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Abstract:

Cover song identification systems deal with the problem of identifying different versions of an
audio query in a reference database. Such systems involve the computation of pairwise sim-
ilarity scores between a query and all the tracks of a database. The usual way of evaluating
such systems is to use a set of audio queries, extract features from them, and compare them to
other tracks in the database to report diverse statistics. Databases in such research are usually
designed in a controlled environment, with relatively clean audio signals. However, in real life
conditions, audio signals can be seriously modified due to acoustic degradations. For example,
depending on the context, audio can be modified by room reverberation, or by added hands clap-
ping noise in a live concert, etc. In this paper, we study how environmental audio degradations
affect the performance of several state-of-the-art cover song identification systems. In particular,
we study how reverberation, ambient noise and distortion affect the performance of the systems.
We further investigate the effect of recording or playing music through a smartphone for music
recognition. To achieve this, we use an audio degradation toolbox to degrade the set of queries
to be evaluated. We propose a comparison of the performance achieved with cover song identifi-
cation systems based on several harmonic and timbre features under ideal and noisy conditions.
We demonstrate that the performance depends strongly on the degradation method applied to
the source, and we quantify the performance using multiple statistics.
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Effects of acoustic degradations on cover song
identification systems

1 Introduction
Recent years have seen an increasing interest in Music Information Retrieval (MIR) problems.
Such problems cover a wide range of research topics, such as automatic musical genre recog-
nition, audio music transcription, music recognition, music recommendation, etc. In this paper,
we address the problem of Cover Song Identification (CSI). CSI systems deal with the problem
of retrieving different versions of a known audio query, where a version can be described as
a new performance or recording of a previously recorded track [10]. Designing such systems
is a challenging task because different versions of the same performance can differ in terms
of tempo, melody, pitch, instrumentation or singing style. It is therefore necessary to design
audio features and retrieval algorithms that are robust against changes in such characteristics.
Most of existing works in the field of CSI compute pairwise comparisons between a query and
a set of reference tracks in a search database [3, 6, 5]. To achieve that, audio features, usually
corresponding to musical characteristics, are extracted from the audio signals. Audio features
cover a wide range of musical characteristics such as the melody, the harmony (chords), the
timbre, the tempo, etc. Once the features are extracted, a retrieval algorithm is used to com-
pute similarity scores between the query and the tracks of the database. The goal of such an
algorithm is to rank different versions of the query at the top of the returned list of tracks. The
performance of a CSI system therefore depends on a trade-off between the selected audio
features, and the retrieval algorithm. Most existing systems consider chroma features [4] as
their main audio feature. Chroma features encode harmonic information in a 12-dimensional
feature vector. Chroma vectors have been extensively used in the literature as they are ro-
bust against changes in the aforementioned musical characteristics. Ellis et al. [3] performs
two dimensional cross-correlations of entire chroma sequences to highlight similar parts of the
songs. Bertin-Mahieux et al. [1] consider the 2D Fourier transform magnitude coefficients of
chroma patches to design a fast low-dimensional feature. Serra et al. [11] consider the entire
chroma sequences of both tracks to be compared and use an alignment algorithm to compute
a similarity score. Some authors also consider timbre features for CSI. In the work of Tralie et
al. [13], the authors take into account the relative evolution of timbre to compute a similarity
score. A comprehensive review of existing systems can be found in [8].
While many existing systems report a decent performance for CSI, they were evaluated in
a controlled environment, usually with a single evaluation database. In this paper, we con-
sider a selection of four existing systems and study the robustness of the features and the
retrieval algorithms against acoustic degradations such as adding ambient noise at different
levels, adding reverberation, simulating a live recording situation, applying harmonic distortion
and convolving the query by the impulse responses of a smartphone microphone and speaker.
Such experiments give us some information about how an existing CSI system would perform
in real conditions, for example at a live concert, with a smartphone in a crowded room. To the
best of our knowledge, we are the first to perform such a study for CSI. The results show that
the studied systems are quite robust against audio degradations.
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2 Studied cover song identification systems
We selected four state-of-the-art CSI systems for our study. This section describes briefly the
selected systems. We refer the reader to the original works for detailled explanations.

2.1 Cross-correlation of chroma sequences (XCorr)

In that method, proposed by Ellis et al. [3], songs are represented by beat-synchronous chroma
matrices. A beat tracker is first used to identify the beats time, and chroma features are ex-
tracted at each beat moment. This allows to have a tempo-independent representation of the
music. Songs are compared by cross-correlating entire chroma-by-beat matrices. Sharp peaks
in the resulting signal indicate a good alignment between the tracks. The input chroma matri-
ces are further high-pass filtered along time. The final score between two songs is computed
as the reciprocal of the peak value of the cross-correlated signal.

2.2 2D Fourier transform magnitude coefficients (2D-FTM)

In their work, Bertin-Mahieux et al. [1] split the songs into windows of 75 consecutive beat-
synchronous chroma vectors, with a hop size of 1. 2D FFT magnitude coefficients are com-
puted for each window, then are stacked together. A single 75x12 window is then computed
as the pointwise median of all stacked windows. The resulting 900-dimensional patch is then
projected on a 50 dimensional PCA subspace and the tracks are compared using the euclidean
distance. This is one of the fastest feature available because it only computes 50-dimensional
Euclidean distances, which is a straightforward operation.

2.3 QMax alignment of chroma sequences (QMax)

In Serra’s et al. research [11], the authors first extract chroma features from both songs and
transpose one song to the tonality of the other by means of the Optimal Transposition Index
(OTI) method [9]. Then they form representations of the songs by embedding consecutive
chroma vectors in windows of fixed length m, with a hop-size τ. Next they build a cross-
recurrence plot (CRP) of both songs and use the QMax algorithm to extract features that are
sensitive to cover song characteristics and update a similarity score.

2.4 Smith-Waterman alignment of timbre sequences (MFCC SW)

Tralie et al. [13] consider the use of timbre features rather than chroma features for cover song
identification. They design features based on self-similarity matrices of MFCC coefficients and
use the Smith-Waterman alignment algorithm to build a similarity score between two songs.
Note that in contrast with other work considering MFCC features, they innovate by examining
relative shape of the timbre coefficients. They demonstrate that using such features, cover
song identification is still possible, even if the pitch is blurred and obscured.
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3 Audio degradations
In this paper, we study how audio degradations affect the performance of four CSI systems.
We selected six modifications to apply to the audio queries: add ambient restaurant noise,
apply harmonic distortion, live recording simulation, convolution with the impulse response (IR)
of a large hall, and the IRs of a smartphone speaker and a smartphone microphone. We used
the Audio Degradation Toolbox (ADT) by Mauch et al. [7] to modify the audio signals. The ADT
provides Matlab scripts that emulate a wide range of degradation types. The toolbox proposes
14 degradation units that can be chained to create more complex degradations.

3.1 Single degradations

We first apply non-parametric degradations. These audio modifications include: a live recording
simulation, adding reverberation to the queries and convolving the queries by the IRs of a
smartphone speaker and microphone. The live recording unit convolves the signal by the IR of
a large room (’GreatHall’, RT30@500Hz = 2s, taken from [12]) and adds some light pink noise.
The reverberation corresponds to the same convolution, without the added pink noise. The
smartphone playback and recording simulations correspond to convolving the signal with the
IR of respectively a smartphone speaker (’Google Nexus One’) and the IR of the microphone
of the same smartphone. The speaker has a high-pass characteristic and a cutoff at around
500Hz [7].

3.2 Parametric degradations

We add some ambient noise and distortion to the audio signals. The ambient noise corre-
sponds to a recording of people in a pub. The recording is provided with the ADT [7]. We
successively add the ambient noise at multiple SNR levels, from 30 dB to 5 dB to study how
robust the systems are. We also successively add some harmonic distortion. To achieve this,
the ADT applies a quadratic distortion to the signal. We iteratively applied the distortion with
2, 4, 6, 8 and up to 10 iterations. One iteration of quadratic distortion is applied as follows:
x = sin(x∗π/2).

4 Experimental setup
4.1 Evaluation database

We evaluate our experiments on the Cover801 dataset [2]. The dataset contains 80 songs for
which two versions are available, thus proposing a total of 160 tracks. While this is definitely
not a large scale dataset, it has the advantage of providing audio data, allowing us to extract
features straight from the audio. Other bigger datasets such as the Million Song Dataset2

(MSD) or the Second Hand Song Dataset (SHS) are available, but they do not provide audio
data. Rather than that, they provide pre-computed audio features that can be exploited in MIR

1http://labrosa.ee.columbia.edu/projects/coversongs/covers80/
2http://labrosa.ee.columbia.edu/millionsong
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algorithms. For this specific research, we need the audio data so that we can modify the
signals with respect to each degradation. We created 4 copies of the dataset for the single
degradations (convolutions) and applied the convolutions with the default parameters provided
by the ADT. For the ambient noise degradation, we created 5 additional copies, with added
noise at SNRs of respectively 30 dB, 20 dB, 15 dB, 10 dB and 5 dB. For the distortion, we
also created 5 copies, applying the distortion as explained in Section 3.2.

4.2 Features extraction

To use the four selected CSI systems, we need chroma features as well as MFCC features for
the timbre. We extracted chromas from the audio using the Essentia library3 with the HPCP
[4] algorithm. Each chroma is elevated to a power of 2 to highlight the main bins, and then
normalized to unit-norm. We first extracted beats location using a beat-tracker provided in the
library, and computed 12-dimensional chroma features at each beat instant, with a sampling
rate of 44.1kHz. For the computation of the self-similarity matrices based on MFCC features
(see Section 2.4), we used some code that was kindly provided by the authors. The code
makes use of the librosa4 library to extract 20-dimensional beat-synchronous MFCC vectors.

5 Results
5.1 Evaluation methodology and metrics

For each modification of the database, we apply the same evaluation methodology. We con-
sider all tracks of a noisy database (160 tracks) and we compare them to all tracks in the
original database. Note that both databases contain exactly the same tracks. Each track in the
noisy database is taken as a query and compared to 159 songs in the original database (we
do not compare the query to itself). Using the similarity scores, we build an ordered ranking
of 159 candidates for each query (highest score is considered most similar). We then look in
the ordered ranking where the second version of each query is located (in terms of absolute
position). We report the results in terms of Mean Rank (MR), which corresponds to the mean
position of the second version (lower is better), in terms of Mean Reciprocal Rank (MRR) which
corresponds to the average of the reciprocal of the rank of the identified version (higher is bet-
ter). We also reports the proportion of queries for which the second version was identified at
the first position (TOP-1), or in the 10 first returned tracks (Top-10).

5.2 Single degradations

Figure 1 compares the performance of the four selected CSI systems with respect to single
audio degradations. The first column (blue) always corresponds to the performance of the
system with no degradation. As one can observe on the figure, the degradation that affects
the most each system is the smartphone playback. In particular, the 2D-FTM system has a
significant loss of performance, with a decrease of 80% in terms of MRR.

3http://essentia.upf.edu/
4https://github.com/librosa/librosa
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Figure 1: Evolution of the Mean Reciprocal Rank (a), the Mean Rank (b), the proportion of
tracks identified in the Top-1 (c) and the proportion of tracks identified in the Top-10 (d) for
single non parametric degradations.

This can be explained by the fact that the smartphone speaker has a high-pass characteristic
with a cutoff at around 500Hz. Therefore, the spectrograms upon which the chromas are built
lose much information compared to no degradation at all. Note that the timbre based system
(MFCC SW) is definitely robust against the smartphone playback degradation. For both live
recording simulation and added reverberation, all systems are not degraded significantly and
performs similarly for both degradations. The most stable feature with respect to all degrada-
tions is the MFCC SW, with a maximum decrease of 13% in terms of MRR for the live recording
simulation.
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5.3 Ambient noise and distortion

Figure 2 shows the evolution of the performance of the four selected CSI systems when the
percentage of ambient noise is increased (the SNR gets lower). We plot the results in terms of
percentage of Noise-to-Signal amplitude ratio (NSR) to be able to represent the original point,
with no noise added at all. We compute the NSR as follows:

NSR =
100

10
SNR
20

(1)

We add the ambient noise with a decreasing SNR (resp. increasing NSR) at values of 30 dB,
20 dB, 15 dB, 10 dB and 5 dB.
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Figure 2: Evolution of the Mean Reciprocal Rank (a), the Mean Rank (b), the proportion of
tracks identified in the Top-1 (c) and the proportion of tracks identified in the Top-10 (d) for an
increasing ambient noise.
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Adding an ambient noise to the original audio signal generates new frequencies in the spec-
trum. As the chroma features are computed based on that spectrum, we expect the perfor-
mance to drop at some point. When adding up to 20% (SNR' 15dB) of noise to the songs, all
systems stay stable, with almost no loss in performance. Above 20%, the 2D-FTM and MFCC
methods start to decrease the performance in terms of MRR, Top-1, and Top-10. In terms
of MR, all methods stay stable at all noise levels. Note how the MRR and the Top-1 metrics
render similar shapes. As both metrics take into account the position of the first match to the
query, they seem to be strongly correlated.
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Figure 3: Evolution of the Mean Reciprocal Rank (a), the Mean Rank (b), the proportion of
tracks identified in the Top-1 (c) and the proportion of tracks identified in the Top-10 (d) for an
increasing number of iterations of quadratic distortion.
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Figure 3 shows the evolution of the performance when we increase the number of iterations
of quadratic distortion. The first observation one can make is that the QMax method is ro-
bust against any level of distortion, with respect to each metric. There is almost no loss of
performance for the method. In terms of MRR and MR, 2D-FTM is also stable and does not
decrease in performance. After two iterations, the MFCC method starts to drop in performance
for each metric. This makes sense as the timbre is computed based on the harmonics of the
signal. Applying quadratic distortion adds harmonics which can blur the timbre of the audio
signal. The XCorr method drops in terms of MRR, Top-1 and Top-10 after 6 iterations, which
makes it more robust than the MFCC method. Note that 6 iterations of distortion is clearly au-
dible in the audio tracks, and the perceived music is strongly degraded compared to the clean
song. In light of this, we can consider that all methods are pretty robust up to 4 iterations of
quadratic distortion.

6 Conclusion
In this paper, we evaluated multiple state-of-the-art cover song identification systems with re-
spect to several audio degradations. We first selected three methods based on chroma fea-
tures, thus considering the harmonic content of the songs as the main feature. These methods
use different retrieval algorithms to find cover songs in a reference database. We also chose a
fourth method based on timbre feature rather than chroma features. The latter makes use of a
sequence alignment algorithm to find relevant cover songs. We selected the Cover80 dataset
for our research, and used the Audio Degradation Toolbox to perform a series of degradations
of the database. We selected six degradations, corresponding to potential real-life modifica-
tions of the sound. The degradations include a live recording simulation, adding reverberation,
convolving with the impulse responses of a smartphone speaker and microphone, adding a
restaurant ambient noise at multiple levels and finally adding multiple iterations of quadratic
distortion.
Overall, the methods based on chroma features perform similarly against all degradations. The
worst performance is achieved through a convolution with a smartphone speaker and is pro-
duced by the 2D-FTM method. Convolving the signal by the microphone of the smartphone,
however, does not degrade the performance significantly. Same goes for the live recording
simulation and added reverberation. The timbre based method is extremely stable with single
degradations, with almost no loss in performance with respect to all metrics, which makes it a
robust method, although it performs worse than chroma based methods in a clean situation.
When adding ambient noise to the songs, all systems are stable up to 20% of added noise.
After that limit, the timbre method decreases significantly, while the chroma based methods
stay stable. When adding quadratic distortion, all systems but the timbre one stay stable up to
6 iterations. The MFCC based system drops after two iterations. After 6 iterations, XCorr and
2D-FTM lose some performance, but not significantly (less than 10% in terms of all metrics).
Overall, the studied systems can be considered stable against the applied audio degradations.
We voluntarily degraded the signals significantly to push the limits of the systems, and the per-
formance stays pretty stable. Future work involves analysing other cover song systems, and
combining them together to study how the robustness against audio degradations performs.
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