Aharonov-Bohm oscillations of bosonic matter-wave beams in the presence of disorder and interaction

R. Chrétien, J. Dujardin, C. Petitjean, and P. Schlagheck
Département de Physique, University of Liège, 4000 Liège, Belgium

Abstract
We study the one-dimensional (1D) transport properties of an ultracold gas of Bose-Einstein condensed atoms through Aharonov-Bohm (AB) rings. Our system consists of a Bose-Einstein condensate (BEC) that is entangled from a magnetic trap into a 1D waveguide which is made of two semi-infinite leads that join a ring geometry exposed to a synthetic magnetic flux. We specifically investigate the effects of a disorder potential and of a small atom-atom contact interaction strength on the AB oscillations. The main numerical tools that we use for this purpose are a mean-field Gross-Pitaevskii (GP) description and the truncated Wigner (tW) method. We find that a correlated disorder suppress the AB oscillations leaving thereby place to weaker amplitude, half period oscillations on transmission, namely the Arozhov-Al'tshuler-Spivak (AAS) oscillations. The competition between disorder and interaction leads to a dip of the transmission at the AB flux \(\phi = \pi \). This dip could be a possible signature of an inversion of the coherent backscattering (CBS) peak. Our study paves the way to an analytical description of the inversion of that peak.

Aharonov-Bohm rings

- Toroidal optical dipole trap
 [A. Romannsh-enh et al. PRL 106, 130401 (2011)]
 [L. Amico et al. PRL 95, 083201 (2005)]
- Interaction of two red-detuned beams
- Connection to two waveguides

Theoretical description

- Ring geometry connected to two semi-infinite homogeneous leads
- Perfect condensation of the reservoir (\(T = 0 \) K) with chemical potential \(\mu \)
- Discretisation of a 1D Bose-Hubbard system
- Hamiltonian
 \[H = H_L + H_R + H_{\text{inter}} \]
 where
 \[H_L = \sum_{\alpha \in \mathbb{L}} \left(E_{\alpha} \hat{a}_{\alpha}^\dagger \hat{a}_{\alpha} - \frac{\mu}{2} \left(\hat{a}_{\alpha+1}^\dagger \hat{a}_{\alpha} + \hat{a}_{\alpha}^\dagger \hat{a}_{\alpha+1} \right) \right) \]
 \[H_R = \frac{\mu}{2} \left(\hat{a}_{0}^\dagger \hat{a}_{0} + \hat{a}_{0+1}^\dagger \hat{a}_{0+1} + \hat{a}_{0}^\dagger \hat{a}_{0+1} + \hat{a}_{0+1}^\dagger \hat{a}_{0} \right) \]
 \[H_{\text{inter}} = \sum_{\alpha \in \mathbb{R}} (E_{\alpha} + V_{\alpha}) \hat{a}_{\alpha}^\dagger \hat{a}_{\alpha} - \frac{\mu}{2} \left(\hat{a}_{\alpha+1}^\dagger \hat{a}_{\alpha} + \hat{a}_{\alpha}^\dagger \hat{a}_{\alpha+1} \right) \]
 \[+ g \hat{a}_{\alpha}^\dagger \hat{a}_{\alpha} \hat{b}_{\alpha} \]
 \[+ \kappa (\hat{b}_{\alpha}^\dagger \hat{b}_{\alpha} + \kappa (\hat{b}_{\alpha}^\dagger \hat{b}_{\alpha} + \mu d_{\alpha} d_{\alpha}) \]
 with:
 - \(\hat{a}_{\alpha} \) and \(\hat{a}_{\alpha}^\dagger \) the annihilation and creation operators at site \(\alpha \) (of the source),
 - \(E_{\alpha} \propto 1/\delta \) the on-site energy,
 - \(V_{\alpha} \) the disorder potential at site \(\alpha \),
 - \(g \) the interaction strength,
 - \(N \rightarrow \infty \) the number of Bose-Einstein condensed atoms within the source,
 - \(\kappa(t) \rightarrow 0 \) the coupling strength, which tends to zero such that \(N(\kappa(t))^{2} \) remains finite.

Aharonov-Bohm effect

- Periodic transmission oscillation with \(\phi \)
 \[\mu/E_0 = 1, g = 0 \]

- Clear signature of the AB effect
- Incoherent transmission when \(\phi = 0 \)

- Oscillations in transport properties due to interferences of partial waves crossing each arm of the ring
- Transmission periodic w.r.t. the AB flux \(\phi \)
 \[T = |t_1|^2 + |t_2|^2 + 2|t_1||t_2| \cos \Delta \phi \]
 with \(\phi = h/2e \) the magnetic flux quantum
- Same effect within a two-arm ring

Aharonov-Bohm oscillations

- Periodic transmission oscillation with \(\phi \)
 \[\mu/E_0 = 1, g = 0 \]

- With interaction
 - Total
 - Incoh

- Resonant transmission peaks move with \(g \) and disappear if \(g \) is strong enough

- More incoherent particles created as \(g \)

Higher order interferences

- Presence of higher harmonics of weak intensity
- Diagrammatic approach of the problem
 \[R = |r_1 + r_2 e^{i\phi} + r_3 e^{-i\phi} + \cdots |^2 \]
 \[= |r_1|^2 + |r_2|^2 + 2|r_1||r_2| \cos A \Phi + \cdots \]

- Interference pattern shifted due to the presence of vector potential \(A \) with depasing
 \[\Delta \phi = k \Delta l + \frac{\phi}{\hbar} \int A \cdot d\ell = k \Delta l + 2 \pi \phi \]

- Transmission
 \[T = |t_1|^2 + |t_2|^2 + 2|t_1||t_2| \cos \Delta \phi \]
 with \(\phi = h/2e \) the magnetic flux quantum
- Same effect within a two-arm ring

Towards coherent backscattering

- Same origin for CBS and AAS
- Constructive wave interference between reflected classical paths and their time-reversed counterparts
- Recent verification with BEC
 [J. Jendowycz et al., PRL 109, 195302 (2012)]

AAS oscillations

- Averages over the disorder suppress Aharonov-Bohm oscillations
 \[\mu/E_0 = 0.25, V/E_0 = 0 \]

- Appearance of \(\phi/2 \) periodic oscillations : Al'tshuler-Aronov-Spivak oscillations
- What happens if we set a weak interaction ?
 \[\mu/E_0 = 0.75, V/E_0 = 2 \]

- The oscillations amplitude is reduced
- The minimum at \(\phi = \pi \) becomes a maximum

AAS oscillations

- Total density
- No disorder
- Disorder

Computational resources have been provided by the Consortium des Equipements de Calcul Intensif (CECI), funded by the Fonds de la Recherche Scientifique de Belgique (F.R.S.-FNRS) under Grant No. 2.5020.11

http://www.pqs.ulg.ac.be
rchretien@ulg.ac.be