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A B S T R A C T

Postharvest biological control agents as a viable alternative to the use of synthetic chemicals have been
the focus of considerable research for the last 30 years by many scientists and several commercial
companies worldwide. Several antagonists of postharvest pathogens have been identified and tested in
laboratory, semi-commercial, and commercial settings and were developed into commercial products.
The discovery and development of these antagonists into a product followed a paradigm in which a single
antagonist isolated from one commodity was also expected to be effective on other commodities that
vary in their genetic background, physiology, postharvest handling, and susceptibility to pathogens. In
most cases, product development was successfully achieved but their full commercial potential was not
realized. The low success rate of postharvest biocontrol products has been attributed to several problems,
including difficulties in mass production and formulation of the antagonist, the physiological status of
the harvested commodity and its susceptibility to specific pathogens. All these factors played a major role
in the reduced and inconsistent performance of the biocontrol product when used under commercial
conditions. Although many studies have been conducted on the mode of action of postharvest microbial
antagonists, our understanding is still very incomplete. In this regard, a systems approach, that takes into
account all the components of the biocontrol system, may represent the best approach to investigating
the network of interactions that exist. Very little is known about the overall diversity and composition of
microbial communities on harvested produce and how these communities vary across produce types,
their function, the factors that influence the composition of the microbiota after harvest and during
storage, and the distribution of individual taxa. In light of the progress made in recent years in
metagenomic technologies, this technology should be used to characterize the composition of microbial
communities on fruit and vegetables. Information on the dynamics and diversity of microbiota may be
useful to developing a new paradigm in postharvest biocontrol that is based on constructing synthetic
microbial communities that provide superior control of pathogens.
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1. Introduction

Biological control agents, as an alternative to the use of
synthetic chemicals, have been the focus of considerable research
over the last 30 years by many scientists and several commercial
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companies worldwide. This effort has been based on the need to
reduce the use of synthetic fungicides to control postharvest
pathogens on harvested agricultural commodities. The withdrawal
of key fungicides, development of resistance biotypes, along with
environmental and health considerations have been among the
drivers for developing alternative disease management technolo-
gies that are safe and effective.

The potential use of epiphytic microbial antagonists to control
postharvest pathogens was first reported back in the mid-1980s
(Wilson and Pusey, 1985) and was later highlighted in several
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reviews that offered guidelines for isolating and selecting
postharvest biocontrol agents (Wilson and Wisniewski, 1989,
1994). A key rationale used to support this approach was that, in
contrast to field- and soil-based biocontrol, the postharvest
environment and the disease etiology was more conducive to
targeting the application of an antagonist to a commodity and
maintaining its population due to controlled environmental
conditions. The purpose of the current review is to evaluate the
paradigms that have developed in the field of postharvest
biocontrol over the past 30 years and assess their validity. More
specifically, this review is aimed at reviewing the progress that has
been made, examining the reasons why developed products have
had such limited commercial success, and reflect on future
prospects and trends. The current state of the science of
postharvest biological control is discussed, challenges and
obstacles are identified, and the relevance of recent advances in
�omics, and their potential application to postharvest biocontrol
research is presented.

Numerous microbial antagonists (yeasts and bacteria) of
postharvest pathogens have been identified in laboratory, semi-
commercial, and commercial studies (Droby et al., 2009). Several of
these antagonists reached advanced levels of development and
commercialization. Among the first generation of biocontrol
products registered and made commercially available were
Candida oleophila (Aspire, Ecogen, Langhorne, PA, US) (Blachinsky
et al., 2007), Cryptococcus albidus (YieldPlus, Lallemand, Montreal,
Canada), Candida sake (Candifruit, IRTA, Lleida, Spain) (Teixidó
et al., 2011), Pseudomonas syringae Van Hall (BioSave, JET Harvest,
Longwood, FL, US) (Janisiewicz and Jeffers, 1997; Janisiewicz and
Korsten, 2002). Aspire, Yieldplus and Candifruit were commercial-
ized for some years but discontinued due to business and
marketing-related shortcomings. Biosave, however, still has
limited use in the US market for application on fruit crops
(Janisiewicz and Peterson, 2004). Bacillus subtilis (Avogreen,
University of Pretoria, Pretoria, South Africa) was introduced in
South Africa for the control of Cercospora spot, a postharvest
disease of avocado, but did not achieve commercial success due to
inconsistent results (Demoz and Korsten, 2006). More recently C.
oleophila, (Nexy, Leasafre, Lille, France) has been developed in
Belgium, and was submitted for regulatory approval in 2005 for
postharvest application against wound pathogens on pome fruits,
citrus, and banana (Lahlali et al., 2011). Nexy received registration
approval throughout the European Union in 2013 (Massart and
Jijakli, 2014). Aureobasidium pullulans (BoniProtect, Bio-Ferm,
Tulln, Austria), has a suggested use as a preharvest application
to control wound pathogens that develop on pome fruit during
storage (Lima et al., 2015). Another product based on Pantoea
agglomerans CPA-2, (Pantovital, Domca, Granda, Spain) effective
against the major postharvest pathogens of pome and citrus fruits
(Cañamás et al., 2008; Plaza et al., 2004; Teixidó et al., 2001) was
formulated but never commercialized (Torres et al., 2014).
Metschnikowia fructicola (Shemer, Bayer, Leverkusen, Germany)
registered in Israel for both pre- and postharvest application on
various fruits and vegetables, including apricots, citrus fruit,
grapes, peaches, peppers, strawberries, and sweet potatoes
represents a more successful example of a postharvest biocontrol
product. Shemer was acquired by Bayer CropScience (Germany)
and then sublicensed to Koppert (Netherlands) (Spadaro and
Droby, 2016).

Interestingly, the majority of reported postharvest biocontrol
agents and products are yeasts. Yeasts, in general, have high
tolerance to the stressful environmental conditions prevailing
before and after harvest (low and high temperatures, desiccation,
wide range of relative humidity, low oxygen levels, pH fluctuations,
UV radiation) and are uniquely adapted to the micro-environment
(high sugar concentration, high osmotic pressure, and low pH)
present in wounded fruit tissues. Additionally, many yeast species
can grow rapidly on inexpensive substrates in fermenters and are
therefore easy to produce in large quantities (Spadaro et al., 2010a).
Moreover, in contrast to filamentous fungi, they do not produce
allergenic spores or mycotoxins, and have simple nutritional
requirements that enable them to colonize dry surfaces for long
periods of time.

2. The postharvest biocontrol paradigm � looking back to move
forward

Research on biocontrol of postharvest diseases has mainly
focused on isolating microorganisms that are antagonistic to
wound pathogens that infect a commodity during harvest and
subsequent handling. Typically, pathogen spores germinate very
rapidly (within 24 h) and colonize wounds that are rich in sugars
and other nutrients. Therefore, it is necessary to interfere with
spore germination and/or germ-tube growth in a rapid time frame
in order to prevent or inhibit infections.

The discovery and development of postharvest biocontrol has
been mainly pursued by plant pathologists. Early investigations to
identify potential biocontrol agents basically adopted the same
strategy used for finding biocontrol agents against foliar and soil-
borne diseases where an isolation and screening program was
designed to identify single potent antagonists. Several features of
an ideal antagonist were defined by Wilson and Wisniewski (1989)
and have served as the basis for many other biocontrol research
programs, past and present. Rapid growth and colonization of fresh
wounds by the biocontrol agent was one of the main features
indicated. Following this logic, Wilson et al. (1993) designed a
rapid method for screening and identifying successful antagonists.
Antagonists that produced secondary metabolites inhibitory to the
targeted pathogens in in vitro assays were excluded based on the
assumption that indications of antibiotic production would be
problematic in the registration process. Another essential feature
that was defined was that the level of survival and rate of growth of
the biocontrol agent on intact and injured fruit surfaces had to be
sufficiently great enough to prevent pathogens from becoming
established. This premise, however, neglected the fact that the
introduced antagonist was not the only “player” present on the
harvested commodity. Additionally, very little attention was given
to the impact of different postharvest treatments on the
population of antagonists and other resident microflora. Inter-
actions between the resident microflora and the antagonists, as
they were individually impacted by the other postharvest treat-
ments, were rarely studied and are therefore poorly understood.

Droby et al. (2009) raised several reservations about the
relevance of the existing paradigm for identifying antagonists that
are expected to perform under “real world” situations where a
wide range of wounds that serve as an infection court, exist. In the
current postharvest biocontrol paradigm it is expected that a single
antagonist isolated from one commodity will be effective on other
commodities that vary in their genetic background, physiology,
postharvest handling, and pathogen susceptibility. Perhaps this
expectation or paradigm is inappropriate given our knowledge of
microbial ecology and plant microbiota that has been acquired
through metagenomic approaches.

3. Constraints and shortcomings of existing biocontrol systems

Several registered postharvest biocontrol products have been
developed jointly by researchers working with commercial
companies. Although product development was successful, their
full commercial potential, as measured by their widespread
acceptance and use, has not been realized. The low success rate
of postharvest biocontrol products has been attributed to several a
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factor among which is inconsistent performance under commer-
cial conditions. Efficacy of these products must be similar to that
achieved by chemical fungicides, which is in the range of 98–100%
disease control. This level is seldom attained with biological
control products when they are used as a stand-alone treatment.
Therefore, it is important to discuss the variables that are critical to
product development, performance, and viability. A schematic
description of a generalized pipeline for the development of
postharvest biocontrol products is presented in Fig. 1.

3.1. Mass production and fermentation

Economical production of large quantities of a microorganism
in a formulation that ensures reasonable shelf life and maintains
efficacy during large-scale testing are fundamental steps in the
process of developing a commercial biocontrol product. Produc-
tion and formulation processes are often conducted directly or in
association with private companies and all the related research and
development data is typically protected under confidentiality
agreements leading to a lack of scientific references on these
essential subjects.

The mass production process requires two essential steps: (1)
developing an economical culture medium that provides an
adequate supply of nutrients and energy for cellular metabolism,
growth, and population stability, and (2) optimization of growth
conditions (temperature, agitation, aeration, and pH). Current
commercial production methods utilize either solid- or liquid-
phase fermentation. In general, liquid-phase cultures are used for
bacteria and yeasts and solid-phase cultures are used for most
fungi. Optimized mass production systems have been described for
some postharvest biocontrol agents, including bacteria such as P.
agglomerans CPA-2 (Costa et al., 2001), P. agglomerans PBC-1
(Manso et al., 2010) and B. subtilis CPA-8 (Yánez-Mendizábal et al.,
2012b), yeasts such as C. sake CPA-1 (Abadias et al., 2003a,b), A.
pullulans (Mounir et al., 2007), and Rhodotorula minuta (Patiño-
Vera et al., 2005), and fungi such as Penicillium frequentans 909 (De
Cal et al., 2002), and Epicoccum nigrum (Larena et al., 2004).

Downstream processing of cultured microorganisms involves
various steps, such as cell separation from the medium, drying,
addition of bulk materials (inert ingredients), adhesives,
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emulsifiers and adjuvants. All these actions may adversely affect
the properties of the selected biocontrol agent directly or
indirectly. The need of reasonable shelf life and preserving efficacy
requires the stabilization of cell viability, which can be achieved by
the product being made available in: (1) a liquid state requiring
refrigeration; (2) a freeze-dried state that requires the use of cryo-
protectant substances during preparation, and (3) dehydrated
form by drying. The latter two types of formulations can then be
stored at ambient temperatures.

3.2. Formulation

Typically, a formulated product consists of an antagonistic
microorganism (the active ingredient), an inert material that
serves as a carrier, and adjuvants, such as nutrients and/or
compounds, that enhance the survival of the antagonist cells or
help protect them from environmental stresses such as desicca-
tion, osmotic stress, UV radiation, and either low or high
temperatures. In practice, very little literature has been reported
about the formulation of postharvest biocontrol agents, and often
upscaling, stabilization, and the entire formulation process in
general is viewed as an art rather than a science. This is unfortunate
since improvements in the formulation of biocontrol products may
increase their performance under commercial conditions, and
significantly increase the shelf life of the product.

Different dehydration processes have been used for formulating
biocontrol agents. Freeze-drying has the advantage of maintaining
high cell viability but is much more costly than other drying
processes. Freeze-drying has been used to prepare Biosave (P.
syringae), P. agglomerans (Costa et al., 2000), C. sake CPA-1 (Abadias
et al., 2001a, 2001b), Cryptococcus laurentii (Li and Tian, 2006), M.
pulcherrima (Spadaro et al., 2010b), and Pichia anomala (Melin
et al., 2011).

Spray-drying is another drying method that can be used to
preserve biocontrol agents in a dry state and has the advantage of
being able to dry large quantities of cultures in a short time and at
low cost. Only a small number of microorganisms, however, are
able to survive the high temperatures used in this drying process.
Only biocontrol agents that are able to produce heat-resistant
endospores, such as B. subtilis CPA-8, are suitable for spray drying
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(Yánez-Mendizábal et al., 2012a). Fluidized bed-drying is a cost-
effective method of drying that can be used to dry heat-sensitive
microorganisms because the drying temperatures are relatively
low. Fungi such as E. nigrum (Larena et al., 2003) and P. frequentans
(Guijarro et al., 2006), the yeast-like fungus, A. pullulans (Mounir
et al., 2007), and the yeast, C. sake CPA-2 (Usall et al., 2009) have all
been successfully dried using fluidized bed-drying. In contrast,
liquid formulations are the simplest way to stabilize the viability of
microbial cells. This formulation method involves storing cells in a
water- or oil-based solution with different protectants and
additives, typically at low temperatures. Isotonic, liquid formula-
tions of C. sake CPA-1 have been reported to be a suitable
alternative to solid formulations (Abadias et al., 2003b; Torres
et al., 2003). Liquid formulations have also been tested with R.
minuta (Patiño-Vera et al., 2005), C. laurentii (Liu et al., 2009), and P.
anomala (Melin et al., 2011).

3.3. Range of activity

The narrow range of activity (hosts and pathogens) of many
biocontrol agents is a serious limitation to their commercial
success. In the case of postharvest biocontrol products, this
problem is even more critical because the postharvest market is
very limited and typically only one application of the product is
used. It would be beneficial to be able to broaden the spectrum
of action of these products, in terms of hosts and pathogens,
and if possible extend their use to preharvest conditions.
Different approaches could be used to extend the target range
of a biocontrol product. For example, different preparations of
the same biocontrol agent could be specifically formulated for
each situation. The products BoniProtect, Blossom Protect, and
Botector utilize this approach as they represent different
formulations of the same biocontrol agent, A. pullulans. These
products are specifically formulated to control postharvest
diseases on pome fruit, fire blight, and Botrytis cinerea on
grapes, respectively. Enhancing the stress tolerance of biocontrol
agents has also been reported to enhance the viability of
biocontrol agents during the formulation process and broaden
their spectrum of action (Teixidó et al., 2011; Sui et al., 2015). In
the case of C. sake CPA-1, it was originally developed to control
postharvest diseases and later was physiologically improved to
be more tolerant to osmotic stress conditions, which allowed it
to be applied under field conditions and successfully control B.
cinerea on grapes (Cañamás et al., 2011). Genetic manipulation of
antagonists is also a potential approach for improving biocontrol
agents and broadening their use, however, regulatory constraints
and public concern about the use of genetically modified
organisms (GMOs) represent a monumental hurdle to this
approach.

3.4. Performance and consistency

Acceptable and consistent performance under commercial
conditions is critical to the success of any biocontrol agent.
Numerous reports have been published on various strategies and
approaches that can be used to enhance the efficacy and reliability
of postharvest biocontrol agents. These include combining
biocontrol agents with use of salts and organic acids (Droby
et al., 1997; Karabulut et al., 2001), glucose analogs (El Ghaouth
et al., 2000), food additives (Droby et al., 2003; Karabulut et al.,
2003; Teixidó et al., 2001), and various physical treatments
(Karabulut et al., 2002; Porat et al., 2002; Zhang et al., 2008). In
most cases, enhanced efficacy was demonstrated using these
approaches, however, each commodity–pathogen system has its
own unique features and so specific protocols will need to
commercially evaluated.
4. An industry perspective

Concerns about food safety, including chemical residues and
environmental impact, over the past twenty years have resulted in
substantial regulatory changes in the use of pesticides (http://
www2.epa.gov/pesticide-tolerances; http://www.ecpa.eu/page/
food-safety). Regulatory restrictions are increasing on the use of
a variety of chemical fungicides used to manage postharvest
pathogens. Several products have been lost from the market due to
the unwillingness of companies to maintain registration. Resistant
biotypes of pathogens have also evolved, decreasing the efficacy of
some of the existing chemicals.

In recent years, the interest of multinational chemical compa-
nies and microbial industries (such as yeast producers) in
biological control technologies, including postharvest uses, has
grown substantially. This is reflected in the number of acquisitions
made by large, mainstream companies of small and medium sizes
companies specializing in the development of green technologies
for controlling plant diseases (CPM, 2010). In the case of microbial
industries associated with producing yeasts for baking, brewing,
and wine fermentation, interest in novel applications of their
microorganisms to expanded markets is a logical extension of their
business. The real question is why a multinational company would
be interested in a biological control product that targets a small
niche market like postharvest biocontrol. The answer is rather
complex and the underlying reasons for acquiring a particular
biocontrol product is difficult to determine. Given their responsi-
bility to stakeholders, multinational chemical companies are
focused on two concerns: pesticide resistance and achieving zero
residues on commodities. Furthermore, they want to offer to their
clients (distributors and subsequently growers) a full portfolio of
existing plant protection tools, including both conventional and
‘green’ products.

The most difficult stage in the development of a biocontrol
product is its commercialization. Commercialization is the
management process that provides structure in developing and
bringing a new product to market. Effective implementation of this
process is needed to coordinate the gathering of information and
the establishment of a project plan. The early commercialization
phase is often long and fraught with a variety of difficulties,
involving scientific, regulatory, business management, and mar-
keting issues. Companies require ample information about a
variety of aspects, such as market demand, market size, profit
margin, and time to market, to effectively handle these issues
(Bailey et al., 2009). A report published by a working group within
the EU project ENDURE (Nicot et al., 2012), that was charged with
analyzing the factors associated with the success of field-based
biocontrol technologies against arthropod pests, diseases and
weeds, stated that profit after taxes, provisions and amortization
was 18% of sales for a chemical pesticide and only 2% for a
biocontrol product. In the case of the postharvest market, the profit
margins can be assumed to be even lower. In Europe, the size of the
microbial biocontrol product market was estimated to be
52 million Euro in 2012. Currently, the biopesticide market is
valued at 1.5–2.5 billion US dollars compared to 60 billion US
dollars for the traditional pesticide market (http://www.research-
andmarkets.com/research/7bvbnf/global_pesticide).

Fifty-two active chemical ingredients were registered in the EU
between 1996 and 2000, whereas only 10 biocontrol agents were
approved during the same span of time. In the past five years,
however, 22 biocontrol agents were authorized in the EU and only
20 synthetic chemical pesticides. In general, there has been a
significant increase in the biopesticide market worldwide, with the
highest increase in Europe, which is expected to pass North
America as the largest market for biocontrol products by 2018
(Anonymous, 2014). The annual worldwide annual increase in
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market growth (2012–2020) is estimated to reach 12.3% for
biopesticides versus 5% for chemical pesticides. Among the
recently approved biocontrol products within the EU, three
specifically target postharvest pathogens: M. fructicola strain
277 (Shemer), A. pullulans strains DSM 14940 and DSM 14941
(BoniProtect), and C. oleophila strain O (Nexy). This trend will
further stimulate the development and registration of biocontrol
products in Europe. Companies that have invested in these
products will design marketing strategies that will increase
market sales and market share in order to achieve a good profit
margin. This may include adding both additional postharvest
applications and/or preharvest applications registered uses for the
product.

Companies may also enlarge the application of their registered
product by adapting their biopesticide to new methods of
application. For example, Nexy was originally developed for
postharvest dipping and drenching application to fruit. In case
of pome fruits, these application methods were popular when
submitting the registration dossier in 2005. When the EU approval
was received in 2013, however, most growers had abandoned
postharvest dipping and drenching treatments in favor of
preharvest treatments. Thus, nebulization of the product in fruit
storage chambers could be a new postharvest method of treating
pome fruits, which may require an adjustment in the formulation
of the product and further education of packinghouses on how to
use this method of application.

5. Mechanisms of action involved in biocontrol systems

Understanding the mode of action of postharvest biocontrol
agents is a prerequisite for product development and registration.
In general, research on postharvest yeasts and bacterial antago-
nists followed the traditional studies conducted on antagonists of
foliar and soil borne pathogens. These studies ascribed biocontrol
activity to four major modes of action: (1) competition for
nutrients and space, (2) antibiotic production, (3) induction of host
resistance (Droby et al., 2002), and (4) direct parasitism (Bélanger
et al., 2012; Janisiewicz and Korsten, 2002). The different modes of
action were recently reviewed by Liu et al. (2013) and by Spadaro
and Droby (2016). Both reviews highlight important additional
features of successful antagonists, including biofilm formation,
quorum sensing, production of diffusible and volatile antimicrobial
compounds, competition for iron, the role of oxidative stress,
alleviation of oxidative damage, and the production of ROS by the
host and the antagonist. Until recently, the vast majority of studies
on the mode of action of either yeast or bacterial antagonists
followed an approach that examined each possible mechanism
separately. This approach, however, raises some critical questions:
what are the effects of antagonists on wound healing and host
resistance? how important and widespread are the direct effects of
antagonists on pathogens? how do incidental microorganisms or
mixtures of antagonists affect pathogen/antagonist interactions,
and how does the nutrient/chemical composition at the wound site
affect the antagonist, other microflora, the infection process, and
the wound response? As initially described by Droby et al. (2009)
and expanded on by Liu et al. (2013), the performance of a
biocontrol agent can be seen as the result of complex mutual
interactions between all the biotic (organisms) and abiotic
(environmental) components of the system. Although these
interactions have been the subject of postharvest biocontrol
research for 30 years, our understanding is still very incomplete.
When studying mechanisms of action, a systems approach should
be employed to investigate the network of interactions. Such an
approach, that takes into account all the components of the
system, may provide the greatest understanding of biocontrol
systems.
The availability of more cost-efficient, high throughput DNA/
RNA and proteomic technologies, along with bioinformatics, has
provided new opportunities and tools to obtain deeper insights
into the mechanisms and interactions that have already been
established (An et al., 2014; Kwasiborski et al., 2014). Develop-
ments in deep sequencing, transcriptomics, MS–MS proteomics,
metagenomics, comparative and functional genomics can be
utilized to determine changes in the physiological status of
biocontrol agents, and the effect of environmental stress on its
intracellular machinery (Hershkovitz et al., 2011; Hershkovitz
et al., 2013; Sui et al., 2015). Changes in the level of expression of
“biocontrol genes” during mass production, formulation and
storage, or in response to exposure and contact with host plant
tissue after application can now be more readily investigated.
Massart and Jijakli (2007) reviewed the molecular techniques used
to understand the mechanism of action of biocontrol agents and
discussed the strategies used to study the role of various genes
believed to be involved in the mechanisms of action. They
concluded that the majority of studies aimed at elucidating the
genetic basis and traits important for antagonistic action have
focused on Trichoderma spp. Genes related to the production of
antibiotics have been mainly studied in bacteria, such as B. subtilis
and Pseudomonas spp. Very few genes involved in induction of
resistance mechanisms in host plants or competition for nutrient
and space have been identified in biocontrol agents. More recently,
the impact of �omic technologies for understanding the various
modes of action of biocontrol agents against plant pathogens was
reviewed by Massart et al. (2015a,b). Whatever �omic technique
(genomic, transcriptomic or proteomic) have been utilized, studies
of postharvest biocontrol agents have been sparse and it is
expected that greater details about interactions in the entire
biocontrol system will be forthcoming.

6. The role of the microbiome in fruit health and disease � a
new perspective

Microbial communities resident on and in plants can have
negative, neutral, or beneficial effects on plant health and
development (Mendes et al., 2013; Philippot et al., 2013; Berg
et al., 2015). These communities colonize all parts of a plant
through its entire lifecycle and marked diversity exists in
communities associated with different hosts. Research on this
topic is slowing moving from just describing the composition of
these communities to elucidating the mechanisms involved in
their assembly and function (Waldor et al., 2015).

Studies on plant microbiomes (phytobiomes) in both the
phyllosphere and rhizosphere indicate that plants should be
considered as “super organisms” where very diverse microbial
communities provide specific functions and traits to plants
(Vorholt, 2012; de Bruijn, 2013). These functions include five
key features: (1) improving nutrient acquisition and growth, (2)
sustaining plant growth under biotic and/or abiotic stress, (3)
inducing resistance against pathogens, (4) interacting with plant or
human pathogens, and (5) interacting with other trophic levels,
such as insects. Soil type and plant genotype are the major
parameters influencing the rhizosphere microbiome (Berg and
Smalla, 2009; de Bruijn, 2013) whereas plant species and genotype
are the major factors involved in defining the composition of the
phyllosphere microbiome (Massart et al., 2015b). Whipps et al.
(2008) published a comprehensive review of phyllosphere
microbiology with special reference to microbial diversity and
plant genotypes. The authors stressed the need for studies on the
functional consequences of changes in microbial community
structure and the mechanisms by which plants control the
microbial populations on their aerial plant surfaces. The composi-
tion of microbial populations in the phyllosphere are also
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influenced by environmental factors, such as, UV, humidity,
temperature, geographical location (Rastogi et al., 2012; Vorholt,
2012; Rastogi et al., 2013), nitrogen fertilization (Ikeda et al., 2011),
and pesticide treatments (Zhang et al., 2009; Moulas et al., 2013).

Previous studies, using plating and low-throughput molecular
techniques, reported that the introduction of a biocontrol agent or
a pathogen to the system had a marked impact on the plant
microbiome (Teixidó et al., 1998; Zhang et al., 2008; Buddrus-
Schiemann et al., 2010; Chowdhury et al., 2013; Yin et al., 2013).
Erlacher et al. (2014) demonstrated shifts in the microbiota of
lettuce as a result of introducing a pathogen (Rhizoctonia solani)
and/or a biocontrol agent. The result of these studies suggests a
novel mode of action for biocontrol agents, i.e. compensation for
the impact of a pathogen on plant-associated microbiota. The
authors speculated that this effect could originate directly from the
impact of the biocontrol agent on the composition of the
microbiota or indirectly by the impact of biocontrol agent on a
pathogen. Compared to the application of a single species, co-
inoculation with two different species of biocontrol agents caused
a more pronounced impact on the microbial community structure
of the cucumber rhizosphere, resulting in increased evenness and
better biocontrol of R. solani (Grosch et al., 2012).

Harvested fresh fruits and vegetables can harbor large and
diverse populations of microorganisms including bacteria, fila-
mentous fungi, and yeasts, either as epiphytes or endophytes. Most
of the work on microorganisms associated with fresh harvested
commodities, however, has focused on a relatively small number of
microbial species that can be easily cultured. As a result, very little
is known about the overall diversity and composition of microbial
communities on harvested produce and how these communities
vary across produce types. Based on recent studies on this topic
(Rudi et al., 2002; Ponce et al., 2008; Ottesen et al., 2009; Rastogi
et al., 2012; Leff and Fierer, 2013;), a few key patterns are emerging:
(1) different produce types and cultivars can harbor different levels
(abundances) of specific microbial groups (Critzer and Doyle,
2010), (2) farming and storage conditions can influence the
composition and abundances of microbial communities found on
produce, and (3) non-pathogenic microbes can interact with and
inhibit microbial pathogens found on produce surfaces (Shi et al.,
2009; Critzer and Doyle, 2010; Teplitski et al., 2011). Despite this
recent body of work, we still have a limited understanding of the
diversity of produce-associated microbial communities, their
function, the factors that influence the composition of these
communities after harvest and during storage, and the distribution
of individual taxa (particularly those taxa that are difficult to
culture) across different commodities.

In light of the progress made in recent years in metagenomic
technologies, this technology should be used to characterize the
composition of microbial communities on fruit and vegetables.
Metagenomic analyses are based on the amplification and
sequencing of the 18S rRNA and ITS, for eukaryotes, and 16S
rRNA, for bacteria. This technology, however, can still be
problematic due to problems associated with PCR amplification,
such as sensitivity to inhibitory compounds, primer mismatch
sensitivity, lack of quantitative information, and the amplification
of interfering plant organelle derived RNA sequences (Berlec,
2012).

In recent years, the use of natural and synthetic microbial
communities/consortia represents an emerging frontier in the field
of bioprocessing (focusing on fuel production), synthesis of high-
value chemicals, bioremediation, and medicine and biotechnology
(Hays et al., 2015). Microbial consortia are mixtures of interacting
microbial populations that can be found in many diverse
environmental niches, and can be grouped into two types: natural
or synthetic. The use of a consortium has several advantages over a
single species, such as efficiency, robustness, resilience to
environmental stress, and modularity. Microbial consortia often
have the ability to complete tasks that would be too difficult for
one organism to accomplish (Pandhal and Noirel, 2014).

Massart et al. (2015a) suggested the use of microbiota-derived
products or the microbiota itself, directly or indirectly, to develop
novel tools for the protection of plants against pathogens. An initial
approach could be the use of a synthetic or natural consortium
(Gopal et al., 2013) that could be applied to a harvested commodity
to see if it results in better disease control due to the expression of a
variety of modes of action against the pathogen. Maintaining the
right balance and diversity inside the consortium before and after
its application, however, may prove to be difficult. Regulatory
difficulties in registering a consortium, composed of multiple
microorganisms, as a biocontrol product may also be a problem.
Thus a simpler approach could be to identify a ‘helper’ microbial
strain from the microbiota (Massart et al., 2015a). A ‘helper’ strain
may have no biocontrol capacity but rather enhance the
antagonistic activity of an existing known biocontrol agent by
supporting its establishment and survival on the targeted
commodity. Finally, the use of biochemical compounds derived
from the culturing of a consortium that limit the development of
plant pathogens could also be considered another potential
technology that may be easier to register, manufacture and apply.

7. Concluding remarks

After more than three decades of research, the field of
postharvest biocontrol has reached a crossroads and previous
approaches need to be seriously evaluated, and evolving new
directions need to be considered for future research and
development. A review of the existing information makes it
obvious that a significant gap still exists between basic research
involving the discovery of a biocontrol agent and its development
and implementation under commercial conditions. In recent years,
a considerable volume of published research articles fall under the
category of “re-inventing the wheel”. In order to move a biocontrol
agent from the laboratory to the market place requires many
different disciplines and people with a variety of expertise.

Overall, commercial implementation of postharvest biological
control products has been very limited and only comprises a very
small share of the potential market. The need for alternatives to
chemical fungicides, however, is still valid and the outlook for
microbial biocontrol products is still very promising. In order for a
biocontrol product to be viable, however, it must perform
effectively and reliably, be widely accepted, have intellectual
property protection (patent), and be profitable to the company that
has invested the money in its development, registration, and
marketing.

Significant progress has been made in understanding the
various aspects of biocontrol agents that allow them to inhibit or
prevent pathogen development. Collectively, the available infor-
mation indicates suggests the lack of a single universal mechanism
of action common to all the reported antagonists. While dissecting
and characterizing the mechanisms of action involved in each
biocontrol system is critical for the success of developing reliable
products, the question is how can this knowledge be utilized to
develop more effective products?

Biological interactions are dynamic, with dramatic changes
occurring when thresholds in signaling or population levels are
reached. The physiological status of the host/pathogen/biocontrol
agent/other microbiota, environmental conditions, and posthar-
vest handling all have significant but largely unknown effects on
fruit/vegetable interactions with microbial communities. The
realization that the microbiota is an integral and active component
of harvested fruit and vegetables and is influenced by various biotic
and abiotic stressors is very important for understanding all the
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factors involved in the assembly and composition of a specific
microbiome. The multitrophic interactions involved in postharvest
biocontrol systems and the potential use of synthetic microbial
communities for biocontrol of postharvest diseases should be
explored. In order to overcome the scientific and technical
challenges associated with developing novel biocontrol technolo-
gies based on a holistic approach, the collaboration between a wide
variety of scientific disciplines is needed. Finally, collaboration
between scientific researchers and companies that develop
products is essential if these new technologies are to become
commercially viable and relevant.
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