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This presentation compares interval and stochastic methods

for studying the impact of manufacturing variability in series production in sheet metal forming.



Outline
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■ Motivation.

■ Outline.

■ Interval and stochastic methods.

■ Application to sheet metal forming.

■ Conclusion.



Interval and stochastic methods
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Problem setting
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Raw materials variability:

• Material properties.

. . .

Process variability:

• Blank holder force.

• Initial dimensions.

• Friction.

. . .

Modeling limitations:

• Constitutive model.

• FE discretization.

. . .

Input variables.

→ →

Product variability:

• Final dimensions.

• Springback.

. . .

Prediction limitations:

• Numerical noise.

. . .

Output variables.

Input variables

(x1, x2, . . . , xm)
→

Mapping

y = g(x1, x2, . . . , xm)
→

Output variable

y
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GF ED@A BCStatement
of the problem

��Sensitivity analysis.
Process optimization.
Design optimization.

Model validation.

GF ED@A BCAnalysis
of variability
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Mechanical modeling.
Statistics.

GF ED@A BCPropagation
of variability

SS

Optimization.
Monte Carlo sampling.

Stochastic expansion (polynomial chaos).

·

• Intervals.

• Gaussian.

• Γ distribution.

. . .

blanc

blanc

The computational cost of both interval and stochastic methods can be lowered

via the use of a surrogate model as a substitute for a FE model or the real process.



Interval methods
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■ Characterization of variability:
blancblancblancblancblancblancblanc

Available information
Catalogue bounds
Production data

. . .

//
blancblancblancblancblancblancblanc

Intervals
[x1, x1], . . . , [xm, xm]

blanc
blanc

■ Propagation of variability:
blancblancblancblancblancblancblanc

Intervals
[x1, x1], . . . , [xm, xm]

blanc
optimization

// blancblancblancblancblancblancblanc
Interval
[y, y]

y = min
x1≤x1≤x1

...
xm≤xm≤xm

g(x1, . . . , xm) and y = max
x1≤x1≤x1

...
xm≤xm≤xm

g(x1, . . . , xm).

■ Sensitivity analysis:

◆ Local sensitivity descriptors, such as
∂y

∂x1

,
∂y

∂x1

, . . . ,
∂y
∂xm

,
∂y
∂xm

, and their variants.



Stochastic methods
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■ Characterization of variability:
blancblancblancblancblancblancblanc

Available information
Catalogue bounds
Production data

. . .

mechanical modeling
statistics

//
blancblancblancblancblancblancblanc

Probability density function
ρ(x1,...,xm)

blanc
blanc

■ Propagation of variability:
blancblancblancblancblancblancblanc

Probability density function
ρ(x1,...,xm)

blanc

Monte Carlo
// blancblancblancblancblancblancblanc

Probability density function
ρy

Generate an ensemble of samples of x1,. . . ,xm following probability density function ρ(x1,...,xm).

Map each sample of x1,. . . ,xm into the corresponding sample of y.

Deduce probability density function ρy and other statistical descriptors of y.

■ Sensitivity analysis:

◆ Local sensitivity descriptors, such as
∂y
∂x1

, . . . ,
∂y
∂xm

, and their variants.

◆ Global sensitivity descriptors that indicate the significance of the variability in each input.



Surrogate model
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Real process or FE model.

≈

blanc

blanc

blanc

y =
∑

(α1,...,αm)

c(α1,...,αm)x
α1

1 × . . .× xαm

m

blanc

Surrogate model.

blancblancblancblancblancblancblanc
Training set

y(1) = g(x
(1)
1 , . . . , x

(1)
m )

...

y(n) = g(x
(n)
1 , . . . , x

(n)
m )

blanc

regression
//

blancblancblancblancblancblancblanc
Surrogate model

blanc

y =

∑
c(α1,...,αm)x

α1

1 × . . .× x
αm

m g(1)

blanc
blanc

The computational cost of interval and stochastic methods can be lowered

via the use of a surrogate model as a substitute for the real process or a FE model.



Application to sheet metal forming
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Problem setting
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■ We consider an “omega” sheet metal forming process:

■ We assume that manufacturing variability manifests itself as variability in the ultimate tensile

stress Rm and the strain hardening coefficient n, and we are interested in the impact of this

manufacturing variability on a geometrical characteristic of the springback, which we denote by y:

Rm: ultimate tensile stress
n: strain hardening coefficient

// Sheet metal
forming process

// y: geometrical
characteristic of springback



Problem setting
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■ We assume that the following information is available:

61.1 mm

50.0 mm

49.9 mm

10 mm

10 mm

8.9 mm

11.1 mm

100°

100°

FE model.

600MPa ≤ Rm ≤ 700MPa

0.14 ≤ n ≤ 0.22

j [-] Rm [MPa] n [−]
1 659 0.164

...
...

...

25 646 0.162

Catalogue bounds (DP600). Production data (fictitious).
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■ In order to lower the computational cost, we construct a surrogate model to serve as a substitute for

the FE model in the interval and stochastic analyses:

FE model.

≈
550

650
750

0.12
0.18

0.24
6

10

14

Rm [MPa]n [-]

y
[m

m
]

We construct the surrogate model by using the FE model to evaluate for a small number of well

chosen values of Rm and n corresponding values of y and then applying a regression method:

550 650 750
0.12

0.18

0.24

Rm [MPa]

n
[-

]

550
650

750
0.12

0.18
0.24
6

10

14

Rm [MPa]n [-]

y
[m

m
]
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■ Characterization of variability

Available information

550 650 750
0.12

0.18

0.24

Rm [MPa]

n
[-

]

Catalogue bounds

//

Intervals
blanc
blanc
blanc
blanc

Rm in [600, 700]MPa

n in [0.14, 0.22]
blanc
blanc
blanc
blanc
blanc



Interval methods
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■ Propagation of variability

Intervals
Rm in [600, 700]MPa

n in [0.14, 0.22]
optimization

//
Interval

y in [7.93, 11.59]mm

n in [0.14, 0.22]

7.93mm = min
600≤Rm≤700
0.14≤n≤0.22

g(Rm, n) and 11.59mm = max
600≤Rm≤700
0.14≤n≤0.22

g(Rm, n).



Stochastic methods
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■ Characterization of variability

Available information

550 650 750
0.12

0.18

0.24

Rm [MPa]

n
[-

]

Catalogue bounds
Production data

mechanical modeling
statistics

//

Probability density function

550 650 750
0.12

0.18

0.24

Rm [MPa]

n
[-

]

P (600MPa ≤ Rm ≤ 700MPa) = 1
P (0.14 ≤ n ≤ 0.22 = 1



Stochastic methods
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■ Propagation of variability

Probability density function

550 650 750
0.12

0.18

0.24

Rm [MPa]

n
[-

]

blanc
blanc

Monte Carlo
//

Probability density function

7 8 9 10 11 12
0

0.25

0.5

0.75

1

y [mm]

P
D

F
[1

/m
m

]

P (7.93mm ≤ y ≤ 11.59mm) = 10%
P (9.16mm ≤ y ≤ 10.84mm) = 95%

We generated an ensemble of samples of Rm and n following their probability density function,

mapped each sample of Rm and n into a corresponding value of y, and applied mathematical

statistics method to deduce the probability density function and other statistical descriptors of y:

550 650 750
0.12

0.18

0.24

Rm [MPa]

n
[-

]

550
650

750
0.12

0.18
0.24
6

10

14

Rm [MPa]n [-]

y
[m

m
]



Stochastic methods

ICOMP, Liège, Belgium 18 / 20

■ Sensitivity analysis

In addition to a local sensitivity analysis, for which we do not show results here, stochastic methods

allow a global sensitivity analysis, which can indicate the significance of the variability in each input:

Rm
n0

0.1

0.2

S
ig

n
ifi

c
a
n
c
e

[m
m

2
]

A global sensitivity analysis based on the analysis-of-variance method, about which we do not

provide details here, indicates that the variability in Rm is most significant in inducing variability in y.



Stochastic methods
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■ Interval and stochastic methods involve different representations of variability:

◆ Intervals describe ranges of values.

◆ Probability density functions functions describe frequencies of occurrence.

■ Interval and stochastic methods require different types of information to be available:

◆ Interval methods require that the available information allows the ranges of values of the

variable properties of the manufacturing process to be bounded.

◆ Stochastic methods require that the available information allows the frequencies of occurrence

of the variable properties of the manufacturing process to be modeled.

■ Interval and stochastic methods provide different types of insight:

◆ Interval methods describe the impact of the manufacturing variability in terms of ranges of

values for properties of the formed object.

◆ Stochastic methods describe the impact of the manufacturing variability in terms of frequencies

of occurrence of properties of the formed object..

■ The computational cost of both interval and stochastic methods can be lowered via the use of a

surrogate model as a substitute for a FE model or the real process.
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