ICOMP International Conference on COmputational methods in Manufacturing Processes

Comparison of interval and stochastic methods for uncertainty quantification in metal forming

M. Arnst, K. Liegeois, R. Boman, and J.-P. Ponthot

May 18, 2016

Motivation

This presentation compares interval and stochastic methods for studying the impact of manufacturing variability in series production in sheet metal forming.

Outline

Motivation.

Outline.

Interval and stochastic methods.

Application to sheet metal forming.

Conclusion.

Interval and stochastic methods

Problem setting

Raw materials variability:

• Material properties.

Process variability:

- Blank holder force.
- Initial dimensions.
- Friction.

. . .

. . .

. . .

Modeling limitations:

- Constitutive model.
- FE discretization.

 \rightarrow

Product variability:

- Final dimensions.
- Springback.

. . .

. . .

Prediction limitations:

• Numerical noise.

Input variables

 (x_1, x_2, \ldots, x_m)

 $\begin{array}{c} \textbf{Mapping} \\ y = g(x_1, x_2, \dots, x_m) \end{array}$

Output variable

y

Overview

The computational cost of both interval and stochastic methods can be lowered via the use of a surrogate model as a substitute for a FE model or the real process.

Characterization of variability:

Available information Catalogue bounds Production data

. . .

Intervals $[\underline{x}_1, \overline{x}_1], \dots, [\underline{x}_m, \overline{x}_m]$

Propagation of variability:

 $\begin{bmatrix} \underline{x}_1, \overline{x}_1 \end{bmatrix}, \dots, \begin{bmatrix} \underline{x}_m, \overline{x}_m \end{bmatrix} \xrightarrow{\text{optimization}} \begin{bmatrix} \text{Interval} \\ [y, \overline{y}] \end{bmatrix}$

$$\underline{y} = \min_{\underline{x}_1 \le x_1 \le \overline{x}_1} g(x_1, \dots, x_m) \text{ and } \overline{y} = \max_{\underline{x}_1 \le x_1 \le \overline{x}_1} g(x_1, \dots, x_m).$$

$$\vdots$$

$$\underline{x}_m \le x_m \le \overline{x}_m$$

$$\vdots$$

$$\underline{x}_m \le \overline{x}_m$$

Sensitivity analysis:

• Local sensitivity descriptors, such as $\frac{\partial y}{\partial x_1}$, $\frac{\partial y}{\partial \overline{x}_1}$, ..., $\frac{\partial \overline{y}}{\partial \overline{x}_m}$, $\frac{\partial \overline{y}}{\partial \overline{x}_m}$, and their variants.

Generate an ensemble of samples of x_1, \ldots, x_m following probability density function $\rho_{(x_1, \ldots, x_m)}$. Map each sample of x_1, \ldots, x_m into the corresponding sample of y. Deduce probability density function ρ_y and other statistical descriptors of y.

Sensitivity analysis:

- Local sensitivity descriptors, such as $\frac{\partial y}{\partial x_1}, \ldots, \frac{\partial y}{\partial x_m}$, and their variants.
- Global sensitivity descriptors that indicate the significance of the variability in each input.

$$\approx$$

$$y = \sum_{(\alpha_1, \dots, \alpha_m)} c_{(\alpha_1, \dots, \alpha_m)} x_1^{\alpha_1} \times \dots \times x_m^{\alpha_m}$$

Real process or FE model.

Training set $y^{(1)} = g(x_1^{(1)}, \dots, x_m^{(1)})$ \vdots $y^{(n)} = g(x_1^{(n)}, \dots, x_m^{(n)})$ Surrogate model $y = \sum c_{(\alpha_1, \dots, \alpha_m)} x_1^{\alpha_1} \times \dots \times x_m^{\alpha_m}$

The computational cost of interval and stochastic methods can be lowered via the use of a surrogate model as a substitute for the real process or a FE model.

Application to sheet metal forming

Problem setting

We consider an "omega" sheet metal forming process:

We assume that manufacturing variability manifests itself as variability in the ultimate tensile stress R_m and the strain hardening coefficient n, and we are interested in the impact of this manufacturing variability on a geometrical characteristic of the springback, which we denote by y:

We assume that the following information is available:

FE model.

j [-]	$R_{\sf m}$ [MPa]	$n\left[- ight]$
1	659	0.164
	•	:
25	646	0.162

Production data (fictitious).

 $600 \,\mathrm{MPa} \leq R_{\mathrm{m}} \leq 700 \,\mathrm{MPa}$ $0.14 \leq n \leq 0.22$

Catalogue bounds (DP600).

ICOMP, Liège, Belgium

In order to lower the computational cost, we construct a surrogate model to serve as a substitute for the FE model in the interval and stochastic analyses:

We construct the surrogate model by using the FE model to evaluate for a small number of well chosen values of R_m and n corresponding values of y and then applying a regression method:

Interval methods

Characterization of variability

Interval methods

Propagation of variability

$$7.93\,\mathrm{mm} = \min_{\substack{600 \le R_{\mathrm{m}} \le 700\\0.14 \le n \le 0.22}} g(R_{\mathrm{m}}, n) \quad \text{and} \quad 11.59\,\mathrm{mm} = \max_{\substack{600 \le R_{\mathrm{m}} \le 700\\0.14 \le n \le 0.22}} g(R_{\mathrm{m}}, n).$$

Stochastic methods

Characterization of variability

We generated an ensemble of samples of R_m and n following their probability density function, mapped each sample of R_m and n into a corresponding value of y, and applied mathematical statistics method to deduce the probability density function and other statistical descriptors of y:

Stochastic methods

Sensitivity analysis

In addition to a local sensitivity analysis, for which we do not show results here, stochastic methods allow a global sensitivity analysis, which can indicate the significance of the variability in each input:

A global sensitivity analysis based on the analysis-of-variance method, about which we do not provide details here, indicates that the variability in R_m is most significant in inducing variability in y.

Stochastic methods

Interval and stochastic methods involve different representations of variability:

- Intervals describe ranges of values.
- Probability density functions functions describe frequencies of occurrence.

Interval and stochastic methods require different types of information to be available:

- Interval methods require that the available information allows the ranges of values of the variable properties of the manufacturing process to be bounded.
- Stochastic methods require that the available information allows the frequencies of occurrence of the variable properties of the manufacturing process to be modeled.
- Interval and stochastic methods provide different types of insight:
 - Interval methods describe the impact of the manufacturing variability in terms of ranges of values for properties of the formed object.
 - Stochastic methods describe the impact of the manufacturing variability in terms of frequencies of occurrence of properties of the formed object..
- The computational cost of both interval and stochastic methods can be lowered via the use of a surrogate model as a substitute for a FE model or the real process.

References and acknowledgements

L. Papeleux and J.-P. Ponthot. Finite element simulation of springback in sheet metal forming. Journal of Materials Processing Technology, 125–126:785–791, 2002.

M. Arnst and J.-P. Ponthot. An overview of nonintrusive characterization, propagation, and sensitivity analysis of uncertainties in computational mechanics. International Journal for Uncertainty Quantification, 4:387–421, 2014.

M. Arnst, B. Abello Alvarez, J.-P. Ponthot, and R. Boman. Itô-SDE-based MCMC method for Bayesian characterization and propagation of errors associated with data limitations. SIAM/ASA Journal on Uncertainty Quantification, Submitted, 2016.

Support of ArcelorMittal and support of the University of Liège through a starting grant are gratefully acknowledged.