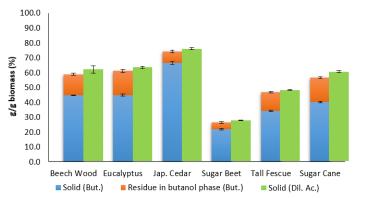


Novel butanol pretreatment significantly improves delignification and saccharification of different lignocellulosic biomasses

<u>Quentin Schmetz¹</u>,*, Hiroshi Teramura², Nicolas Jacquet¹, Aurore Richel¹, Chiaki Ogino², Akihiko Kondo²

¹Gembloux Agro-Bio Tech - University of Liege, Passage des Déportés, 2 – B-5030 Gembloux, Belgium ²Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan *qschmetz@ulg.ac.be


Introduction

Organosolv pretreatment using diluted acid and butanol allows the separation of cellulose, hemicelluloses and lignin into three distinct phases [1]. The butanol process has been investigated on six different biomasses: tall fescue, sugarbeet pulp, sugarcane bagasse, beech wood, eucalyptus and Japanese cedar. Dilute acid pretreatment has been performed under similar conditions for comparison.

Experimental

6 g ground biomass was suspended in 20:60 mL n-butanol/ H_2SO_4 1% [v/v]. Each experiment was conducted for 45 min cooking time at 200 rpm at 180°C in laboratory scale thermostirrer. Carbohydrates and fermentation inhibitors (acetate, formate, 5-HMF and 2-furfural) were analyzed by GC–MS. Saccharification was performed on pretreated biomass (100 mg mL⁻¹) by the cellulase *Cellic CTec2* at a load of 6.6 FPU g⁻¹ at 50°C for 72h [2]. Solid surfaces were characterized using Scanning Electron Microscopy (SEM).

Results and Discussion

Figure 1. Delignification improvement of butanol pretreatment (blue & orange) compared to dilute acid (green).

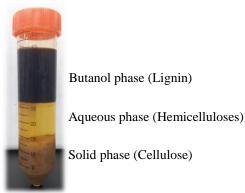


Figure 2. Different fractions after butanol pret.

		^a Cellulose (%)	^b Mass loss (%)	°Yield (%)	$^{d}[C]_{glucose} (mg mL^{-1})$
Sugar cane bagasse	Dilute Acid	53.0 ± 1.0	9.9 ± 0.4	18.7	2.3 ± 0.3
	Butanol	80.7 + 1.9	77.5 ± 0.7	96.0	11.6 ± 0.3

The best results were obtained on sugarcane bagasse. Up to 87% delignification was achieved, a 96% pure lignin fraction was obtained. Saccharification of the recovered pulp was greatly improved as reported on **Table 1**. Inhibitors concentration in aqueous phase was decreased by solubilization in the butanol phase.

Acknowledgements

We are thankful to the COST Action FP1306 who gave us the opportunity to present our results.

References

- 1. H. Teramura et al., *Biotechnol. Biofuels*, **9** 27 (2016).
- 2. K. Sasaki et al., *Bioresource Technology*, **185** (2015).

COST is supported by the EU Framework Programme Horizon 2020