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Abstract

Background: This paper reviews the classical and some particular factors contributing to earthquake-triggered landslide
activity. This analysis should help predict more accurately landslide event sizes, both in terms of potential numbers and
affected area. It also highlights that some occurrences, especially those very far from the hypocentre/activated fault,
cannot be predicted by state-of-the-art methods. Particular attention will be paid to the effects of deep focal earthquakes
in Central Asia and to other extremely distant landslide activations in other regions of the world (e.g. Saguenay
earthquake 1988, Canada).

Results: The classification of seismically induced landslides and the related ‘event sizes’ is based on five main factors:
‘Intensity’, ‘Fault factor’, ‘Topographic energy’, ‘Climatic background conditions’, ‘Lithological factor’. Most of these data
were extracted from papers, but topographic inputs were checked by analyzing the affected region in Google Earth. The
combination and relative weight of the factors was tested through comparison with well documented events and
complemented by our studies of earthquake-triggered landslides in Central Asia. The highest relative weight (6) was
attributed to the ‘Fault factor’; the other factors all received a smaller relative weight (2–4). The high weight of the ‘Fault
factor’ (based on the location in/outside the mountain range, the fault type and length) is strongly constrained by the
importance of the Wenchuan earthquake that, for example, triggered far more landslides in 2008 than the Nepal
earthquake in 2015: the main difference is that the fault activated by the Wenchuan earthquake created an extensive
surface rupture within the Longmenshan Range marked by a very high topographic energy while the one activated by
the Nepal earthquake ruptured the surface in the frontal part of the Himalayas where the slopes are less steep and high.
Finally, the calibrated factor combination was applied to almost 100 other earthquake events for which some landslide
information was available. This comparison revealed the ability of the classification to provide a reasonable estimate of
the number of triggered landslides and of the size of the affected area. According to this prediction, the most severe
earthquake-triggered landslide event of the last one hundred years would actually be the Wenchuan earthquake in 2008
followed by the 1950 Assam earthquake in India – considering that the dominating role of the Wenchuan earthquake
data (including the availability of a complete landslide inventory) for the weighting of the factors strongly influences and
may even bias this result. The strongest landslide impacts on human life in recent history were caused by the Haiyuan-
Gansu earthquake in 1920 – ranked as third most severe event according to our classification: its size is due to a
combination of high shaking intensity, an important ‘Fault factor’ and the extreme susceptibility of the regional loess
cover to slope failure, while the surface morphology of the affected area is much smoother than the one affected by the
Wenchuan 2008 or the Nepal 2015 earthquakes.
(Continued on next page)
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Conclusions: The main goal of the classification of earthquake-triggered landslide events is to help improve total
seismic hazard assessment over short and longer terms.
Considering the general performance of the classification-prediction, it can be seen that the prediction either fits or
overestimates the known/observed number of triggered landslides for a series of earthquakes, while it often
underestimates the size of the affected area. For several events (especially the older ones), the overestimation of the
number of landslides can be partly explained by the incompleteness of the published catalogues. The underestimation
of the extension of the area, however, is real – as some particularities cannot be taken into account by such a general
approach: notably, we used the same seismic intensity attenuation for all events, while attenuation laws are dependent
on regional tectonic and geological conditions. In this regard, it is likely that the far-distant triggering of landslides, e.g.,
by the 1988 Saguenay earthquake (and the related extreme extension of affected area) is due to a very low attenuation
of seismic energy within the North American plate. Far-distant triggering of landslides in Central Asia can be explained
by the susceptibility of slopes covered by thick soft soils to failure under the effect of low-frequency shaking induced by
distant earthquakes, especially by the deep focal earthquakes in the Pamir – Hindukush seismic region. Such deep focal
and high magnitude (> > 7) earthquakes are also found in Europe, first of all in the Vrancea region (Romania). For this
area as well as for the South Tien Shan we computed possible landslide event sizes related to some future earthquake
scenarios.

Keywords: Seismic landslides, Event size classification, Distant triggering, Fault factor, Wenchuan, Assam, Haiyuan-Gansu,
Vrancea, Tien Shan

Background
Review of major events
A series of extensive reviews of earthquake-triggered land-
slide events have been published since the first compilation
presented by Keefer (1984) that became a milestone for re-
lated research. Keefer (1984) was the first to establish gen-
eral seismic trigger thresholds indicating the (I) minimum
earthquake magnitude needed to trigger landslides, (II) the
maximum possible surface areas over which landslides of a
specific type can be triggered by a single earthquake, (III)
the maximum distance from the epicentre and the fault, at
which a landslide could be triggered and (IV) the max-
imum possible number of induced landslides. Related
statistics were first updated for more recent events (after
1980) by Rodriguez et al. (1999) and then again by Keefer
(2002), mainly by using the same types of relationships.
Common results of their analyses are: a) landslides may be
triggered by an earthquake with a magnitude larger or
equal than 4 (with very few exceptions, one presented in
Table A in the Appendix); b) far more than 10,000 land-
slides could be induced by a single earthquake, over dis-
tances up to several hundreds of kilometres away from the
epicentre or the fault plane and, thus, (c) within a total
surface area of more than 100,000 km2. The most extreme
landslide-triggering earthquake events indicated by those
researchers are the Haiyuan-Gansu 1920, the Assam 1950,
the Alaska 1964, the Peru 1970, the Guatemala 1976 and
the Chi-Chi 1999 earthquakes. A less catastrophic but
remarkable event was the Northridge earthquake in 1994
as it is the only M < 7 earthquake (Ms = 6.7) that may have
triggered 11,000 landslides over an area of 10,000 km2

(Harp and Jibson 1996). Below, we will show that it is not

easy to explain the enormous morphological impact of this
specific earthquake. However, for two other events, the
Chi-Chi 1999 and Wenchuan 2008 earthquakes, extremely
high numbers and concentrations of earthquake-triggered
landslides could clearly be related to a specific combination
of factors (Gorum et al. 2011; Huang and Fan 2013): the
extensive surface rupture of the activated fault inside a
mountain range marked by extremely steep slopes and a
relatively humid climate (see Fig. 1 showing the landslide
distribution with respect to mountain topography and fault
location for the Wenchuan 2008 earthquake). In this
regard it should be noted that the general topographic,
climatic and tectonic background conditions already turn
this region into a landslide prone area.
In many cases, the ‘Fault factor’ combining the relative

location of the fault, its extent and mechanism, helps ex-
plain the general characteristics of earthquake-triggered
landslide events, but it does not explain why some events
trigger landslides at very far distances, such as the Ms = 5.8
Saguenay earthquake that induced landslides at unexpected
large epicentral distances of more than 100 km. Rodriguez
et al. (1999) related this far-distant triggering to the high
susceptibility of sensitive clays to slope failure; Keefer
(2002) added low regional seismic attenuation and local
site amplification as reasons explaining distant landslide
occurrences. The role of the low regional attenuation of
seismic waves on the landslide triggering potential – espe-
cially in intraplate areas - was highlighted more recently by
Jibson and Harp (2012) with the example of the 2011
Mineral, Virginia, earthquake, in North-Eastern U.S. This
Mw = 5.8 earthquake with a focal depth of 6 km (reverse
motion on N28°E/45°E oriented fault, not rupturing the
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surface) triggered small rock falls and slides at maximum
epicentral distances of more than 200 km; the total area
affected by slope instability thus by far exceeded the sur-
face area potentially affected by seismic slope failures as
predicted by any existing empirical law (see comparison of
actual affected area with predicted extension areas in
Fig. 2). A second factor added by Jibson and Harp (2012)
explaining the extreme underestimation of affected surface
area and epicentral distance by existing laws is the fact that
those ones (including the one of Keefer and Wilson 1989)
were partly based on older inventories mainly compiled
from smaller areas near the epicentre. Thus, it is likely that
those compilations just missed the far-distant (but gener-
ally rare) landslides.

Another case of distant triggering of landslides is pre-
sented by Jibson et al. (2006) for the Mw= 7.9 Denali Earth-
quake in 2002. However, here the 300 km distance of the
farthest landslide measured from the epicentre is due to the
fact that the epicentre is located at one end of a 300 km long
fault rupture. The distance is strongly reduced if measured
from the fault rupture. A similar observation was made by
Gorum et al. (2011) for the Wenchuan Earthquake.
The far-distant triggering is an enigmatic topic that

should have stimulated more interest among the scientific
community. However, only a few researchers have focussed
their attention on this problem, among them Delgado et al.
(2011) as well as Niyazov and Nurtaev (2013, 2014) and
Torgoev et al. (2013). Delgado et al. (2011) also consider

Fig. 1 Landslide and landslide dam distribution map of the area affected by the 2008 Wenchuan earthquake showing 60,104 landslide initiation
points and 257 landslide dams (by Gorum et al. 2011)
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local site amplification and high slope failure susceptibility
(for slopes with Fs ~1 and thus also prone to static failure)
as important reasons for the far-distant triggering that may
further be enhanced by the general seismic and climatic
conditions (e.g., repeated seismic activity due to aftershocks
and intensive antecedent rainfall, respectively). The other
cited researchers studied the remote effects (>200 km from
epicentre) of deep focal earthquakes in the Hindukush –
Pamir area. Havenith et al. (2013) also show that the
impacts should not be considered as ‘anecdotic’ as some
proved remotely triggered landslides caused enormous im-
pacts such as the Baipaza landslide in Tajikistan (Fig. 3)
triggered in 2002 by the Mw= 7.4 Hindukush earthquake
at a hypocentral distance of more than 300 km. This land-
slide had dammed Vakhsh River with consequential
impacts on the immediately upstream located hydro-
power station that had to stop running for several
months. These case histories highlight the importance
to reassess hazards induced by deep focal earthquakes
in other regions of the world, either along subduction
zones or in specific continental areas such as the
Hindukush – Pamir Mountains and in the Car-
pathians (Vrancea seismic region). In the next section
we will analyse this effect more in detail.

Methods
Classification of seismically induced landslides
Our classification of seismically induced landslide event
sizes follows an ‘event by event’ approach rather than a
statistical analysis of extensive databases, as published pre-
viously, e.g. by Keefer (1984, 2002) or others (Rodriguez et
al. 1999). It is based on five main factors that were com-
bined to assess the ‘size’ of an event in terms of potential
number of triggered landslides and total affected area: ‘In-
tensity’, ‘Fault factor’, ‘Topographic energy’, ‘Climatic back-
ground’, ‘Lithological factor’. Those factors are estimated
from readily available information, such as earthquake
magnitude and hypocentral depth, time of the event, or
they had to be compiled from generally more rare data on
fault characteristics, regional surface morphology, ante-
cedent rainfall or general climatic background of the af-
fected region and the regional geology. Most of these data
were extracted from papers, but topographic inputs were
also checked by analysing the affected region in Google
Earth, for some regions combined with studies of SRTM
(Shuttle Radar Topography Mission) data (mostly with
90 m resolution that was adapted to the scale of the research).
The combination and relative importance of the factors were
tested through calibration based on well documented events

Fig. 2 Map showing the epicentral region of the 23 August 2011 Mineral, Virginia, earthquake (by Jibson and Harp 2012). The star indicates the epicentre;
large crosses are landslide limits; triangles represent seismic recording stations with station codes indicated. Bold line: ellipse centred at the epicentre and
passing through the observed limits (dashed where inferred beyond limits); the dotted line shows a polygon enclosing the observed landslides; the circle
around the epicentre indicates the previous maximum distance limit for M 5.8 earthquake (Keefer 1984); filled circles show maximum (1500 km2) and
average (219 km2) areas expected to experience landslides for an M 5.8 earthquake based on previous studies (Keefer 1984, 2002; Rodríguez et al. 1999)
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(e.g. Haiti 2010, Wenchuan 2008) or on older events for
which reliable extensive information was available such as for
the Northridge 1994, Loma Prieta 1989, Guatemala 1976 and
Peru 1970 earthquakes. This calibration is complemented by
our expertise developed through studies of earthquake-
triggered landslide events in Central Asia for which a series
of examples are presented as well.
The complete table (Table A) of the classification of all

100 studied events is included in the Appendix, while the
results for the 50 earthquakes marked by the highest num-
bers of triggered landslides (as estimated on the basis of our
database) are also presented graphically in Fig. 4. The
weights of the five main factors assigned to each event are
also shown in Table A in the Appendix; they were obtained
on the basis of the approach described more in detail for
each factor below and summarised in Table 1. For clarity,
the intermediate factors, the fault (rupture) location factor
(FLF) describing its location with respect to the affected
mountain region, the fault length (FLF), the fault type (FT)
and the resulting ‘Fault factor’ (F) as well as the Arias

Intensity (AI) values used for the ‘Intensity’ estimate are
shown in a separate Table B in the Appendix. The weight of
three of the main contributing factors is directly determined
from available information: Topographic energy, Climatic
background, and Lithological factor. However, for all factors
also some arbitrary limits are introduced (see explanation
below) to simplify the approach; thus, we acknowledge that
the weighting strongly depends on expert opinion.
The ‘Intensity’ factor is based on the attenuation law for

Arias Intensity AI (see Eq. 1 by Keefer and Wilson 1989)
using as inputs the earthquake magnitude M and the dis-
tance. The distance parameter ‘R’ used here combines the
hypocentral distance ‘D’ with an event-adapted epicentral
distance as shown by Eq. 2. The adaptation concerns
mainly the average distance of the landslide group to the
epicentre that is qualitatively estimated by multiplying the
magnitude M by a factor of 10, divided by two factors (see
also Table 1 and explanation in the next paragraph), by the
fault location factor FLF and by the fault type FT. The div-
ision by FLF takes into account for the reduction of the

Fig. 3 Baipaza landslide triggered by the 2002 Hindukush earthquake (outlined in black) partially damming Vakhsh River (Tajikistan) with
consequential inundation up to Baipaza Hydropower Station. Height of landside ~ 700 m, length ~ 1560 m (Google Earth image of 2007 still
showing the rapids formed after landslide breach in 2002)
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average epicentral distance, especially if the fault is located
near the affected mountain region, i.e. for FLF > 1; the div-
ision by FT is justified by the fact that wave propagation
from activated dip-slip faults with FT equal to 1.5 is gener-
ally less attenuated over distance than the one from strike-
slip faults with FT = 1. Further, to reduce the partly
overlapping contribution of the factors I and F for large
earthquakes (with AI > 1 m/s), especially subduction earth-
quakes, and considering that for larger earthquakes the

average AI will be comparatively smaller over a greater af-
fected area, the square-root of AI is attributed to factor I.

log Iað Þ ¼ −2:35þ 0:75M−2 log Rð Þ ð1Þ

R ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2 þ 10M

FT � FLF

� �2
 vuut

Table 1 summarizes the weights or value ranges for
the five factors and how they were obtained.

Fig. 4 Graphs (events along Y-axis) showing the results of the classification for 50 earthquake events that are likely to have triggered most of the landslides –
according to our database (see Appendix A, B) and related analysis. Left graph: the relative weight of the five contributing factors (see used symbols in legend)
is indicated along the respective event bar. Right graph: the size of an event is shown (along X-axis) in terms of observed and predicted number of induced
landslides (resp., red and black squares along the grey horizontal bar produced for each event) and total affected area (blue cross in the same line)

(2)
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The ‘Fault factor’ combines the two aforementioned in-
puts FLF and FT with the fault length (FL). The weights at-
tributed to the components (FLF, FT, FL) strongly depend
on expert opinion: thus, we estimate that the location of
the fault inside/near/outside a mountain range (values of
FLF are respectively: 2/1.5/1) or the fault length (values of
FL: 1, 2) have a greater influence on the landslide triggering
potential than the fault type (values of FT: 1, 1.5). For the
fault length FL contributing to the ‘Fault factor’ F only two
values were considered: 1 if the fault length is smaller than
100 km, 2 if it is larger. Here we might also have used a
continuously changing value, e.g. based on the logarithm
(with basis 10) of the fault length. However, such a calcula-
tion would not have been possible for all, especially the
older, events for which FL is not well known. Further, for
very deep earthquakes, the fault length is not really a sig-
nificant factor in this context – only the magnitude would
have an impact on the landslide triggering potential
(through the use of AI). Thus, for those deeper earth-
quakes, a value of 1 was set for FL. From Table 1 it can be
inferred that the range of values attributed to the Fault fac-
tor is the largest one, as it is considered to the dominating
factor.
The determination of the Topographic energy (TE) factor

required the most extensive analysis as for the epicentral
areas of all 100 events the maximum altitude difference had
to be measured (mainly in Google Earth, for areas covered
by our databases in Central Asia, Romania also with 90 m
SRTM data) for sample surface areas of 10 by 10 km. On
the basis of this study, five levels of TE were set: 0.5, 1, 2, 3,

4. The value of 0.5 is attributed to relatively flat areas where
landslides may develop only on minor slopes or bluffs (e.g.,
for the 1811–1812 New Madrid earthquake zone). The
other values are attributed to hilly or mountainous areas.
Among the zones affected by the 50 most severe events
(shown in the table in Fig. 4) only the Longmenshan Moun-
tains hit by the 2008 Wenchuan earthquake are marked by
a TE-value of 4. In Table A in the Appendix, a TE-value of
4 was also attributed to zones hit by earthquakes in the
Hindukush (Hindukush events of 2002 and 2015) and in
the Andes (Columbia event of 1995).
For setting the value of the ‘Climatic background’ condi-

tion factor CB a pure qualitative approach was applied as
for many events only limited hydro-meteorological infor-
mation is available. For all events, the general climatic
conditions were taken into consideration: e.g., for intracon-
tinental mountain areas marked by arid climate, such as for
the zone affected by 1957 Gobi-Altai earthquake, a CB-
value of 0.5 was selected, while to zones marked by a wet
climate in sub-tropical or tropical areas a CB-value of 2 was
generally attributed, such as for the regions affected, re-
spectively, by the 2008 Wenchuan and the 1950 Assam
earthquakes. Only for a few events information on the
seasonal conditions or antecedent rainfall was found in
published reports: e.g., the 1992 Suusamyr earthquake (in
Table A in the Appendix) occurred during a very dry sea-
son; therefore, the minimum value of CB of 0.2 was set for
this event. It should be noted that for many (especially
older) events the climatic conditions are not or only poorly
known; in those cases, a ‘neutral’ CB-value of 1 was used.

Table 1 Main Factors contributing to earthquake-triggered landslide events

Inputs Assessment Weight

Intensity I M, D Arias Intensity AI computed
according to Eqs. 1 and 2

AI > 1: I =
ffiffiffiffi
AI

p
IF AI≤ 1: I = AI

Fault factor F Location, type and length
of activated fault

FLF: Location with respect to
mountain range MR
FT: Fault type mechanism
FL: Fault length

a) Fault inside MR: FLF = 2
Near MR: FLF = 1.5; outside MR: FLF = 1
b) Dip-slip fault: FT = 1.5; Strike-slip: FT = 1
c) Fault length≥ 100 km: FL = 2
Fault length between 20 and 100 km:
FL = 1
Fault length < 20 km: FL = 0.5
F = FLF*FT*FL; Range F: 0.5-6

Topographic energy TE Google Earth analysis Maximum altitude difference Adif over
100 km2 tested for sample areas in
affected zones.

Adif > 1500 m : TE = 4
1000 < Adif≤ 1500 m : TE = 3
500 < Adif ≤ 1000 m : TE = 2
Adif≤ 500 m (but hilly): TE = 1
Flat with bluffs: TE = 0.5

Climatic background CB Climatic information extracted
from any published sources

Qualitative estimate considering
-antecedent rainfall AR
-general climatic conditions
(CC: arid – wet climate)

Proved AR-yes
and/or CC wet: CB = 2
General conditions (or if not known):
CB = 1
Arid climate: CB = 0.5
Very arid climate: CB = 0.2

Lithological factor LF Published geological
information

Qualitative estimate considering
the presence of Quaternary
(Q) or Tertiary (T) layers and bedrock

Extensive cover of Q-layers: LF = 4
Wide presence of T-layers: LF = 2
Other cases or not known: LF = 1

M magnitude (Mw or Ms as provided in publication), D hypocentral depth as provided
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The maximum weight of the ‘Climatic background’ is only
2 and thus maybe considered as ‘less’ important than the
‘Fault factor’ with a maximum weight of 6. However, the
range of values covered by CB (0.2–2, with a max/min
value ratio of 10) is almost as large as for F (0.5–6, with
max/min ratio of 12).
The ‘Lithological factor’ LF was extracted from any pub-

lished (and available) geological information. It ranges from
1 to 4; the value of 1 is used for zones with major presence
of (hard or only partly weathered) bedrock, the value of 2 is
used for areas with wide presence of weakly consolidated
Tertiary (partly also Mesozoic) layers and 4 for areas exten-
sively covered by loose Quaternary deposits. For some
areas, setting this factor was not problematic as the pres-
ence of a certain type of lithology susceptible to slope fail-
ure is explicitly mentioned in the papers describing the
events, such as the presence of thick loess cover in zones
affected by earthquakes in China or Central Asia or the
presence of volcanic soils in areas hit by subduction earth-
quakes in the Andes and in Central America. Those cases
are described with more detail below. Certainly, the re-
quired geological information is not available for all epicen-
tral areas (at least not in the papers describing the events);
for those ones a LF value of 1 was used – this is the case
for about 25 % of all events. It should be noticed that for
those events we did not further study the geological maps
that might have been published in national journals. From
Table 1 it can be seen that we essentially use a kind of
stratigraphic subdivision of LF, simply because this kind of
information is more readily available than geotechnical
data. Such a subdivision revealed to be widely applicable in
Central Asia (see Havenith et al., 2015b), but we acknow-
ledge that does not account for, e.g., the influence of deep
weathering on slope stability. Thus, the classification of LF
would require an extensive adaptation in the case of trop-
ical regions.
On the basis of these five main factors, the event size

is first computed in terms of potential number of
earthquake-triggered landslides NL (see Table A in the
Appendix) according to Eq. 3:

NL ¼ 1000� I � F � TE � CB� LF ð3Þ
The potentially landslide-affected area AL is computed

using the following Eq. 4:

AL ¼ I � FT � TE � CB� LF �M � D2 ð4Þ
Equation 3 is based on the assumption that the number

of seismically triggered landslides NL is proportional to all
five factors, augmented by a factor of 1000 estimated quali-
tatively through comparison with published landslide event
size data. For the calculation of the affected landslide area
AL we also assume the same proportionality between AL
and the product of four of the five main factors (I, TE, CB,

LF), multiplied by the fault type component, by the earth-
quake magnitude M and by the square of the hypocentral
depth D. The ‘Fault factor’ F was not entirely taken into
consideration for the calculation of AL as the fault location
(FLF) or length (FL) components do not have a proved ef-
fect on the extent of the affected areas, which is more de-
pending on the earthquake magnitude and hypocentral
depth (see also Lei 2012: deep large earthquakes are known
to have triggered landslides at farther distances; comparison
with those events showed that even the square of D best
explains the extent of areas affected by seismic landslides).
FLF and FL rather control the concentration of the land-
slides within the affected area (as shown by Gorum et al.,
2011, for the Wenchuan earthquake). Only the fault type
seems to have an effect on the size of the landslide-affected
area AL: notably, for dip-slip faults (including subduction
faults) a farther reaching effect can be expected in the
hanging wall (AL is increased by a factor FT = 1.5). These
considerations are supported by the studies of Tatard and
Grasso (2013) who noticed that dip-slip earthquakes may
trigger landslides at larger distances than oblique slip
events; they also show that especially those earthquakes
producing extensive surface ruptures generally trigger land-
slides over relatively smaller distances from the fault. The
selection of factors contributing to AL is further con-
strained by the information on the 2008 Wenchuan and
1999 Chi-Chi earthquakes for which reliable data are avail-
able as well as by data on a series of subduction and intra-
plate earthquakes that were not accompanied by surface
fault rupture in the landslide-affected areas (e.g. El Salvador
2001, Saguenay 1988).
The graph in Fig. 4 shows that the event marked by the

largest potential number of landslides (NL > 90,000) is the
Wenchuan earthquake. This is due to the aforementioned
combination of various factors clearly favouring the occur-
rence on an extreme event: the high magnitude (Mw =
7.9) and associated large ‘Intensity’ (see yellow ellipse
along first bar in the graph in Fig. 4), the maximum value
attributed to the ‘Fault factor’ (F = 6, see location of red
circle along the bar in Fig. 4) related to the location of the
activated mainly dip-slip fault with FT = 1.5 (note: part of
the fault was also strike-slip; see Gorum et al. 2011) with a
length larger than 100 km (FL = 2) inside a mountain
range (FLF = 2) marked by a very high ‘Topographic en-
ergy’ (TE = 4, see location of brown cross along first bar in
Fig. 4), the humid climate of the affected region (CB = 2,
see blue dot along first bar in Fig. 4). In this case, we ex-
pect, however, that the ‘Lithological factor’ did not con-
tribute to the event size as there is only limited soft soil
cover in the area (LF = 1: there is no indication of soil
slides in Gorum et al. 2011), even though the comment
above concerning the influence of deep weathering of
rocks on slope stability may also be applicable to some
areas affected by the Wenchuan earthquake. Nevertheless,
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it can be seen that the estimated potential number of trig-
gered landslides and the size of the affected area indicated
in Fig. 4 and Table A in the Appendix (NL = 93,883, AL =
53,586) clearly exceeds the number and size observed by
Gorum et al. (2011): NL ~ 60,000; AL ~ 35,000. However,
our computed values are smaller than those recently
published by Shen et al. (2015): NL ~ 200,000 landslides;
AL ~ 100,000 km2. So, the estimated NL and AL values
are within the range of the NL and AL values published
by those two teams.
The large numbers of landslides potentially triggered by

the 1950 Assam and 1920 Haiyuan-Gansu events (NL ~
74,400, NL ~ 36,500, classified second and third, respect-
ively) are strongly controlled by the high earthquake mag-
nitudes of more than 8, resulting in larger shaking
intensities as well. For the 1950 Assam event, the other
factors are similar to those of the 2008 Wenchuan earth-
quake, but the final NL value is a bit smaller as the acti-
vated fault surface rupture is not directly located in the
affected mountain region (FLF = 1.5); further, the ‘Topo-
graphic energy’ of the epicentral area and nearby moun-
tains is less pronounced (TE = 3) than in the Longmenshan
Mountains affected by the 2008 Wenchuan earthquake. In
addition to its high magnitude (M = 8.5), another particular
factor contributed to the severity of the 1920 Haiyuan-
Gansu event: the ‘Lithological factor’ (LF = 4), as most of
the area is covered by thick loess deposits. In this case, the
‘Fault factor’ and ‘Topographic energy’ seem to be less im-
portant (F = 4; TE = 1) compared to the two first events
(see also Li et al. 2015), while the important role of the
Lithological factor is documented by the following notes
by Zhang (1995): ‘…areas with intensity of 8 … here the
damage caused by the slides was more serious than the pri-
mary ones caused by the quake. Based on field survey, ab-
normal 9 to 10 intensities were recorded here’. Zhang
(1995) added that ‘these landslides were not only controlled
by the intensity of the earthquake, but by the structure of
the subsoil’. It should be noticed that such an intensity of 8
(on Chinese Seismic Intensity Scale, CSIS) was recorded
over 50,000 km2 (Zhang 1995).
Zhang and Wang (2007) also observed that loess earth-

flows triggered by the Haiyuan-Gansu earthquake had
developed on relatively gentle slopes compared to those
triggered by rainfall in the same region. These observations
highlight the particular susceptibility of loess areas to
seismic ground failure, such as it was clearly shown by
Derbyshire et al. (2000) analysing geological hazards affect-
ing the loess plateau of China. In addition to those notes
directly concerning the 1920 Haiyuan-Gansu earthquake,
we also refer to the observations by Danneels et al. (2008)
who proved that a thick cover of loess (especially if present
on the top of slopes) can induce strong amplification of the
seismic motion. Thus, the maximum value of 4 was attrib-
uted to the ‘Lithological factor’ of the Haiyuan-Gansu

event due to both the weak stability of loess-covered
slopes and to site amplification. The same maximum value
of LF = 4 is also attributed to events affecting zones cov-
ered by sensitive clays (e.g., for the regions affecting the
1988 Saguenay, Canada, earthquake; see also Keefer 2002)
and soils of volcanic origin (e.g., 2001 El Salvador earth-
quake; see Evans and Bent 2004).
As indicated above, values of the ‘Climatic background’

conditions factor CB are typically higher (CB = 2) in the
humid tropical or sub-tropical regions (South China,
Central America, some regions in South America, and
Southeast Asia) where this factor may then either reduce
the static slope stability or favour induced seismic ground
effects related to increased pore water pressures such as
liquefaction; both mechanisms, separately or combined,
contribute to a higher landslide susceptibility, also during
earthquakes. This was probably the case for the 2008
Wenchuan, the 1991 Valle de la Estrella (Costa Rica), the
1987 Reventador (Ecuador) and the 1990 Luzon
(Philippines) earthquakes, among others. However, for a
series of earthquake events affecting regions marked by a
relatively arid climate or during dry seasons (with CB < 1),
the landslide triggering potential may also be reduced; we
estimate that this was the case for the recent 2015 Nepal,
the 2011 Tohoku or the 2003 Altai events, among others.
The smallest value of CB of 0.2 was attributed to one single
event presented in Fig. 4: the 1977 Caucete (San Juan)
earthquake in 1977 that occurred in a very arid area in
Western Argentina. The aridity of regions in Central Asia
also explains why events such as the 1911 Kemin (M~ 8)
or the Suusamyr (M= 7.3) earthquakes triggered relatively
few landslides – though both of them triggered at least one
giant rockslide. The NL-values presented in Table A in the
Appendix (and, for the Kemin event, also in Fig. 4) even
clearly overestimate the known observed number of land-
slides (typically several dozens, possibly one hundred but
not more than 1000 as estimated for the Kemin earthquake
in Fig. 4). Similar earthquakes would have triggered far
more landslides in a comparable topographic context but
marked by a wetter climate or if the earthquake had oc-
curred during the wet season (the 1992 Suusamyr earth-
quake occurred in August 1992, at the end of the dry
summer season).
The classification of the events according to the

landslide-affected area does not follow the same trends as
the one in terms of the number of triggered landslides.
This is mainly due to the reduced influence of the ‘Fault
factor’ and the increased magnitude and focal depth im-
pact. Therefore, earthquakes most likely triggering land-
slides at extreme distances are those having a very deep
hypocentre – though there are also well-known excep-
tions to this rule, such as the 2011 Mineral, Virginia,
earthquake in the Eastern U.S. (Jibson and Harp 2012). In
Fig. 4, the graph indicates the largest extents of landslide-
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affected areas for subduction earthquakes. Thus, accord-
ing to our estimates, the 1970 Ancash (Peru), the 2001 El
Salvador and 1964 Alaska earthquakes might have trig-
gered landslides over an area of more than 70,000 km2.
The problem is that those estimates may not be easily
verified; at least, for the 1964 Alaska subduction event an
extreme AL-value has been indicated by Keefer (1984,
2002): AL = 269,000 km2. This value is much larger than
the one predicted here. This could be due to the fact that
we assumed a relatively strong bedrock geology for the
area (LF = 1), while the geology must be highly variable
over tens of thousands of square kilometres. Areas cov-
ered by loose deposits or those presenting a topography
susceptible to amplified shaking can thus be affected by
landslides at much larger distances: e.g. the Sherman rock
avalanche was triggered at a distance of more than
100 km from the epicentre of the 1964 Alaska earthquake,
from a mountain called Shattered Peak (Shreve 1966).
The high ‘Lithological factor’ value of 4 also probably ex-
plains why the 1988 Saguenay earthquake triggered land-
slides at greater distances as indicated by Rodriguez et al.
(1999) and Keefer (2002). In Fig. 4 and Table A in the
Appendix, we indicate a relatively large affected area of
more than 3000 km2; this means that landslides could be
triggered at more than 40 km from the epicentre. Actually,
even much larger distances of more than 100 km are indi-
cated for this event by Rodriguez et al. (1999). The prime
examples of earthquakes potentially triggering landslide
movements at very far distances (> > 100 km) are the deep
focal events in the Hindukush-Pamir seismic region. This
potential has been proved by Niyazov and Nurtaev (2010,
2013, and 2014) and Torgoev et al. (2013) on the basis of
landslide case histories in Uzbekistan and Kyrgyzstan,
some located at a distance of more than 500 km from the
hypocentre. Also in Tajikistan, the impacts of the distant
Hindukush-Pamir earthquakes on slope movements are
known as shown above with the example of the Baipaza
landslide that dammed Vakhsh River in 2002. Niyazov and
Nurtaev (2013, 2014) relate the higher susceptibility of the
slopes to (partly) fail during such distant earthquakes to li-
quefaction phenomena developing in loess deposits
through the impact of very low frequency shaking – even
though the Arias Intensity could be well below 0.1 m/s
(see also computed intensities for Hindukush earthquakes
in Table A in the Appendix). Niyazov and Nurtaev (2013,
2014) further highlight the importance of the climatic fac-
tor (here, CB) for the distant seismic triggering, showing
that most of the landslides were induced during the wet
spring season, when the static factor of safety of the slopes
would be the lowest due to increased pore pressures. An-
other region where deep focal earthquakes are known to
have triggered landslides is the Vrancea seismic area in the
South-Eastern Romanian Carpathians, where 4 earth-
quakes with Mw > 7.4 have been recorded during the last

two centuries. According to Georgescu (2003), the 1802
earthquake (“the Great Quake”) is considered to be the
most severe one ever recorded in this area in terms of
magnitude (Mw 7.8–7.9, 150 km depth) and among the
most important in terms of intensity (I0I = IX-X MSK).
The Vrancea region is considered to be the most import-
ant intermediate-depth earthquake area of Europe indu-
cing effects that may be recorded as far as Russia (NE)
and Bulgaria-Serbia (SW). Historical earthquakes in Vran-
cea are known to have triggered landslides at very large
distances (250–300 km). As a consequence of the Novem-
ber 1940 earthquake (Mw = 7.7, 150 km depth), Radu and
Spânoche (1977) reported numerous geohazards (ground
fracturing and at least 40 shallow and medium-seated
landslides accompanied by ground-water level distur-
bances), favoured by the wet conditions induced by the
overall very humid 1937–1940 time period (annual mean
precipitation exceeded by 13–38 %). The very large major-
ity of the above–mentioned processes was recorded within
an elliptical zone (300 by 200 km) elongated according to
a NE-SW direction and marked by the 8 degrees MSK in-
tensity isoline. Angelova (2003) states that all the M > 5.5
Vrancea earthquakes have left ground effects and damage
throughout Bulgaria. Particularly, the 1977 event (Mw =
7.4, 94 km depth) was marked by numerous coseismic
processes like cracks and fissures (in Bregare, Cape Emine
and Silistra at epicentral distances of 160–290 km), falls
(from coastal cliffs, caves, steep river banks, limestone
ridges in Tyulenovo, Galata, Iskrets at epicentral distances
of 270–380 km) and slides (in Razgrad, Popovo, Silistra at
epicentral distances of 210–260 km). Mândrescu (1981)
outlined two main areas in Romania with ground defor-
mations that appeared following the 1977 earthquake: a)
the outer Paleogene Flysch Carpathians, Neogene Molasse
Subcarpathians and (mainly) the southern Moldavian
Plateau (Upper Neogene-Quaternary loose deposits) areas
at an epicentral distance of 50–80 km, where slides, falls
and collapses, soil and rock cracks and fissures were the
prevailing processes; b) the Romanian plain area (and
the large floodplains of the transversal rivers in their
Subcarpathian sector and also the Danube floodplain,
at an epicentral distance of 120–310 km away, af-
fected by river bank collapses, soil cracks and fissures
and liquefaction phenomena (that appeared at very
large distances of 220–310 km). Most of the land-
slides (12 coseismic cases are confirmed with a sur-
face area of 1–10 ha) occurred during the earthquake
or immediately after it, while only a few (namely 4)
acted as post-seismic failures (24 h to 5 weeks). The
quite small number of landslide events induced by
the 1977 earthquakes can be attributed to the rela-
tively dry climatic conditions during that period,
marked by a pluviometric record that was 40 %
below the monthly average values of 30–90 mm.
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In order to exemplify the possible use of this classification
for predictions over long terms we computed ‘worst-case’
scenarios of earthquake-triggered landslide events for two
geographically and seismotectonically very distinct regions:
the Vrancea seismic region and the South Tien Shan (see
‘Scenarios’ in Tables 2 and 3 below). These two regions are
marked by the highest regional M > 7 earthquake activity in
Europe and Central Asia (north of the Hindukush), respect-
ively. The worst-case scenarios combine the general (per-
manent) regional conditions with the maximum possible
earthquake magnitude (not exceeding the highest historical
magnitude by more than 0.3 units) and very wet conditions
(adapted to regional climatic context): for the Vrancea area
we consider Mmax = 8 and CB= 2 and for the South Tien
Shan Mmax= 7.8 and CB= 1. The CB value is higher for
the Vrancea area as this region is more likely to be affected
by very wet conditions than the South Tien Shan that is
typically marked by a semi-arid climate. In the South Tien
Shan, the CB-value of 1 would only be reached during a
particularly wet spring - early summer season. According
to the estimates presented at the end of Table A, the max-
imum number of landslides that may be triggered by a sin-
gle earthquake in Vrancea would be less than 1000 (~760)
while it may even exceed 50,000 for the South Tien Shan.
The much higher predicted number of landslides triggered
by an earthquake in the South Tien Shan compared with
Vrancea – even though the magnitude and CB-value are
more severe for this latter region - is due to two main fac-
tors: first, in the Vrancea region very large earthquakes typ-
ically occur at a depth of more than 150 km while they are
relatively shallow in the South Tien Shan (the depth is nor-
mally less than 20 km); second, the slopes are on average
much steeper and higher in the South Tien Shan than in
the South-Eastern Carpathians. These results are supported
by historical evidence as the South Tien Shan has already
been hit by a major landslide triggering earthquake event
(Khait 1949) while for the Vrancea region such an import-
ant event has not been reported in historical documents.
However, it should be noticed that this general predictive
approach does not fully take into account some far-distant
effects (see also examples shown above) that are likely to be
more pronounced for the deep focal Vrancea earthquakes
than for the shallow earthquakes in the South Tien Shan.

Conclusions
The main goal of the classification of earthquake-triggered
landslide events is to help improve total seismic hazard
assessment over short and longer terms – especially for
mountain regions. The classification may thus contribute
to a better prediction of very distinctive geological-
geomorphic hazards induced by an earthquake if the geo-
logic, topographic and climatic context is well defined. An
application could be the short-term prediction right after
an earthquake (e.g. to facilitate emergency aid), or it could
be used for scenario modelling (e.g., for critical
infrastructure).
The classification is based on five factors considering the

(I) shaking intensity, (II) the combined fault location-type
and length characteristics, the (III) general topographic
context (average slope steepness and height for a region),
(IV) climatic background and temporary hydro-
meteorological conditions as well as (V) regional and local
lithological properties. The weighting of all five factor
values is based on expert knowledge combined with cali-
bration using known events, considering both the general
and particular case histories. The highest weight (6) was at-
tributed to the ‘Fault factor’; the other factors all received a
smaller weight (2–4). The high weight of the ‘Fault factor’
(based on location in/outside mountain range, fault type
and length) is strongly constrained by its importance
highlighted by the Wenchuan event. For this earthquake,
among all studied events, the highest number of landslides
(NL) has been observed and mapped within a well-defined
area (Gorum et al. 2011: NL ~ 60,000; Shen et al. 2015: NL
~ 200,000). This high number of triggered landslides is due
to a combination of several factors favouring seismic slope
instability: (I) the large earthquake magnitude (Mw= 7.9),
(II) the presence of a mountain range marked by a very
steep and high slopes and affected by (III) generally wet
hydro-meteorological conditions. However, a similar com-
bination of factors could also be observed for other events
(notably, Assam 1950 and Chi-Chi 1999); actually, it is pos-
sible that the M> 8 Assam earthquake triggered a similar
high number of landslides (see, e.g. Keefer 1984), but this
number is not proved; for the Mw= 7.6 Chi-Chi earthquake
the proved number of triggered landslides is clearly smaller
(NL ~ 20,000). Therefore, we think that the key element to

Table 2 Scenarios of earthquake-induced landslides assessed for two target regions - results

Scenarios

Region Earthquake scenario M HD
(km)

I F T C L Predicted number of
landslides

Predicted affected area
(km2)

Romania Vrancea - scenario 8.00 180.00 0.13 1.50 1.00 2.00 2.00 760 160,935

Kyrgyzstan-
Tajikistan

South Tien Shan -
scenario

7.80 15.00 1.87 6.00 3.00 1.00 2.00 67,444 29,590

M is the magnitude and HD the hypocentral depth of the scenario earthquake, I is the Intensity, F is the Fault factor, T is the Topographic energy, C is the Climatic
factor, L is the Lithological factor
F location is the Fault (rupture) location (in Mountains =2; near = 1.5; other = 1); F type is the Fault type (Dip-slip = 1.5, Strike-slip =1); F length is the Fault length
(>100 km =2, 20–100 km =1, < 20 km =0.5); F is the resulting Fault factor (as included in Table 2)
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explain the extreme geomorphic impact of this earthquake
is the development of an extensive surface rupture (length >
300 km) of the activated (mainly thrust-type) fault inside a
mountain range (for the Assam 1950 event, a similar large
surface rupture occurred near but mainly outside the
mountain range and for the 1999 Chi-Chi earthquake, the
surface rupture was less extensive, ~ 100 km).
Considering the general performance of the

classification-prediction, it can be seen that for many stud-
ied events the estimated number of seismically triggered
landslides fits the observed one; however, for many others
this number is also overestimated (e.g., for events in Central
Asia, such as Kemin 1911, Khait 1949 and Suusamyr 1992
as well as, possibly, for some subduction events, such as
Peru 1970 and El Salvador 2001); only for a very few cases
(e.g., San Francisco 1906 and Northridge 1994) the number
of seismically triggered landslides is underestimated. In this
regard it should be noticed that ‘underestimation’ was re-
stricted through the calibration of the factor values and
their combination. For several events (especially the older
ones), the overestimation of the number of landslides can
be partly explained by the incompleteness of the published
catalogues. Therefore, we considered ‘overestimation’ of the
number of triggered landslides as less constraining than
‘underestimation’. However, we also know that for events
investigated in Central Asia overestimation of the number
of triggered landslides might be due to an inappropriate
weighting of the hydro-meteorological conditions that does
not fully take into account the very arid climate favouring
slope stability in some mountain regions. This observation
is also likely to be applicable to other arid mountain
regions, such as to some parts of the Andes marked by ex-
treme dry hydro-meteorological conditions.
Frequent overestimation of the number of landslides

contrasts with numerous cases of underestimation of the
observed extension of the area affected by co-seismically
triggered landslides. Good fits of the affected areas were
mainly obtained for well-described intracontinental
events, especially those for which fault characteristics
are known (e.g. Wenchuan 2008, Haiti 2010). A promin-
ent event for which the reported size of landslide-
affected area was clearly underestimated is the Mw = 9.2
Alaska earthquake in 1964. According to Keefer (1984,
2002) this earthquake would have triggered slope failures

over an area of more than 200,000 km2, while any
prediction of this area based on a reasonable factor
weighting and combination produced a value of less than
100,000 km2. Underestimation of areas affected by seis-
mic slope failures is due to the fact that some particular-
ities cannot be taken into account by such a general
approach. First, we used the same seismic intensity at-
tenuation law for all events, while attenuation laws are
dependent on regional tectonic and geological condi-
tions; thus, it is likely that the far-distant triggering of
landslides, e.g., by the 1988 Saguenay earthquake (and
the related extreme extension of affected area) is partly
due to a very low attenuation of seismic energy within
the North American plate. This point highlights the
need for using region-specific attenuation laws, both for
scenario modelling and hazard assessment. Second, far-
distant triggering of landslides can be explained by a
very high susceptibility of some lithological materials to
slope failure, possibly enhanced by strong local amplifi-
cation of the seismic shaking. According to Rodriguez et
al. (1999) and Keefer (2002), both the high susceptibility
of weak soils to failure and the local site amplification
contributed to far-distant effects of the 1988 Saguenay
earthquake. Far-distant triggering of landslides in
Central Asia can be explained by the susceptibility of
slopes covered by thick soft soils to failure under the ef-
fect of low-frequency shaking induced by distant earth-
quakes, especially by the deep focal earthquakes in the
Pamir – Hindukush seismic region. Such deep focal and
high magnitude (> > 7) earthquakes are also found in
Europe, first of all in the Vrancea region (Romania). For
this area as well as for the South Tien Shan marked by a
very high seismicity (return period of about 50 years for
M > 7 events) we computed worst-case scenarios of
earthquake-triggered landslide events. Those results
show that several tens of thousands of landslides could
be triggered by a single high magnitude earthquake in
the South Tien Shan while the number of landslides trig-
gered by a similar large earthquake would be far less
(<1000) due to the much deeper hypocentre of events in
Vrancea. However, a very strong future earthquake in
Vrancea is likely to trigger ground effects over a much
larger area, possibly over more than 150,000 km2 and at
distances of more than 500 km away from the epicentre.

Table 3 Scenarios of – factor weight calculation

Scenarios

Region Earthquake scenario M HD (km) F location F type F length F Arias Intensity

Romania Vrancea - scenario 8.00 180.00 1.00 1.50 1.00 1.50 0.13

Kyrgyzstan-Tajikistan South Tien Shan - Future 8.00 15.00 2.00 1.50 2.00 6.00 4.77

M is the magnitude and HD the hypocentral depth of the scenario earthquake, I is the intensity, F is the fault factor, T is the topographic energy, C is the climatic
factor, L is the lithological factor
F location is the Fault (rupture) location (in Mountains =2; near = 1.5; other = 1); F type is the Fault type (Dip-slip = 1.5, Strike-slip =1); F length is the Fault length
(>100 km =2, 20–100 km =1, < 20 km =0.5); F is the resulting fault factor (as included in Table 2)
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Table 4 Earthquake-triggered landslide database with information on major contributing factors (ND: no detailed data)

Number Country Earthquake M Hypocentral
depth

Intensity Fault Topo.
energy

Clim.
Factor

Litho.
factor

Number of landslides
computed (observed)

Affected area (km2)
(obs./estimated)

References

Americas

1 USA New Madrid (Missouri)
1811

7.50 15.00 0.69 1.50 0.20 1.00 4.00 829 (200 rock falls) 1143 Jibson 1996

2 USA New Madrid (Missouri)
1812

7.80 15.00 1.04 1.50 0.20 1.00 4.00 1247 (ND) 1787 Jibson 1996

3 USA New Madrid (Missouri)
1812

7.30 15.00 0.51 1.50 0.20 1.00 4.00 617 (ND) 827 Jibson 1996

4 USA Charleston (South
Carolina) 1886

6.80 12.00 0.26 1.50 0.50 1.00 2.00 384 (ND) 307 Bakun and Hopper 2004

5 USA San Francisco 1906 7.90 15.00 0.58 2.00 1.00 1.00 2.00 2325 (hundreds
of landslides or >10,000)

2922 (32,000) Youd and Hoose 1978;
Keefer 1998

6 USA Imperial Valley
(California) 1940

7.10 16.00 0.18 1.00 0.50 0.20 2.00 36 (ND) 65 King and Thatcher 1998

7 Canada Vancouver Island 1946 7.25 30.00 0.55 2.00 1.00 1.00 2.00 2210 (numerous scars) 10,196 Mathews 1979

8 USA Puget Sound
(Olympia, Seattle) 1949

7.00 70.00 0.11 1.50 1.00 1.00 1.00 168 (several landslides
and rockslides)

4715 Chleborad and Schuster
1990

9 USA Daly City (California)
1957

5.30 7.27 0.03 1.50 0.50 1.00 2.00 49 (15 small landslides) 11 Zoback et al. 1999

10 USA Southeast Alaska
(Lituya Bay) 1958

7.70 15.00 1.38 2.25 3.00 1.00 1.00 9318 (massive landslide
generating a Tsunami)

10,763 Miller 1960

11 USA Montana (Hebgen Lake)
1959

7.10 11.00 1.18 3.00 2.00 1.00 1.00 7064 (huge landslide
forming a dam, numerous
rockfalls)

3504 Barrientos et al. 1987

12 Chile Chile (Valdivia) 1960 9.50 33.00 3.42 3.00 1.00 0.50 1.00 5126 (massive landslide
near Valdivia)

30,619 Weischet 1963

13 USA Alaska (Anchorage)
1964

9.20 25.00 2.84 3.00 3.00 1.00 1.00 25,596 (> > 10,000 landslides) 84,972 (>200,000) Ichinose et al. 2007
Keefer 1984

14 USA Puget Sound
(Seattle) 1965

6.50 60.00 0.06 1.50 1.00 1.00 2.00 183 3505 Ichinose et al. 2004

15 USA Parkfield-Cholame
(California) 1966

6.20 7.00 0.05 1.00 1.00 0.50 2.00 51 16 Bakun 1972

16 Peru Ancash 1970 7.80 43.00 0.69 3.00 3.00 1.00 2.00 12,502 (>10,000) 104,099 (27,000) Beck and Ruff 1989

17 USA San Fernando
(California) 1971

7.10 10.00 0.69 2.00 2.00 0.50 1.00 1388 697 Jennings and Housner
1973

18 Guatemala Guatemala
(Motagua) 1976

7.60 10.00 0.84 3.00 2.00 1.00 2.00 10,073 (>10,000) 4420 (16,000) Harp et al. 1981

19 Panama Darien 1976 7.00 5.00 0.16 2.00 1.00 2.00 2.00 1294 160 Garwood et al. 1979
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Table 4 Earthquake-triggered landslide database with information on major contributing factors (ND: no detailed data) (Continued)

20 Argentina San Juan Province
(Caucete) 1977

7.40 17.00 1.33 3.00 2.00 0.20 1.00 1595 1969 Langer and Hartzell 1996

21 USA Santa Barbara
(California) 1978

5.60 13.00 0.05 1.50 2.00 1.00 4.00 544 420 Harp et al. 1980

22 USA Homestead Valley
(California) 1979

5.20 5.00 0.01 0.50 1.00 1.00 1.00 7 1 Stein and Lisowski 1983

23 USA Coyote Lake
(California) 1979

5.40 10.00 0.02 1.00 2.00 1.00 1.00 33 18 Wilson and Keefer 1983

24 USA Mount Diablo
(California) 1980

5.80 8.00 0.03 0.50 2.00 1.00 1.00 29 15 Rymer 1987

25 USA Mammoth Lakes
(California) 1980

6.10 8.00 0.10 1.50 2.00 1.00 4.00 1173 374 Archuleta et al. 1982

26 USA Coalinga (California)
1983

6.20 7.00 0.11 0.75 2.00 0.20 4.00 136 48 Mavko et al. 1985

27 USA Borah Peak (Idaho)
1983

6.90 10.00 1.03 3.00 2.00 0.50 1.00 3092 1232 Keefer et al. 1985

28 Chile Valparaiso 1985 7.80 43.00 0.69 3.00 1.00 1.00 1.00 2084 17,350 Plafker and Gajardo 1985

29 El Salvador El Salvador
(San Salvador) 1986

5.70 12.00 0.05 1.50 2.00 1.00 4.00 636 426 García-Rodríguez et al.
2008

30 Ecuador Ecuador (N. Reventador)
1987 (March 6 4:10 GMT)

7.10 17.00 0.61 2.00 2.00 2.00 4.00 19,500 28,292 Schuster et al. 1996

31 Ecuador El Napo (Quito-Tulcan)
1987 (March 6 1:54 GMT)

6.40 5.00 0.07 2.00 2.00 1.00 4.00 1094 124 Schuster et al. 1996

32 USA Whittier Narrows
(California) 1987

6.10 17.00 0.09 0.75 0.50 1.00 1.00 32 66 Harp and Wilson 1995

33 USA Superstition Hills
(California) 1987

6.20 5.00 0.05 1.00 0.50 0.20 4.00 21 3 Harp and Wilson 1995

34 Canada Saguenay (Quebec)
1988

5.80 28.00 0.07 2.25 1.00 2.00 4.00 1243 3767 Syvitski and Schafer 1996

35 USA Loma Prieta (California)
1989

7.10 18.00 0.72 2.25 1.00 1.00 2.00 3219 (2000) 4937 (conc. = 2000;
total = 15,000)

Keefer 1998

36 Costa Rica Costa Rica (Limon)
1990

7.10 24.00 0.60 2.25 2.00 1.00 2.00 5406 14,738 Ponce et al. 2010

37 Costa Rica Valle de la Estrella 1991 7.50 21.50 1.09 2.25 1.00 2.00 4.00 19,695 45,520 Goes et al. 1993

38 USA Cape Mendocino 1992
(California) (*2)

7.00 17.00 0.32 1.50 2.00 1.00 1.00 966 1596 González et al. 1995

39 Colombia Murindo 1992 6.70 14.00 0.10 1.00 1.00 2.00 4.00 808 1061 Mosquera-Machado et al.
2009

40 USA Klamath Falls
(Oregon) 1993

5.90 11.00 0.07 0.75 1.00 1.00 1.00 53 44 Qamar 1995
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Table 4 Earthquake-triggered landslide database with information on major contributing factors (ND: no detailed data) (Continued)

41 Colombia Paez 1994 6.80 12.00 0.26 1.50 2.00 2.00 4.00 6137 4907 Martinez et al. 1995

42 USA Northridge (California)
1994

6.70 12.00 0.74 3.00 2.00 1.00 2.00 8833 (11,000) 4920 (10,000) Harp and Jibson 1996

43 Colombia Tauramena 1995 6.50 20.00 0.15 1.50 4.00 2.00 1.00 1765 3746 Dimate et al. 2003

44 El Salvador El Salvador (San Miguel)
2001 (January 13)

7.70 60.00 0.43 1.50 1.00 1.00 4.00 2560 (>1000) 57,950 Evans and Bent 2004

45 USA Denaly (Alaska) 2002 7.90 10.00 1.50 4.00 2.00 1.00 1.00 12,037 (thousands) 4754 (30 km band
along surface
rupture)

Eberhart-Phillips et al.
2003

46 Mexico Colima 2003 7.60 24.00 0.35 2.00 2.00 1.00 4.00 5639 (several thousands) 17,455 (8000) Keefer et al. 2006

47 Chile Aysen 2007 6.20 10.00 0.05 1.00 3.00 2.00 1.00 304 (hundreds) 188 (~1200) Hermanns et al. 2014

48 Peru Pisco 2007 8.00 39.00 1.27 4.50 0.50 0.20 1.00 570 (866) 3269 Tavera et al. 2009

49 Chile Pelluhue 2010 8.80 31.00 2.67 4.50 1.00 1.00 1.00 12,024 47,935 Lin et al. 2013

50 Chile Pichilemu 2010 6.90 39.00 0.27 4.50 1.00 1.00 1.00 1222 6045 Farías et al. 2011

51 Haiti Haiti (Port-au-Prince)
2010

7.10 10.00 0.86 2.25 2.00 1.00 2.00 7754 (5000) 3670 (2000) Theilen-Willige 2010;
Gorum et al. 2013

52 Chile Araucania 2011 7.10 17.00 0.73 2.25 1.00 1.00 2.00 3307 4523 Hicks and Rietbrock 2015

53 USA Virginia, NE USA 2011 5.80 6.00 0.07 0.75 0.50 1.00 2.00 49 12 Jibson and Harp 2012

Asia and Oceania

54 Kyrgyzstan Kemin 1911 7.80 25.00 1.12 4.00 2.00 0.50 1.00 4495 (hundreds) 5408 Delvaux et al. 2001;
Havenith et al. 2002

55 China Haiyuan 1920 8.50 15.00 2.28 4.00 1.00 1.00 4.00 36,537 (thousands) 17,469 (15,000) Zhang and Wang 2007

56 Tajikistan Khait 1949 7.50 18.00 1.41 3.00 2.00 1.00 2.00 16,906 (several giant
landslides and flows)

16,772 Evans et al. 2009;
Havenith and
Bourdeau 2010

57 India Assam 1950 8.60 14.00 2.76 4.50 3.00 2.00 1.00 74,424 (thousands,
> 10,000)

34,143 (15,000) Kingdon-Ward 1955
Mathur 1953; Keefer 1984

58 Russia Altai 1957 8.10 30.00 1.18 3.00 2.00 0.50 2.00 7077 17,197 Lunina et al. 2008;
Rogozhin et al. 2003

59 Tajikistan Gissar 1989 5.50 5.00 0.04 0.75 1.00 2.00 4.00 261 (several large slides) 59 Ishihara et al. 1990

60 Philippines Luzon 1990 7.70 25.00 0.82 1.50 2.00 2.00 2.00 9794 (hundreds) 31,422 (3000) Arboleda and
Punongbayan 1991;
Velasco et al. 1996

61 Iran Manjil 1990 7.30 19.00 0.79 2.00 2.00 0.50 1.00 1575 (hundreds) 2075 Shoaei and Sassa 1993

62 Kyrgyzstan Suusamyr 1992 7.20 27.00 0.64 2.25 2.00 0.20 1.00 576 (tens) 1646 (2000) Ghose et al. 1997;
Mellors et al. 1997;
Havenith et al. 2015a, b

63 Papua New
Guinea

Papua New
Guinea 1993

6.90 19.00 0.51 2.25 2.00 1.00 2.00 4622 (5000) 6267 Meunier et al. 2008
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Table 4 Earthquake-triggered landslide database with information on major contributing factors (ND: no detailed data) (Continued)

64 Taiwan Chi-Chi 1999 7.60 12.00 1.69 3.00 3.00 1.00 2.00 30,382 (22,000) 13,574 (10,000) Keefer 2002;
Khazai and Sitar 2003

65 Afghanistan,
Tajikistan,
Uzbekistan

Hindukush 2002 I 7.40 226.00 0.03 1.50 4.00 0.50 2.00 178 (activation of large
distant landslides)

54,843 (landslides at
>500 km distance)

Yeats and Madden 2003;
Niyazov and Nurtaev 2010;
Niyazov and Nurtaev 2013;
Niyazov and Nurtaev 2014;
Torgoev et al. 2013

66 Tajikistan Hindukush 2002 II 6.10 15.00 0.09 1.50 4.00 0.50 2.00 536 (reactivtions) 601 Niyazov and Nurtaev 2010;
Niyazov and Nurtaev 2013;
Niyazov and Nurtaev 2014;
Torgoev et al. 2013

67 Russia Altai 2003 7.30 18.00 0.81 2.00 2.00 0.50 2.00 3221 (hundreds) 3809 (3000) Lunina et al. 2008;
Rogozhin et al. 2003

68 Japan Chuetsu 2004 6.60 13.00 0.19 1.50 2.00 1.00 2.00 1135 (tens) 1033 Kieffer et al. 2006

69 Pakistan Kashmir 2005 7.70 15.00 1.74 3.00 3.00 1.00 1.00 15,616 (thousands) 11,045 (5000) Petley et al. 2006;
Dunning et al. 2007

70 Japan Chuetsu 2007 6.60 17.00 0.18 1.50 2.00 1.00 2.00 1074 1672 Cirella et al. 2008;
Collins et al. 2012

71 China Wenchuan 2008 7.90 17.00 1.96 6.00 4.00 2.00 1.00 93,883 (60,000 – 200,000) 43,753 (35,000 –
100,000)

Gorum et al. 2011;
Shen et al. 2015

72 Japan Iwate–Miyagi Nairiku
2008

7.20 8.00 1.02 2.25 2.00 1.00 2.00 9140 (>4000) 2292 Ohta et al. 2008;
Yagi et al. 2009

73 Indonesia Sumatra 2009 7.60 71.00 0.29 1.50 0.50 2.00 2.00 883 (89) 27,614 Umar et al. 2014

74 Japan Tohoku 2011 9.00 30.00 2.36 3.00 1.00 0.50 3.00 10,632 (3477) 35,157 (28380) Koketsu et al. 2011;
Wartman et al. 2013

75 China Lushan 2013 7.00 13.00 0.34 1.50 3.00 0.50 2.00 1523 (>1000) 1802 (2200) Chen et al. 2014

76 Nepal Nepal 2015 7.80 18.00 1.44 4.50 3.00 0.50 2.00 19,435 (thousands) 13,368 Collins and Jibson 2015

77 Afghanistan Hindukush 2015 7.50 213.00 0.04 1.50 4.00 2.00 2.00 944 (hundreds) 262,381 USGS 2015a, b;
Petley 2015

78 Tajikistan Pamir 2015 7.20 28.00 0.54 2.00 3.00 0.50 1.00 1618 4567 USGS 2015a, b

Europe

79 Italy Calabria 1783? 7.00 15.00 1.02 3.00 2.00 0.50 1.00 3048 (215 dammed lakes) 2772 (several
hundreds)

Jacques et al. 2001

80 Romania Vrancea (Romania) 1802 7.90 150.00 0.15 1.50 1.00 0.50 2.00 223 (dozens) 39,649 Georgescu 2003

81 Romania Vrancea (Romania) 1838 7.50 150.00 0.08 1.50 1.00 0.50 2.00 113 19072 Constantin et al. 2011

82 Italy S. Apennines Irpinia 1930 6.70 14.60 0.66 3.00 2.00 0.50 2.00 3988 (several large
landslides)

3288 Tranfaglia et al. 2011

83 Romania Vrancea 1940 7.70 150.00 0.05 1.50 1.00 1.00 2.00 136 26,721 Bălteanu et al. 1997;
Radu and Spânoche 1977

84 Italy 6.12 17.50 0.09 1.50 1.00 0.50 2.00 132 202 Monaco et al. 1996

H
avenith

et
al.G

eoenvironm
entalD

isasters
 (2016) 3:6 

Page
16

of
24



Table 4 Earthquake-triggered landslide database with information on major contributing factors (ND: no detailed data) (Continued)

Valle del Belice (Sicilia)
1968

85 Italy Friuli 1976 6.50 15.00 0.16 0.75 3.00 1.00 1.00 358 (~100) 605 Govi 1977

86 Romania Vrancea 1977 7.40 94.00 0.14 1.50 1.00 0.50 2.00 211 13,793 Mândrescu (1981)

86 Italy Irpinia (Campania) 1980 6.90 10.00 0.64 2.25 1.00 1.00 2.00 2891 1330 Bernard and Zollo 1989

87 Greece Kalamata (S. Greece)
1986

6.00 28.00 0.03 1.00 1.00 0.50 2.00 32 152 Anagnostopoulos et al.
1987

88 Armenia Spitak 1988 6.70 10.00 0.79 3.00 1.00 0.50 4.00 4741 1297 Rodriguez et al. 1999

89 Greece Killini (W. Greece) 1988 5.90 25.00 0.03 0.50 1.00 0.50 1.00 7 38 Lazaridou-Varotsos 2013

90 Georgia Racha 1991 7.00 17.00 0.63 2.25 2.00 0.50 2.00 2844 (hundreds) 3132 (3000) Jibson et al. 1994

91 Spain SW Montefrio (Loja, S.
Spain) 1991

2.60 5.00 0.00 1.50 1.00 0.50 1.00 3 0,16 Delgado et al. 2011

92 Turkey Erzincan (E. Turkey) 1992 6.70 27.00 0.09 1.00 3.00 0.50 2.00 272 1329 Erdik et al. 1994

93 Italy Umbria-Marche 1997 6.00 5.00 0.09 0.75 1.00 1.00 2.00 130 (>100) 23 Esposito et al. 2000

94 Slovenia Posocje 1998 5.60 6.00 0.02 0.50 3.00 1.00 2.00 67 (100 slope failures) 19 Mikoš et al. 2013

95 Italy Palermo 2002 5.89 10.00 0.07 3.00 2.00 0.50 2.00 427 145 Azzaro et al. 2004

96 Italy Molise (Abruzzi) 2002 5.78 30.00 0.02 1.00 2.00 0.50 2.00 46 237 Bozzano et al. 2004

97 Greece Lefkada (W. Greece) 2003 6.30 12.00 0.06 0.50 2.00 0.50 1.00 29 (several) 37 Papadopoulos et al. 2003

98 Italy L’Aquila (Abruzzi) 2009 5.80 11.00 0.06 0.75 2.00 0.50 1.00 46 (several) 38 Cheloni et al. 2014

99 Italy Emilia 2012 6.00 7.50 0.09 0.75 2.00 0.50 2.00 128 50 Martino et al. 2014

100 Greece Cephalonia (W. Greece)
2014

5.80 16.00 0.03 0.50 3.00 0.50 2.00 41 87 Valkaniotis et al. 2014
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Table 5 Earthquake-triggered landslide database with information on specific seismotectonic factors

N Country Earthquake M Hypocentral
depth

Fault (rupture) location in
Mountains =2; near = 1.5;
other = 1

Fault type: Dip-
slip = 1.5; Strike-
slip =1

Fault length
>100 km =2;
20–100 km =1;
<20 km =0.5

Fault
factor

Arias
Intensity

Americas

1 USA New Madrid (Missouri)
1811

7.50 15.00 1.00 1.50 1.00 1.50 0.69

2 USA New Madrid (Missouri)
1812

7.80 15.00 1.00 1.50 1.00 1.50 1.08

3 USA New Madrid (Missouri)
1812

7.30 15.00 1.00 1.50 1.00 1.50 0.51

4 USA Charleston (South
Carolina) 1886

6.80 12.00 1.00 1.50 1.00 1.50 0.26

5 USA San Francisco 1906 7.90 15.00 1.00 1.00 2.00 2.00 0.58

6 USA Imperial Valley
(California) 1940

7.10 16.00 1.00 1.00 1.00 1.00 0.18

7 Canada Vancouver Island 1946 7.25 30.00 2.00 1.00 1.00 2.00 0.55

8 USA Puget Sound (Olympia,
Seattle) 1949

7.00 70.00 1.00 1.50 1.00 1.50 0.11

9 USA Daly City (California)
1957

5.30 7.27 1.00 1.50 1.00 1.50 0.03

10 USA Southeast Alaska
(Lituya Bay) 1958

7.70 15.00 1.50 1.50 1.00 2.25 1.91

11 USA Montana (Hebgen
Lake) 1959

7.10 11.00 2.00 1.50 1.00 3.00 1.39

12 Chile Chile (Valdivia) 1960 9.50 33.00 1.00 1.50 2.00 3.00 11.68

13 USA Alaska (Anchorage)
1964

9.20 25.00 1.00 1.50 2.00 3.00 8.09

14 USA Puget Sound (Seattle)
1965

6.50 60.00 1.00 1.50 1.00 1.50 0.06

15 USA Parkfield-Cholame
(California) 1966

6.20 7.00 1.00 1.00 1.00 1.00 0.05

16 Peru Ancash 1970 7.80 43.00 1.00 1.50 2.00 3.00 0.69

17 USA San Fernando
(California) 1971

7.10 10.00 2.00 1.00 1.00 2.00 0.69

18 Guatemala Guatemala (Motagua)
1976

7.60 10.00 1.50 1.00 2.00 3.00 0.84

19 Panama Darien 1976 7.00 5.00 1.00 1.00 2.00 2.00 0.16

20 Argentina San Juan Province
(Caucete) 1977

7.40 17.00 2.00 1.50 1.00 3.00 1.77

21 USA Santa Barbara
(California) 1978

5.60 13.00 1.00 1.50 1.00 1.50 0.05

22 USA Homestead Valley
(California) 1979

5.20 5.00 1.00 1.00 0.50 0.50 0.01

23 USA Coyote Lake (California)
1979

5.40 10.00 1.00 1.00 1.00 1.00 0.02

24 USA Mount Diablo
(California) 1980

5.80 8.00 1.00 1.00 0.50 0.50 0.03

25 USA Mammoth Lakes
(California) 1980

6.10 8.00 1.00 1.50 1.00 1.50 0.10

26 USA Coalinga (California)
1983

6.20 7.00 1.00 1.50 0.50 0.75 0.11

Appendix B
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Table 5 Earthquake-triggered landslide database with information on specific seismotectonic factors (Continued)

27 USA Borah Peak (Idaho)
1983

6.90 10.00 2.00 1.50 1.00 3.00 1.06

28 Chile Valparaiso 1985 7.80 43.00 1.00 1.50 2.00 3.00 0.69

29 El Salvador El Salvador
(San Salvador) 1986

5.70 12.00 1.50 1.00 1.00 1.50 0.05

30 Ecuador Ecuador 1987 (March 6
4:10 GMT)

7.10 17.00 2.00 1.00 1.00 2.00 0.61

31 Ecuador El Napo (Quito-Tulcan)
1987 (March 6 1:54
GMT)

6.40 5.00 1.00 1.00 2.00 2.00 0.07

32 USA Whittier Narrows
(California) 1987

6.10 17.00 1.00 1.50 0.50 0.75 0.09

33 USA Superstition Hills
(California) 1987

6.20 5.00 1.00 1.00 1.00 1.00 0.05

34 Canada Saguenay (Quebec)
1988

5.80 28.00 1.50 1.50 1.00 2.25 0.07

35 USA Loma Prieta (California)
1989

7.10 18.00 2.00 1.00 1.00 2.00 0.60

36 Costa Rica Costa Rica (Limon)
1990

7.10 24.00 1.50 1.50 1.00 2.25 0.60

37 Costa Rica Valle de la Estrella 1991 7.50 21.50 1.50 1.50 1.00 2.25 1.20

38 USA Cape Mendocino 1992
(California)

7.00 17.00 1.50 1.00 1.00 1.50 0.32

39 Colombia Murindo 1992 6.70 14.00 1.00 1.00 1.00 1.00 0.10

40 USA Klamath Falls (Oregon)
1993

5.90 11.00 1.00 1.50 0.50 0.75 0.07

41 Colombia Paez 1994 6.80 12.00 1.00 1.50 1.00 1.50 0.26

42 USA Northridge (California)
1994

6.70 12.00 2.00 1.50 1.00 3.00 0.74

43 Colombia Tauramena 1995 6.50 20.00 1.00 1.50 1.00 1.50 0.15

44 El Salvador El Salvador (San
Miguel) 2001 (January
13)

7.70 60.00 1.00 1.50 1.00 1.50 0.43

45 USA Denaly (Alaska) 2002 7.90 10.00 2.00 1.00 2.00 4.00 2.26

46 Mexico Colima 2003 7.60 24.00 1.00 1.00 2.00 2.00 0.35

47 Chile Aysen 2007 6.20 10.00 1.00 1.00 1.00 1.00 0.05

48 Peru Pisco 2007 8.00 39.00 1.50 1.50 2.00 4.50 1.60

49 Chile Pelluhue 2010 8.80 31.00 1.50 1.50 2.00 4.50 7.14

50 Chile Pichilemu 2010 6.90 39.00 1.50 1.50 2.00 4.50 0.27

51 Haiti Haiti (Port-au-Prince)
2010

7.10 10.00 1.50 1.50 1.00 2.25 0.86

52 Chile Araucania 2011 7.10 17.00 1.50 1.50 1.00 2.25 0.73

53 USA Virginia, NE USA, 2011 5.80 6.00 1.00 1.50 0.50 0.75 0.07

Asia (Oceania)

54 Kyrgyzstan Kemin 1911 7.80 25.00 2.00 1.00 2.00 4.00 1.26

55 China Haiyuan 1920 8.50 15.00 2.00 1.00 2.00 4.00 5.21

56 Tajikistan Khait 1949 7.50 18.00 2.00 1.50 1.00 3.00 1.98

57 China Assam 1950 8.60 14.00 1.50 1.50 2.00 4.50 7.60

58 Russia Altai 1957 8.10 30.00 1.50 1.00 2.00 3.00 1.39

59 Tajikistan Gissar 1989 5.50 5.00 1.00 1.50 0.50 0.75 0.04

60 Philippines Luzon 1990 7.70 25.00 1.50 1.00 1.00 1.50 0.82
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Table 5 Earthquake-triggered landslide database with information on specific seismotectonic factors (Continued)

61 Iran Manjil 1990 7.30 19.00 2.00 1.00 1.00 2.00 0.79

62 Kyrgyzstan Suusamyr 1992 7.20 27.00 1.50 1.50 1.00 2.25 0.64

63 Papua New
Guinea

Papua New Guinea
1993

6.90 19.00 1.50 1.50 1.00 2.25 0.51

64 Taiwan Chi-Chi 1999 7.60 12.00 2.00 1.50 1.00 3.00 2.85

65 Tajikistan Hindukush 2002 I 7.40 226.00 1.00 1.50 1.00 1.50 0.03

66 Tajikistan Hindukush 2002 II 6.10 15.00 1.00 1.50 1.00 1.50 0.09

67 Russia Altai 2003 7.30 18.00 2.00 1.00 1.00 2.00 0.81

68 Japan Chuetsu 2004 6.60 13.00 1.00 1.50 1.00 1.50 0.19

69 Pakistan Kashmir 2005 7.70 15.00 2.00 1.50 1.00 3.00 3.01

70 Japan Chuetsu 2007 6.60 17.00 1.00 1.50 1.00 1.50 0.18

71 China Wenchuan 2008 7.90 17.00 2.00 1.50 2.00 6.00 3.83

72 Japan Iwate–Miyagi Nairiku
2008

7.20 8.00 1.50 1.50 1.00 2.25 1.03

73 Indonesia Sumatra 2009 7.60 71.00 1.00 1.50 1.00 1.50 0.29

74 Japan Tohoku 2011 9.00 30.00 1.00 1.50 2.00 3.00 5.58

75 China Lushan 2013 7.00 13.00 1.00 1.50 1.00 1.50 0.34

76 Nepal Nepal 2015 7.80 18.00 1.50 1.50 2.00 4.50 2.07

77 Afghanistan Hindukush 2015 7.50 213.00 1.00 1.50 1.00 1.50 0.04

78 Tajikistan Pamir 2015 7.20 28.00 2.00 1.00 1.00 2.00 0.54

Europe

79 Italy Calabria 1783? 7.00 15.00 2.00 1.50 1.00 3.00 1.03

80 Romania Vrancea (Romania)
1802

7.90 150.00 1.00 1.50 1.00 1.50 0.15

81 Romania Vrancea (Romania)
1838

7.50 150.00 1.00 1.50 1.00 1.50 0.08

82 Italy S. Apennines Irpinia
1930

6.70 14.60 2.00 1.50 1.00 3.00 0.66

83 Romania Vrancea 1940 7.70 150.00 1.00 1.50 1.00 1.50 0.11

84 Italy Valle del Belice (Sicilia)
1968

6.12 17.50 1.00 1.50 1.00 1.50 0.09

85 Italy Friuli 1976 6.50 15.00 1.00 1.50 0.50 0.75 0.16

86 Italy Irpinia (Campania)
1980

6.90 10.00 1.50 1.50 1.00 2.25 0.64

86 Romania Vrancea 1977 7.40 94.00 1.00 1.50 1.00 1.50 0.14

87 Greece Kalamata (S. Greece)
1986

6.00 28.00 1.00 1.00 1.00 1.00 0.03

88 Armenia Spitak 1988 6.70 10.00 2.00 1.50 1.00 3.00 0.79

89 Greece Killini (W. Greece)
1988

5.90 25.00 1.00 1.00 0.50 0.50 0.03

90 Georgia Racha 1991 7.00 17.00 1.50 1.50 1.00 2.25 0.63

91 Spain SW Montefrio
(Loja, S. Spain) 1991

2.60 5.00 2.00 1.50 0.50 1.50 0.00

92 Turkey Erzincan (E. Turkey)
1992

6.70 27.00 1.00 1.00 1.00 1.00 0.09

93 Italy Umbria-Marche 1997 6.00 5.00 1.00 1.50 0.50 0.75 0.09

94 Slovenia Posocje 1998 5.60 6.00 1.00 1.00 0.50 0.50 0.02

95 Italy Palermo 2002 5.89 10.00 1.00 1.50 2.00 3.00 0.07

96 Italy Molise (Abruzzi) 2002 5.78 30.00 1.00 1.00 1.00 1.00 0.02
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