Solar-based ORC power systems

by Rémi Dickes
Context

Solar Thermal Power:

Organic Rankine cycle

Ivanpah CSP plant (392 MWe)

< 1 MWₑ

1 MWₑ

10 MWₑ

100 MWₑ

1000 MWₑ

Steam Rankine cycle

Ivanpah CSP plant (392 MWe)

Solar field

Power Unit

Thermal Energy Storage

STG CSP plant (3kWe)
- 1st operational ORC
- Built by Frank Shuman
- Philadelphia (USA), 1907
- “Hot box” collector, 100 m²
- Direct vapor of ether at 115°C
- 2.5 kW ORC
- Irrigation pump

Ref: [1]
Presentation structure

1. Organic Rankine Cycle
2. Solar field and collectors
3. Thermal energy storage
4. Fields of application
5. Modelling tools
2. Organic Rankine Cycle
Rankine cycle – the basics

Thermodynamic cycle in 4 steps:
- 1-2 : liquid compression ($P_{\text{low}} \rightarrow P_{\text{high}}$)
- 2-3 : evaporation (Liquid → Vapor)
- 3-4 : vapor expansion ($P_{\text{high}} \rightarrow P_{\text{low}}$)
- 4-1 : condensation (Vapor → Liquid)

Result: $\dot{W}_{\text{net}} = \dot{W}_{\text{exp}} - \dot{W}_{\text{pp}} > 0$

Working medium: water … or organic fluid
Why going organic?

+ Dry expansion \rightarrow no need for superheating
+ Lower boiling point \rightarrow permit to apply Rankine cycle with low temperature heat source
+ Lower evaporating pressure \rightarrow safer and less complex
+ Simpler boiler architecture \rightarrow no need of steam drum + recirculation (single HEX ok)
+ Higher density at same condensing temperature \rightarrow smaller components size
+ Supatmospheric condensing pressure \rightarrow no infiltration

- Higher relative pump consumption (Back Work Ratio)
- Fluid characteristics (cost, availability, safety properties)
- Lower thermal efficiency

ORC suitable for low temperature OR/AND small capacity systems
Organic fluids

- Organic fluid = contains Carbon → very large variety (CFC, HFC, HCFC, HC,…)
- Proper fluid selection is among the most important design parameter
- Common working fluid in experimental facilities:
 - R134a
 - R245fa
 - SES36
 - n-pentane
 - Toluene

- Characteristics to account for:
 - Thermodynamic performance
 - High vapor density (component size)
 - Acceptable evaporating pressure (safety)
 - Condensing pressure > 1 atm (infiltration)
 - Temperature stability
 - Melting point (vs. T_{amb})
 - Toxicity/Flammability
 - ODP/GWP
 - Cost, availability
 - Integration with components
Expansion devices

Positive-displacement expander

- Low rotational speed
- Wet expansion
- Availability (e.g. HVAC)
- Cost

 - Fixed built-in r_v
 - Limitation in supply conditions (T/P)

 Low capacity ORC (<50 kWe)

 Scroll [0.1-10 kW]
 Screw [5-100 kW]
 Piston [1-20 kW]

Turbomachinery

- Compactness/weight
- High efficiency
- Off-design performance

- High rotational speed
- Design complexity
- Dry expansion only

Axial [1kW -1MW]
Radial

High (... and low) capacity ORC
Expansion devices

Positive-displacement expander

- Scroll
 - [0.1-10 kW]
- Screw
 - [5-100 kW]
- Piston
 - [1-20 kW]

Turbomachinery

- Axial
 - [1 kW - 1 MW]
- Radial

+ Compactness/weight
+ High efficiency
+ Off-design performance

- High rotational speed
- Design complexity
- Dry expansion only

High (... and low) capacity ORC

- Fixed built-in \(r_v \)
- Limitation in supply conditions (T/P)

Low capacity ORC (<50 kWe)
Operating conditions

Screw expander (n-pentane)

Boundary limits:

1. $T_{ev} < T_{cd}$
 Pressure ratio > 1

2. $T_{ev} > T_c$
 Subcritical ORC

3. $\varepsilon_{in} < 0.9$
 Limited under/over expansion losses

4. $VC > 0.5$

See Ref [2] for further information
Operating conditions

Screw expander

Scroll expander

Turbine

See Ref [2] for further information
System architecture

Recuperative ORC

- ϵ_{ORC}
- η_{SF}
- $? \epsilon_{\text{net}}$

Cascaded expansion

- $Rv_{\text{tot}} = rv_1 \times rv_2$
- Lower expansion losses
- Careful with design!

Parallel expansion

- 3 modes:
 - Big expander
 - Small expander
 - Both
- Better compliance of expanders performance in part-load conditions
Solar field \rightarrow Thermal Energy Storage \rightarrow ORC \rightarrow Solar field
4. Solar field and collectors
Solar collectors

- Non-concentrating collectors
 - Flat Plate Collectors (FPC)
 - Evacuated Tube Collectors (ETC)
 - Salt-Gradient Solar Pond (SGSP)

- Concentrating collectors
 - Compound Parabolic Collector (CPS)
 - Linear Fresnel Collector (LFC)
 - Parabolic Trough Collector (PTC)
 - Parabolic Dish Reflector (PDR)
 - Solar Central Tower (SCT)
Solar collectors

- Non-concentrating collectors
 - Flat Plate Collectors (FPC)
 - Evacuated Tube Collectors (ETC)
 - Salt-Gradient Solar Pond (SGSP)

- Concentrating collectors
 - Compound Parabolic Collector (CPC)
 - Linear Fresnel Collector (LFC)
 - Parabolic Trough Collector (PTC)
 - Parabolic Dish Reflector (PDR)
 - Solar Central Tower (SCT)
Solar collectors

- Non-concentrating collectors
 - Flat Plate Collectors (FPC)
 - Evacuated Tube Collectors (ETC)
 - Salt-Gradient Solar Pond (SGSP)

- Concentrating collectors
 - Compound Parabolic Collector (CPC)
 - Linear Fresnel Collector (LFC)
 - Parabolic Trough Collector (PTC)
 - Parabolic Dish Reflector (PDR)
 - Solar Central Tower (SCT)

Power plant example
- Borj Cedria, Tunisia (1982)
- 760 m² of FPCs
- Water at 98 °C
- 16 kWe ORC unit (Turboden)
- Single stage turbine
- WF : C₂Cl₄

Ref: [3]
Solar collectors

- Non-concentrating collectors
 - Flat Plate Collectors (FPC)
 - Evacuated Tube Collectors (ETC)
 - Salt-Gradient Solar Pond (SGSP)

- Concentrating collectors
 - Compound Parabolic Collector (CPC)
 - Linear Fresnel Collector (LFC)
 - Parabolic Trough Collector (PTC)
 - Parabolic Dish Reflector (PDR)
 - Solar Central Tower (SCT)
Solar collectors

- Non-concentrating collectors
 - Flat Plate Collectors (FPC)
 - Evacuated Tube Collectors (ETC)
 - Salt-Gradient Solar Pond (SGSP)

- Concentrating collectors
 - Compound Parabolic Collector (CPC)
 - Linear Fresnel Collector (LFC)
 - Parabolic Trough Collector (PTC)
 - Parabolic Dish Reflector (PDR)
 - Solar Central Tower (SCT)

Power plant example

- Busan, Korea (2015)
- 33 m² of ETCs
- Water at 120 °C
- 1.5 kWe ORC unit (R&D)
- R245fa
- Scroll expander

Ref: [4]
Solar collectors

- **Non-concentrating collectors**
 - Flat Plate Collectors (FPC)
 - Evacuated Tube Collectors (ETC)
 - **Salt-Gradient Solar Pond (SGSP)**

- **Concentrating collectors**
 - Compound Parabolic Collector (CPC)
 - Linear Fresnel Collector (LFC)
 - Parabolic Trough Collector (PTC)
 - Parabolic Dish Reflector (PDR)
 - Solar Central Tower (SCT)
Solar collectors

- Non-concentrating collectors
 - Flat Plate Collectors (FPC)
 - Evacuated Tube Collectors (ETC)
 - **Salt-Gradient Solar Pond (SGSP)**

- Concentrating collectors
 - Compound Parabolic Collector (CPC)
 - Linear Fresnel Collector (LFC)
 - Parabolic Trough Collector (PTC)
 - Parabolic Dish Reflector (PDR)
 - Solar Central Tower (SCT)

Power plant example
- El Paso (Texas), USA (1986)
- 3300 m² solar pond (3.2m depth)
- Brine at 90°C
- 100 kWe ORC unit (Ormat)

Ref: [5]
Solar collectors

- Non-concentrating collectors
 - Flat Plate Collectors (FPC)
 - Evacuated Tube Collectors (ETC)
 - Salt-Gradient Solar Pond (SGSP)

- Concentrating collectors
 - **Compound Parabolic Collector (CPC)**
 - Linear Fresnel Collector (LFC)
 - Parabolic Trough Collector (PTC)
 - Parabolic Dish Reflector (PDR)
 - Solar Central Tower (SCT)
Solar collectors

- Non-concentrating collectors
 - Flat Plate Collectors (FPC)
 - Evacuated Tube Collectors (ETC)
 - Salt-Gradient Solar Pond (SGSP)

- Concentrating collectors
 - Compound Parabolic Collector (CPC)
 - Linear Fresnel Collector (LFC)
 - Parabolic Trough Collector (PTC)
 - Parabolic Dish Reflector (PDR)
 - Solar Central Tower (SCT)

Power plant example
- Miyagi, Japan (2005)
- 5.75 m² CPC
- Water at 140 °C
- 0.5 kWe ORC unit (R&D)
- R113 (despite of high ODP..)
- Scroll expander

Ref: [6]
Solar collectors

- Non-concentrating collectors
 - Flat Plate Collectors (FPC)
 - Evacuated Tube Collectors (ETC)
 - Salt-Gradient Solar Pond (SGSP)

- Concentrating collectors
 - Compound Parabolic Collector (CPC)
 - Linear Fresnel Collector (LFC)
 - Parabolic Trough Collector (PTC)
 - Parabolic Dish Reflector (PDR)
 - Solar Central Tower (SCT)
Solar collectors

- Non-concentrating collectors
 - Flat Plate Collectors (FPC)
 - Evacuated Tube Collectors (ETC)
 - Salt-Gradient Solar Pond (SGSP)

- Concentrating collectors
 - Compound Parabolic Collector (CPC)
 - Linear Fresnel Collector (LFC)
 - Parabolic Trough Collector (PTC)
 - Parabolic Dish Reflector (PDR)
 - Solar Central Tower (SCT)

Power plant example
- Ottana (Sardinia), Italy (2015)
- 8400 m² Frena LFC
- Diathermic oil at 260 °C
- 600 kWe ORC unit (Turboden 6HR)

Ref: [7]
Solar collectors

- Non-concentrating collectors
 - Flat Plate Collectors (FPC)
 - Evacuated Tube Collectors (ETC)
 - Salt-Gradient Solar Pond (SGSP)

- Concentrating collectors
 - Compound Parabolic Collector (CPC)
 - Linear Fresnel Collector (LFC)
 - **Parabolic Trough Collector (PTC)**
 - Parabolic Dish Reflector (PDR)
 - Solar Central Tower (SCT)
Solar collectors

- Non-concentrating collectors
 - Flat Plate Collectors (FPC)
 - Evacuated Tube Collectors (ETC)
 - Salt-Gradient Solar Pond (SGSP)

- Concentrating collectors
 - Compound Parabolic Collector (CPC)
 - Linear Fresnel Collector (LFC)
 - Parabolic Trough Collector (PTC)
 - Parabolic Dish Reflector (PDR)
 - Solar Central Tower (SCT)

Power plant example: Sun2Power
- University of Liège, Belgium (2016)
- 70 m² PTC (T13 from STG International)
- Thermal oil at 175°C (2bar)
- 3 kWe ORC unit (R&D from ULg)
 - R245fa
 - Scroll Expander
 - Air-cooled condenser
 - CPHEX, recuperative ORC

Ref: [8] + www.sun2power.eu
Solar collectors

- Non-concentrating collectors
 - Flat Plate Collectors (FPC)
 - Evacuated Tube Collectors (ETC)
 - Salt-Gradient Solar Pond (SGSP)

- Concentrating collectors
 - Compound Parabolic Collector (CPC)
 - Linear Fresnel Collector (LFC)
 - Parabolic Trough Collector (PTC)
 - Parabolic Dish Reflector (PDR)
 - Solar Central Tower (SCT)
Solar collectors

- Non-concentrating collectors
 - Flat Plate Collectors (FPC)
 - Evacuated Tube Collectors (ETC)
 - Salt-Gradient Solar Pond (SGSP)

- Concentrating collectors
 - Compound Parabolic Collector (CPC)
 - Linear Fresnel Collector (LFC)
 - Parabolic Trough Collector (PTC)
 - Parabolic Dish Reflector (PDR)
 - Solar Central Tower (SCT)

Power plant example
- Pasadena (California), USA (1978)
- 117 m² of PDR
- Direct steam generation (Toluene) at 420 °C
- 30 kWe ORC unit (R&D)

Ref: [9]
Solar collectors

- Non-concentrating collectors
 - Flat Plate Collectors (FPC)
 - Evacuated Tube Collectors (ETC)
 - Salt-Gradient Solar Pond (SGSP)

- Concentrating collectors
 - Compound Parabolic Collector (CPC)
 - Linear Fresnel Collector (LFC)
 - Parabolic Trough Collector (PTC)
 - Parabolic Dish Reflector (PDR)
 - Solar Central Tower (SCT)
Solar collectors

- Non-concentrating collectors
 - Flat Plate Collectors (FPC)
 - Evacuated Tube Collectors (ETC)
 - Salt-Gradient Solar Pond (SGSP)

- Concentrating collectors
 - Compound Parabolic Collector (CPC)
 - Linear Fresnel Collector (LFC)
 - Parabolic Trough Collector (PTC)
 - Parabolic Dish Reflector (PDR)
 - Solar Central Tower (SCT)

Power plant example
- Kamboinsé, Burkina Faso (2016)
- 180 m² of heliostats
- Vegetable oil at 200 °C
- 10 kWe ORC unit (Infinity Turbine)

Ref: [10]
Solar field architecture

Direct Vapor Generation

- Avoid one heat delivery HEX
- No parasitic pump losses
- Simple architecture
- High-pressure in solar receiver
- Larger volume of costly/unsafe WF

Intermediate Heat Transfer Fluid

- Low-pressure in solar receivers
- Higher safety and control
- Additional HEX
- Parasitic pump consumption

- Small-scale (domestic) systems
- Parabolic dish / Flat plate collector

- Medium- and large scale systems
- Linear collectors (CPC/PTC/LFC)
 - **Proper selection of HTF**

- Water
- Thermal oil
4. Thermal Energy Storage
Thermal Energy Storage

- Sensible TES
- Latent TES
- Thermochemical TES
Thermal Energy Storage

- **Sensible TES**
- **Latent TES**
- **Thermochemical TES**

Sensible thermal energy storage

Single buffer:

- $\rho_{\text{TES}} \sim \text{kJ/m}^3$
- Possibility of filler material

Two-tank direct

Two-tank indirect

Thermocline direct

Thermocline indirect
Latent thermal energy storage

\[A_{\text{phase},1} \leftrightarrow A_{\text{phase},2} \]

- Mostly solid-liquid phase-change
- Often with encapsulation (avoid mixing with HTF)
- Higher energy density ($\rho_{\text{TES}} \sim \text{MJ/m}^3$)
- Quasi-isothermal process
- Change in thermal conductivity (dis/charging time)
- Storage media:
 - Organic: paraffins/ fatty acids
 - Inorganic : salt hydrates
 - Eutectic mixtures
Thermal Energy Storage

- Sensible TES
- Latent TES
- Thermochemical TES

Thermochemical thermal energy storage

\[AB \leftrightarrow A + B \]

- Highest energy density \((\rho_{\text{TES}} \sim \text{GJ/m}^3)\)
- Quasi-isothermal process
- Storage at ambient temperature \(\rightarrow\) lossless
- Large temperature range of application

- Examples:

<table>
<thead>
<tr>
<th>Chemical reaction</th>
<th>Temperature range</th>
<th>Energy density</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{FeCO}_3 \leftrightarrow \text{FeO} + \text{CO}_2)</td>
<td>180 °C-200°C</td>
<td>2.6 GJ/m³</td>
</tr>
<tr>
<td>(\text{CH}_3\text{OH} \leftrightarrow \text{CO} + 2\text{H}_2)</td>
<td>200°C - 250°C</td>
<td>-</td>
</tr>
<tr>
<td>(\text{Ca(OH)}_2 \leftrightarrow \text{CaO} + \text{H}_2\text{O})</td>
<td>400 °C-600°C</td>
<td>3 GJ/m³</td>
</tr>
<tr>
<td>(\text{CaCO}_3 \leftrightarrow \text{CaO} + \text{CO}_2)</td>
<td>800°C -900 °C</td>
<td>4.4 GJ/m³</td>
</tr>
<tr>
<td>(6\text{Mn}_2\text{O}_3 \leftrightarrow 4\text{Mn}_3\text{O}_4 + \text{O}_2)</td>
<td>900°C-1000°C</td>
<td>1 GJ/m³</td>
</tr>
</tbody>
</table>
5. Fields of application

- Solar field
- Thermal Energy Storage
- ORC

Diagram showing the interconnection between solar field, thermal energy storage, and ORC.
Application – Power Generation

Grid-connected power generation:

- Small-scale solar ORCs are unlikely to be developed for grid-connected generation
- CSP for grid-scale application is more attractive with high capacity and high temperature systems (steam, Brayton or sCO$_2$)

- Two examples:
 - Beith Ha’Arava (Dead Sea), Israel
 - 1985-1986 (continuously) – stop in 1989
 - 250 000 m2 solar pond (brine water at 95°C)
 - 5 MWe ORC unit (Ormat)
 - Ref: [11]
 - Saguaro (Arizona), USA
 - 2006-Now
 - 10300 m2 of PTC (thermal oil at 300 °C)
 - 1 MWe ORC unit (Ormat)
 - n-pentane
 - Ref: [12]
Application – Power Generation

Distributed power generation:

- Small solar ORCs much more competitive:
 - Robustness and ease of local development/exploitation
 - Mass manufactured component from HVAC industry
 - Polygeneration (mechanical power, electricity, hot, cold)
 - Storage + control → good dispatchability
 - Hybridizing with local biomass or genset WHR

- Example of one STG International* power system:
 - Matjotjo Village, Lesotho
 - 70 m² PTC field + 3 kWe ORC unit (MEG at 150°C)
 - Single buffer TES
 - R245fa with scroll expander
 - Health clinic with 50-80 partients
 - 24 kWhₑ and 380 m³ hot water per day
 - Ref: [13]

* http://www.stginternational.org
Fields of application - Desalination

Desalination (or water purification)

- ORC + Reverse Osmosis (RO) system

- Example
 - Marathon, Greece
 - 216 m² of ETC (water at 78°C)
 - 2.5 kW ORC with R134a
 - Single scroll expander
 - RO unit 0.3 m³/h of fresh water (15% recovery)
 - Ref: [14]
Fields of application - Irrigation

- ORC + irrigation water pump
- Good match between solar resource and irrigation requirements
- Examples
 - Coolidge, Arizona (USA)
 - 1972-1982
 - 2140 m² PTC (thermal oil at 288°C)
 - 200 kWe ORC unit
 - Toluene, turbine, 20% net
 - Ref: [15]
 - Gila Bend, Arizona (USA)
 - 1977
 - 537 m² PTC (water at 155°C)
 - 37 kWₘ ORC unit
 - R113, turbine
 - Ref: [16]
Fields of application – Hot / Cold generation

- Hot generation: solar collectors / condenser heat recovery
- Cold generation: ORC + ejector
- Hybrid CHP systems: ORC/HP/direct heating

Ref: [17]
Fields of application – Hybridizing

Industrial WHR-solar ORC

Example:

- Aït Baha, Marocco
- 6200m² PTC (air at 600°C)
- 2 MWe (Turboden 18HR)
- Fluid : HMDS
- Air-cooled condenser
- TES : Sensible (12hours)

- Ref: [18]
Fields of application – Hybridizing

Geothermal-solar ORC

Example:

- Stillwater hybrid geothermal-solar power plant
- Fallon, Nevada (USA)
- 2 MWe CSP + 33 MWe geoth. + 26 MWe PV
- 660 m² of PTC (water at 155°C)
- WF: Isobutane
- Air-cooled / 4 turbines

Ref: [19]
Fields of application – Hybridizing

Biomass-solar ORC

Example:

- Rende CSP-biomass power plant (Italy)
- Retrofit of existing 14 MWe biomass ORC with CSP (total 15 MWe)
- 9800 m² of LFC (thermal oil at 280°C)
- No information on the ORC (?)
- No TES

- Ref: [20]
6. Modelling tools
Modelling tools

- Modelling crucial in
 - Thermo-economic studies
 - System design and sizing optimization
 - Off-design performance assessment
 - Control definition

- Major distinction between
 - Steady-state modelling: equilibrium conditions
 - Dynamic modelling: accounts for mass and energy accumulation in transients operation

- Time consuming process for model development but open-access libraries exist
Modelling tools – Steady-state modelling

‘ORCmKit’ modelling library

- Open-source modelling library dedicated to ORCs
- Initiated by ULg and UGhent but aimed for entire community
- 3 modelling platform: EES/Python/Matlab
- Models for HEX, expander, pump, pipelines, ORC,…
- Calibration and graphical tools
- Reference:
 - https://github.com/orcmkit/ORCmKit
 - Dickes et al., 2016. ORCmKit: an open-source library for organic Rankine cycle modelling and analysis, in: Proceedings of ECOS 2016, Portoroz (Solvenia), 2016. (ref: [21])
Modelling tools – Dynamic modelling

‘ThermoCycle’ Modelica library

- Open-source Library for the modelling of thermal systems (including SORCs)
- Software: Dymola (Modelica language)
- Special focus on thermodynamic cycles
- Component and cycle models available
- Cross-Platform
- Computational efficiency and robustness
- Websites: thermocycle.net modelica.org/libraries
Thanks for your attention
Any questions?

Rémi Dickes

rdickes@ulg.ac.be
Thermodynamics laboratory - University of Liège (BEL)
www.labothap.ulg.ac.be
This presentation is mainly inspired by the following chapter co-written by the author:

External references presented along the presentation are listed here under:

[18] “Al-Baha CSP plant brochure.”

