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Can this new glycemia metric tell me if my critical care 

patients are going to live or die?

INTRODUCTION

Critically ill patients often exhibit abnormal glycemia due to the severity

of their illness. High blood glucose levels and high glycemic variability

have both been independently associated with increased mortality in

these patients. More recently, it was hypothesized that glucose

complexity may also be associated with increased mortality.

Two studies have used Detrended Fluctuation Analysis (DFA) to

investigate glucose complexity in continuous glucose monitoring (CGM)

data from critically ill patients (Lundelin 2010, Brunner 2012). Both studies reported

an association between glucose complexity and mortality in critically ill

patients. The aim of this study was to extend the knowledge of glucose

complexity in critically ill adults by investigating the effects of CGM

device type/calibration and CGM sensor location on DFA results.

METHODS

Monofractal Detrended Fluctuation Analysis (DFA)

Monofractal DFA results in an exponent, H - the Hurst coefficient,

which describes the scaling properties of a time series

The larger the H, the less ‘complex’ the signal is 

Multifractal Detrended Fluctuation Analysis (MFDFA)

If scaling properties of the signal are not independent on time and

space, multifractal DFA should be used to analyze the signal. For

multifractal signals, H is dependent on q-order statistical moments and

the complexity of the signal is better described by the ‘Multifractal

Spectrum’ CONCLUSION

This study clearly highlights where care should be taken in 

future DFA studies. Monofractal DFA results were 

sensitive to the type of CGM device used to collect the 

glucose data. Multifractal DFA results were not always 

consistent with monofractal DFA results. The width of the 

multifractal spectrums suggests that multifractal DFA is 

more appropriate for this type of data. Finally, an 

association between DFA results and mortality could not 

be detected in this limited data set. 
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“The monofractal structure of biomedical signals are defined by a 

single power law exponent, and assumes that scale invariance is 

independent on time and space” Ihlen 2012

X(ct) = cHX(t)

RESULTS

DFA

MFDFA

There was no clear associations between any of the CGM parameters 

tested and the shape, width or location of the multifractal spectrums (Figure 

3). Furthermore, on several occasions Monofractal and Multifractal DFA 

gave contradictory results and indicate that future DFA results should be 

interpreted with care (Figure 4).

The  CGM traces obtained by multiple devices in a single patient can be 

very similar but produce very different multifractal spectrums

Guardian iPro2 P value

Number of data sets 9 8

Scaling exponent (H) 1.43 [1.37 - 1.48] 1.56 [1.46 - 1.60]

Difference in H (iPro2 - Guardian) 0.08

Abdomen Thigh P value

Number of data sets 8 9

Scaling exponent (H) 1.56 [1.46 - 1.60] 1.52 [1.50 - 1.61]

Difference in H (Thigh - Abdomen) 0.64

Lived Died P value

Number of data sets 17 9

Scaling exponent (H) 1.51 [1.46 - 1.57] 1.47 [1.39 - 1.59] 0.50

CGM device type (both in abdomen)

Sensor location (both iPro2)

0.10 [0.03 - 0.20]

0.04 [-0.06 - 0.11]

Outcome mortality

Analysing calibrated SG data

Patients

This study used CGM data from 10

patients admitted to the Christchurch

Hospital ICU. Patients wore Medtronic

Guardian and Medtronic iPro2 devices

on their abdomen, and a second iPro2

device on their thigh. This configuration

allowed the effects of CGM device type

and sensor location to be investigated,

for each participant.

Patients 10

Age (years) 51 [39 - 64]

Sex (M/F) 5/5

APACHE II 24 [17 - 27]

APACHE III 85 [52 - 99]

SAPS II 52 [30 - 59]

LOS (days) 20 [10 - 33]

Outcome (L/D) 6/4

Diabetes (None/T1/T2) 10/0/0

Table 1: Cohort Demographics 
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Figure 1: CGM signal displaying multifractal properties with a 

Hurst coefficient that varies with q order statistical moments 
Figure 2: Multifractal spectrum of a mono and 

multifractal signal, data supplied by Ihlen 2012 

Consistently higher 

H values from iPro2 

data compared to 

Guardian data.

No significant 

difference in sensor 

location or mortality 

results

Table 2: Monofractal DFA cohort results   
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Figure 3: Multifractal spectrums comparing

CGM device types, sensor locations and

outcome mortality
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Mulitfractal Spectrum for two data sets with H=1.38
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Mulitfractal Spectrum for two data sets with H=1.51

 

 

0 0.5 1 1.5 2 2.5

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

h(q)

D
(q

)

Mulitfractal Spectrum for two data sets with H=1.57
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Figure 4:  Multifractal Spectrum comparison for data sets that had the 

same scaling exponent from monofractal DFA
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Figure 5: A)This example shows average agreement between SG data for two CGMs, but the multifractal spectrums for each 

data set overlap. B) his example shows good agreement between SG data for each of the three CGMs, but the multifractal 

spectrums for each data set are quite different. 
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