usually oil based mud in drilling practice) may have very large resistivity (may be
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regarded as infinite). On the other hand, most of the formation resistivities are in the range
1 ~ 20 Ohms.

Based on these facts, the contact sensor works as an open circuit until it contacts the
formation. In other words, if no contact occurs between contact sensor and holewall, the
contact sensor will theoretically have no output. In practice, because the resistivity of the
mud is not infinite, the contact sensor will still have some output even in the case of no
contact. The relationship between the contact sensor output and the distance is strongly
nonlinear. Fig.7.1 depicts a calibration curve for the contact sensor.

10 T T T T T

Measured distance, mm

7
Resistance, Kilo Ohms

Fig.7.1: Calibration curve of contact sensor
——: Experimental data; — — —: Fitting curve

7.4.2, Bit whirl speed ()
* The number of hole lobes generated by the whirling bit is obtained in chapter 5:
N = abs(2jw — 1) (5.9)

If No represents the hitting frequency, which is defined as the number of the bit gauge
hitting the hole wall per second, then:

N =21Npfw (7.21)
In the case of backward whirl, () is negative compared to w, so we finally have:
w— 1 =21Np (7.22)
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Equation (7.22) tells us that the output signal of contact sensor should contain the frequency
(w—1). Hence, No may be estimated directly from the spectrum of output of contact sensors.
If the bit rotation speed w is known, § can be deduced.

7.4.3. Whirl radius AR and bit center trajectory

Fig.5.2 of chapter 5 is repeated here in order to show clearly the identification procedure.

Hole

Fig.5.2: Bit whirl motion

In the above figure, A, B, C represent three contact sensors on the bit body and A, Bi,
(C; are three corresponding points on the hole-wall at time t. The distance of A4;, BBy
and CC; may be measured by the contact sensors. In the bit coordinate system the points
A;, By, C1 have the following coordinates:
Xa1 = (Rp+ AAj)cos ag
Ya1 = (Ry + AAy)sin a,
Xp1 = (Rs + BB1)cos ap
YB1 = (Ry + BB1)sinayp
Xc1=(Ry+CCy)cosa,
Yc1 = (Rb + C '1)sin Qe

(7.23)

where R, is the bit radius and a,, @ and a,. are the angles of contact sensors in bit
coordinate system.
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The three points A;, By, C1 determine a circle with the hole center O. Let (X,,Y,) be the
hole center coordinate in X,0,Y; system and R be the hole radius, then (X,,Y,) and R,
can be obtained by solving the following equations:

2X41 2 -1\ /X, X5 +Yh
2Xc1 2Yo1 -1 q X&¢, +Y4

And the hole radius R, is obtained:

Rn=+X:+Y2—¢ (7.25)

The whirl radius AR is

AR = /X2 1 Y2 (7.26)

It means if we could stay at the bit center we would see that the hole center rotates around
bit center O, with radius AR and angular frequency (w—). The hole center trajectory seen
from the bit center is described by (X,(t), Yo(%)). In the case of synchronous forward whirl,
the hole center trajectory become a fixed point in bit coordinate system X,0;Y; because
its angular frequency (w — Q) equals to zero. The absolute bit center trajectory will follow
the same path as (X,(t),Y, (%)) but with the angular frequency §2. Hence we should have

$(t) = (w — Q)t + ¢o = arctan(Yo /X,) (7.27)
It is now also possible to obtain the whirl frequency by equation (7.27).

The above analysis shows that if the hole section is a perfect circle, three contact sensors
are enough to identify the whirl parameters. However, more than three contact sensors are
usually recommended in order to improve the identification results.

Assuming that the number of contact sensors is m, then we have the following equation
similar to equation (7.24):

2X41 2Ya -1 X +Y4
2Xp1 2Ym -1 X, X3 +Y3
2Xc1 2Ye1 -1 Y, = Xé‘l +YCZ‘1 (7.28(1,)
q

Xy Wy -1 X2, + Y2,
Equation (7.28a) may be simply written in the form:
[A)mx3Xsx1 = bsx1 (7.28b)
The least square solution of equation (7.28) is
X = ([A]"[A) A" D (7.29)

Equation (7.29) may give higher accuracy of the estimated whirl parameters than equation
(7.24).
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7.5. EXPERIMENTAL CONDITIONS AND IDENTIFICATION EXAMPLES
7.5.1. Experimental conditions

(a) Bit type: Antiwhirl PDC bit, PD5AW from DBS;

(b) Formation type: Belgian limestone;

(c) Sensor locations on the bit body: 8 contact sensors and 3 accelerometers are used.
Their locations on the bit body are shown in Fig.7.2. The contact sensors No. 1 is located
on the low friction pad. The accelerometers used can measure both DC and AC components;

(d) Operating conditions: for test 1, RPM = 270rpm and WOB = 8000 kg; for test 2,
RPM = 470rpm and WOB = 2000 kg;

(e) Drilling machine with maximal WOB=>50000 kg.

cn3 %00

270
CN.7

Fig.7.2: Locations of contact sensors and accelerometers

7.5.2 Identification examples
Example 1: Synchronous forward whirl (test 1)

Fig.7.3 shows the identification results using accelerometer signals. The estimated bit ro-
tation speed is about 271.5 rpm which is very close to the directly measured value (270

Tpm).
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Fig.7.3: Whirl parameters estimated by accelerometers (test 1)

The unwrapped phase angle shown in Fig.7.3c is obtained using equation (11a). A lowpass
filter with cutoft frequency 50 Hz is used here to filter the high frequency contents of the

signal. During most of the time, this angle varies only a little.

According to equation (7.11b), we have w — §} = 0, or w = ). It means that the bit is in
synchronous forward whirl.
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Fig.7.4: Whirl parameters estimated by contact sensors (test 1)
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Fig.7.4 shows the identification results using contact sensors signals. The contact sensors
No.1, No.3 and No.6 are used here. The unwrapped phase angle (Fig.7.4b) obtained by
equation (7.23) remain almost constant. The hole center trajectory seen from the bit center
(Fig.7.4c) is a fixed point in bit coordinate system. All these verify the above conclusions,
i.e., the bit is in synchronous forward whirl. '

Example 2: Backward whirl (test 2)

Fig.7.5 depicts all the results estimated by using accelerometer signals. The instantaneous
bit rotation speed estimated using equation (7.9) is 473 rpm which is very close to reordered
value (470 rpm). The lowpass filter with cutoff frequency 50 Hz is used here. From the
unwrapped phase angle of bit acceleration (Fig.7.5c) we obtain w — ) = 18.5Hz, hence, we
have = —10.6H 2. If we look at the autospectrum of bit acceleration (Fig.7.6) a very clear
frequency is about 18 Hz. We also obtain @ = —10.1 Hz. The negative value of () means
that the bit is in backward whirl.
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Fig. 7.5: Whirl parameters estimated by accelerometers (test 2)
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Fig.7.6: Auto spectrum of bit acceleration (test 2)
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Fig. 7.7: Whirl parameters estimated by contact sensors (test 2)
On the other hand, let us examine the identification results (Fig.7.7) obtained by contact
sensors. Two frequencies are very clear in the spectrum of contact sensor output. The first

one is close to the bit rotation speed. The second one is about 18 Hz which is the hitting
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frequency Ny defined earlier. Hence, according to equation (7.22), we have w — Q = 18Hz2,
or = —10.1H 2. It is almost the same as the value obtained by above accelerometers.

The hole center trajectory seen from the bit center is shown in Fig.7d. The hole center
rotates about the bit center. It is reasonable to conclude at this stage that the bit is in
backward whirl with whirl frequency 10.6 Hz.

7.5.3. Results analysis

The only difference between test 1 and test 2 lies in the operating conditions, or more
precisely the bit rotation speed (RPM) and the weight on bit (WOB). They are respectively:

(a) For test 1: RPM=270 rpm, WOB=8 tons;
(b) For test 22 RPM=470 rpm, WOB=2 tons;

It has been identified above that the bit is in backward whirl with = 10H z in test 2 and
in synchronous forward whirl with @ = w = 4.5H2 in test 1.

The above results show that the combination of WOB and RPM has a significant effect on
the whirl initiation. By systematically changing the WOB and RPM, it should be possible
to determine the conditions under which the bit whirl is initiated. The knowledge of the
condition is helpful to the driller on drilling field.

The results also show that the antiwhirl bit may work with backward whirl under some
conditions.

7.6. DISCUSSIONS AND CONCLUSIONS

It has been shown that there are two independent ways to identify downhole bit whirl while
drilling. One way is to use accelerometers mounted just above the bit. Three accelerom-
eters are enough to identify the whirl parameters. However, before the estimation can be
performed, lowpass filters should be employed to filter high frequency contents because the
accelerometers are very sensitive to other excitations. Furthermore, it is difficult to obtain
the bit center trajectory in a straightforward manner by integrating twice the acceleration
measured by the accelerometers mounted on the rotating bit body.

Another more powerful way is to use contact sensors which measure the distance between the
bit gauge and the hole-wall. Three contact sensors mounted on the bit gauge are theoretically
enough to estimate the bit whirl parameters. The use of more than three contact sensors may
improve the estimation accuracy. No filter is needed before the estimation. The bit center
trajectory may be obtained directly. Because their simplicity and reliability, the contact
sensors may be used for real time analysis in drilling field. However, the sensitivity and
stability problems associated with the contact sensor have to be improved before industrial
applications.
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CHAPTER 8:
CONCLUSIONS AND FUTURE WORK

8.1 Conclusions

On-line vibration control of drillstring systems is currently a hot research subject in the oil-
well drilling industry. Establishing simple and high accuracy dynamic model of drillstrings
is a critical issue in this area. This these study both the linear and nonlinear dynamics of
drillstrings. Following contributions have been made in the thesis:

(1) An improved dynamic stiffness method (IDSM) is proposed and applied to different
aspects of modal analysis. What makes the present approach useful for the modal analysis
of beam-like structures is that (a) A one-dimensional substructure can be always reduced
exactly to an equivalent element. (b) The master degrees of freedom in the model can be
arbitrarly selected. It has been demonstrated through several numerical examples that the
procedure proposed in this thesis benefits analysis and solution of the eigenvalues, forced
response and force identification problems for beam-like structures.

It is obvious that the IDSM is different from the transfer matrix method and from the
dynamic stiffness method. In transfer matrix method, the explicit equation of motion of
the system is disappeared. Only the boundary conditions are related by the global transfer
matrix. In the dynamic stiffness method, on the other hand, the internal degrees of freedom
in a substructure have to be used which leads to high order dimension. The present method
is also different from the Dokainish combination method. Firstly, the exact stiffness matrix
is used in the present method while in Dokainish combination method finite element matri-
ces are used. Secondly, the Dokainish’s method was actually an improved transfer matrix
method because the eigenproperties were obtained from the global transfer matrix. Only
eigenfrequencies, mode shapes and harmonic responses are available in Dokainish’s method.
In the IDSM, however, the explicit equation of motion is obtained and all the modal pa-
rameters such as eigenfrequencies, mode shapes, modal masses, modal stiffness, and FRF
matrix can be calculated.

(2) The lateral, axial and torsional vibrations of linear drillstring are exactly modeled
using the IDSM which leads to much more easy and more accurate determination of modal
parameters, buckling loads and dynamic responses than those available from the FEM ap-
proach. For lateral vibration, the drillstring is modeled as an equivalent two degrees of
freedom system for a given frequency. The axial force (WOB) has a significant influence on
the lateral vibration. Both the WOB and the curvature decrease the lateral natural frequen-
cies of the drillstring. Exact buckling loads may be conveniently calculated based on the
IDSM model. For axial and torsional vibrations, the drillstring is modeled as an equivalent
single or two degrees of freedom system depending on the research purposes. The established
models make it easy and accurate to predict bit forces and bit displacements during drilling
using the measurement data at the surface. The IDSM model for axial vibration benefits
also the design of shock absorber. A computer program (both Fortran code and Matlab
code) is developed which can be run on personal computers. The numerical examples have
demonstrated that the IDSM is special useful for the dynamic analysis of drillstrings in the
drilling fields.
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(3) Backward whirl due to bit-holewall contact has been investigated based on both
lumped model and finite element model. The contact element developed in the thesis can
simulate both static contact and dynamic contact between drillstring and holewall. Follow-
ing common features can be found from both lumped and FEM model:

(a) The bit-holewall contact can lead to steady-state backward whirl under
certain conditions. These conditions include a large bit side force and friction
coefficient. However, once initiated, the backward whirl motion does not
depend on the values of side force amplitude and friction coefficient.

(b) There is a critical friction force below which forward whirl occurs and
above which backward whirl occurs. In other words, there is a critical friction
coefficient (for a given formation stiffness) or a critical formation stiffness (for
a given friction coefficient). This fact may explain why PDC bit with low
friction pad can resist backward whirl and why backward whirl occurs often
in the hard formations.

From the lumped model it is found that there is a maximum possible backward whirl
frequency which is the eigenfrequency of joint drillstring-formation system. From the FEM
model, however, the maximum backward whirl frequency seems to be the second bending
natural frequency of the drillstring system. In addition, it is also found from the FEM
model that the backward whirl frequency, once initiated, is greater than the lowest bending
eigenfrequency of the BHA system in the case of contact. In other words, there is a lowest
backward whirl speed which is near to but larger than the first bending eigenfrequency of
the system. This fact is not predicted by the lumped model. These observations show that
the lumped model is too simple to completely describe the behaviors of the system.

(4) In this thesis several methods have been developed to identify bit whirl motion (in-
cluding whirl frequency, whirl radius, bit rotation speed, bit center trajectory) using ac-
celerometers and contact sensors. It has been shown that there are two independent ways
to identify downhole bit whirl while drilling. One way is to use accelerometers mounted just
above the bit. Three accelerometers are enough to identify the whirl parameters. However,
before the estimation can be performed, lowpass filters should be employed to filter high
frequency contents because the accelerometers are very sensitive to other excitations. Fur-
thermore, it is difficult to obtain the bit center trajectory in a straightforward manner by
integrating twice the acceleration.

Another more powerful way is to use contact sensors which measure the distance between the
bit gauge and the hole-wall. Three contact sensors mounted on the bit gauge are enough to
estimate the bit whirl parameters. No filter is needed before the estimation. The bit center
trajectory may be obtained directly. Because their simplicity and reliability, the contact
sensors may be used for real time analysis in drilling field. However, the sensitivity and
stability problems associated with the contact sensor have to be improved before industrial
applications.
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8.2 Future Work

It becomes obviously in recent years that dynamic analysis plays an important role in the
design of drillstring systems and drilling bit. However, many dynamic problems remain to
be solved. In the author’s opinion, following subjects may be challenging research areas:

(1) Dynamic modelling of bit-formation interaction. Modeling of the PDC bit-
formation interaction was initiated in 1987 in an effort to investigate the wear condition
of PDC cutters (Glowka, 1987). Later, 2D (Warren and Sinor,1989a,b) and 3D (Behr
and Warren, 1991, Langeveld, 1991, Chen and Géradin, 1993b) PDC bit-formation models
have been developed. Most of these models are based on the bit kinematics, that is, the
bit motion is predescribed. Although these models are successfully used to predict the
drilling forces, the combination with a full drillstring dynamic model is not completely
solved. Difficulties exist in updating the bottomhole condition and in convergence of time
integration. Undoubtedly, succesfully combination of bit-formation interaction model with
drillstring dynamic model will be helpful to understand more deeply the dynamic phenomena
of drillstring system, including backward whirl initiation, vibration coupling and stick-slip
vibration, and hence to improve the bit design.

(2) Vibration coupling in drillstring.  Strictly speaking, the axial, torsional and
lateral vibrations are coupled through drillstring large deformation and bit-formation inter-
action. The drillstring structure is peculiar in the sense that its diameter to length ratio is
very small so that it may be subject to very large static deflections. Therefore, the structure,
in general, cannot be considered as straight and planar. As a result, the axial, torsional
and lateral vibrations will be coupled through geometric non-linearity. The interdependent
drilling forces may induce another coupling phenomenon. The axial and lateral vibration
coupling has been studied by Shyu (1989). Obviously, more detailed researches are needed.

(3) Dynamic stabilities. Dynamic stability problems of drillstrings cover a large
number of topics. For example, the stabilities induced by fluctuations of WOB, TOB and
drilling fluid, the stabilities induced by non-constant rotation speed of drillstrings, the stabil-
ities induced by drillstring-holewall contact, and so on. Although work has been performed
in recent years, for example, Dunayevsky and Judzis (1985), Jansen (1993) and Heijden
(1993), the state of the art is far from perfect.

(4) Prediction of drilling direction using dynamic models.  Great achievements
have been made in the area of directional drilling through the contributions mainly made
by, among others, Millheim (1978a,b, 1979 a-d) and Ho (1986,1987,1988). These works are
based on static model and hence are unreliable to predict the azimuth of a well. Probably
the dynamics of the drillstrings, especially the dynamics of the BHA play an important role
in the undesired azimuth changes.
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Appendices A, B, C, D

APPENDIX A: Transfer matrices of some lumped elements
A.1: For Lateral Vibration

(1) A lumped stiffness k; with damping ¢;:

1 0 0 0

- 0 100

[Teel = ki +iweg 0 1 0

0 0 0 1

(2) A lumped mass m;

1 0 0O

. 0 10 0

[Tm] = mw? 0 1 0

0 0 01

where w is angular frequency.
A.2: For Axial Vibration

(1) A lumped stiffness k, with damping c,:
1= (1 Frm
[ch] - (0 1 )

(2) A lumped mass m,
a1 _ 1 0
[Tm] - (_maw2 1)

A.3: For Torsional Vibration

(1) A lumped stiffness k; with damping c;:
" 1 —i—
[ch] = (0 k:+1u-ws )

(2) A lumped polar mass moment J,

721= (3
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APPENDIX B: The matrices [A] and [N] in equation (4.8)
The non-zero elements of matrix [A ] are:

Ay =1 Ags = 1; Ay = g&g

Az = ‘f?é; Ass = g3 Az = b;

Agg = gb&n; Agr = a; As2 = 1.5 Aga = 1,

— 1 . _ 02, S
Ass = ggz; An = &g Are = 13

Agz = _—25&0; Agq = b; Agg = a;

. _ 1 1 . _ 92 92.
with @ = g7 - %6z(% ~ ®e)i b = ke ~ 5
the other elements being equal to zero.

Matrix [N] is obtained as follows:

[NV] = [Hy][Mp] ™
The matrix [Hp) takes the form
mi= (5
with the submatrices [H;],[H2]

C1 Cs Cs Cy
2aC2 ACi —MCi MCs

Uhl=1 e, e -Xo, -G

X0 NG NG MG

Cs Cs C7 CS

[ ACs ACs —MGCs MG
[Ha] =

XCs MCs —XCr —MCs
MNCs ACs NG X0

where C;, i=1,8, are constants

Ci1 = cosh A\ L,Cy = sinh Ay L,C3 = cos Ay L, C4 = sin ApL

Cs = cosh A\.L,Cg = sinh A.L,C7 = cos \yL,Cg = sin AL

and Ag,\p,\c,\g are the roots of equation (5).
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The matrix [M,] is similarly given by:

_ (M1 M,
)= (0 ) (B5)
with the submatrices [Mi],[M;]

1 0 1 0
0 X 0 A

)=l o _x o (B6)
0 X o0 -X
1 0 1 0
0 X 0 A

[MZ] = /\2 0 _)‘3 Od (B7)
0 X o =X

As a by product, the exact dynamic stiffness matrix [D] for a rotating shaft subject to axial
force can be obtained by rearranging the transfer matrix [T] using equation (2.15) of chapter
2.

Appendix C: Transfer Matrix for a Curved Beam

Following the procedure used in section 4.2.2 of Chapter 4, the transfer matrix for the curved
beam may be obtained:

[T = [B]*[L]|B] (C1)
The matrix [B] is:
1000
0100
[B] = a 0 b 0
0 ¢c 0 d
with
2 2
o= - b=dr o= G-k
d= g1 - véalt ~ o)
and R being the radius of the curvature.
The matrix [L] is given by:
(L) = [H][M]™ (C2)

with matrices [H] and [M]:

Ci C  Cs Cy
2C2 MCi —MCi MCs
M2Cp MG, -MC; -MCy
MG MG NGy -XCs

[H] =
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10 1 0
0 A 0 A
Ml=|y 7 _x o

0 X o =X
The four constants C;, i=1,4, are written in terms of
Ci = cosh\,L, C, = sinhA\;L, C3 =coshpL, C4= sinAL
where \,, Ay are the roots of equation:

M—fAl4g=0 (C3)

Appendix D: Stiffness matrix for buckling analysis

v+ vL —-n¢ 6L

[K]=ﬂ vL ol? -6L pL?
3|\ -n -6L v -—vL

6L BL? —vL al?

where a = (S - ZC), B=x(Z-5), v=a+p, y=x5Z2%,é=vandn=r.

(D1)

with x = p?/(2Z(1 - C) — Z%S), Z=1t$,C =cos$, S=singp, ¢=+20,
o=p/(2), t=1-s*p?, s=+/EI[KAGL?, p=./PL[EL

The other parameters have the same meaning as in Appendix A and B and C.
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