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Abstract 

BACKGROUND: Neonatal hypoglycemia is common and can cause serious brain injury. Continuous 
glucose monitoring (CGM) could improve hypoglycemia detection, while reducing blood glucose (BG) 
measurements. Calibration algorithms use BG measurements to convert sensor signals into CGM data. 
Thus, inaccuracies in calibration BG measurements directly affect CGM values and any metrics 
calculated from them. 

AIM: Quantify the effect of timing delays and calibration BG measurement errors on hypoglycemia 
metrics in newborn infants. 

METHODS: Data from 155 babies were used. Two timing and three BG meter error models (Abbott 
Optium Xceed, Roche Accu-chek Inform II, Nova Statstrip) were created using empirical data. Monte-
Carlo methods were employed and each simulation was run 1000 times. Each set of patient data in each 
simulation had randomly selected timing and/or measurement error added to BG measurements before 
CGM data were calibrated. The number of hypoglycemic events, duration of hypoglycemia and 
hypoglycemic index were then calculated using the CGM data and compared to baseline values.  

RESULTS: Timing error alone had little effect on hypoglycemia metrics, but measurement error caused 
substantial variation. Abbott results under reported the number of hypoglycemic events by up to 8 and 
Roche over reported by up to 4 where the original number reported was 2. Nova results were closest to 
baseline. Similar trends were observed in the other hypoglycemia metrics. 

CONCLUSIONS: Errors in blood glucose concentration measurements used for calibration of CGM 
deivces can have a clinically important impact on detection of hypoglycemia If CGM devices are going to 

be used for assessing hypoglycemia it is important to understand of the impact of these errors on CGM 
data. 

  



1.0 Introduction  

Neonatal hypoglycemia is common and may often be undetected in new born infants [1]. It has been 

associated with permanent brain injury, seizures, poor vision and poor neurodevelopment in affected 

babies [2]. However, the definition of neonatal hypoglycemia and the best course of treatment remains 

a contentious subject [1, 3, 4]. 

 

CGM devices, with their 1-5 minute measurement interval, have recently been used to identify 

hypoglycemia in a more effective, less invasive manner than blood glucose (BG) measurements alone [1, 

5-7]. CGM devices typically consist of a small pager-like monitoring device that receives a signal from a 

sensor inserted into the subcutaneous layer, just beneath the skin. Calibration algorithms convert the 

signal into a meaningful glucose concentration by comparing it to known calibration BG measurements, 

which are entered into the monitor by the user. 

 

In the busy critical or neonatal care environment it is possible for time delays to occur between 

measuring BG and entering the value into the CGM device for calibration. The magnitude of time delays 

can depend on a number of factors, including the meter/method used to measure BG and the location 

of the BG meter relative to the patient [8-10]. Calibration algorithms cannot currently detect or correct 

for these time delays. Consequently, any delay could potentially introduce significant error in the output 

CGM trace, especially when the BG level is rapidly changing [11, 12]. 

 

Another source of error that could impact CGM data is calibration BG measurement error. Typical point-

of-care glucometers have measurement error in the range 2-10% [13-16]. However, these devices are 



often designed for otherwise healthy people with diabetes and they can exhibit reduced performance in 

critically ill or neonatal care patients, particularly due to medications or fluctuating hematocrit levels 

[17-19] and at low glucose concentrations. In contrast, blood gas analyzers (BGAs) can measure BG 

concentrations with less than 2% error for a wide range of patient states, with little influence from 

hematocrit, pH, or PaO2 which are often actively measured and accounted for [20]. Hence, the choice of 

calibration measurement method could have a significant impact on CGM accuracy, independent of 

calibration timing.  

 

These errors can add uncertainty to the CGM trace and to any glycemic metrics calculated from it. 

Therefore, studies utilizing CGM devices to detect and quantify hypoglycemia, or other glycemic events, 

should be aware of these potential sources of error and the potential impact on results. In particular, 

the resulting uncertainty or variability would limit the detectable resolution of any true clinical changes 

and should be accounted for in the study design. This study quantifies the effect of timing delays and 

calibration BG measurement errors, both together and separately, on metrics used to classify 

hypoglycemia in newborn infants.  

  



2.0 Subjects and Methods  

2.1 Patients  

This post-hoc analysis uses CGM and BG data from 155 newborn infants admitted to Waikato Hospital 

Neonatal Intensive Care Unit (NICU) between December 2008 and November 2010. Babies greater than 

35 weeks gestation, less than 48 hours old and at risk of neonatal hypoglycemia were eligible for the 

study. Primary risk factors for neonatal hypoglycemia included having a mother with diabetes, 

prematurity and/or being small or large for gestational age. All patients had a SOF sensor inserted 

shortly after birth and data were recorded using a CGMS System Gold device (Medtronic Minimed, 

Northridge, CA, USA). Patients with less than 24 hours of CGM data were excluded, and CGM data after 

72 hours was trimmed. The median [IQR] duration of CGM recordings were 1.8 [1.5 – 2.0] days with 5.9 

[5.1 – 6.9] calibrations per day.  This data was used to create one of two timing error models and for the 

main analysis presented here. This study and use of data was approved by the Northern Y Ethics 

Committee, New Zealand.  

 

2.2 Timing error models 

Timing error models are used to assess the impact of delays entering BG measurements into the CGM 

for calibration. Two models were created for this study, one using data from the Waikato Hospital NICU 

study and one using data from an on-going CGM study in the Christchurch Hospital ICU. The 

Christchurch Hospital ICU study and use of data was approved by the Upper South A Regional Ethics 

Committee, New Zealand.  

 



Both centers used BGAs for calibration BGs (Waikato: Radiometer ABL800Flex, Copenhagen; 

Christchurch: Radiometer ABL90Flex, Copenhagen). The BGA recorded the time and glucose 

concentration electronically, but nurses had to manually enter the BG value into the CGM, which stored 

this time/value. The distribution of time discrepancies between measuring BG and calibrating the CGM 

were used to create the model. Any time delays between obtaining the blood sample and determining 

the glucose concentration were considered negligible due to the close proximity of the BGA to the 

patients.  Figure 1 shows the raw data and empirically derived models of timing error used in this study.  

 

2.3 Measurement error models 

Measurement error models describe calibration BG measurement errors, commonly parameterized by 

accuracy and precision. A wide range of error levels for different devices can be found in the literature 

[21-25], but this study focused on three glucose meters: Abbott Optimum Xceed (Abbott Diabetes Care, 

Alameda, CA); Nova Statstrip (Nova Biomedical, Waltham, MA, USA); and Roche Accu-chek Inform II (F. 

Hoffmann-La Roche Ltd, Basle, Switzerland). 
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Waikato Time Delay Data

Exponential Fit
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Christchurch Time Delay Data

Exponential Fit

Figure 1: Distribution of time delay data from both Waikato (left) and Christchurch (right) data 
sets. Waikato Hospital data had 1947 time delay values and an exponential decay model (µ = 
12.96) fit the empirical data. Christchurch Hospital had 155 delay values and an exponential 
decay model (µ = 8.84) captured the empirical data.  
 



 

All three models were developed using data from the Christchurch ICU study. Under this protocol, BG is 

determined using a BGA and the remaining blood is distributed across up to 15 separate BG meters (up 

to 5 of each model). Not every model of glucometer was available for each patient in the study, resulting 

in different numbers of paired meter-BGA values for each glucometer. All measurements were made by 

trained staff, minimizing user associated error [10]. All devices used in this study measure glucose 

concentration in whole blood glucose and display a plasma equivalent glucose concentration as 

recommended by the International Federation of Clinical Chemistry and Laboratory Medicine (IFCC). 

Furthermore, BGA’s in the same family as the one used in this study have also been shown to correlate 

well with laboratory plasma glucose determinations [26], allowing direct comparison between all 

devices.  

 

For each glucometer measurement, the error between the glucometer and BGA value was calculated as 

(meter – BGA). Errors were stratified into bins, based on the BGA gold standard measurement. Mean 

and standard deviation of each bin were then used to describe the error distribution, and assumed 

Gaussian around any bias. Positive bias assumes the glucose meter is reading higher than the recorded 

BGA value and vice-versa. 

 

The Abbott Optium Xceed is an inexpensive and commonly available device that measures the glucose 

concentration of a whole blood sample, and estimates the plasma equivalent glucose concentration 

using a constant adjustment factor of 1.12 [13]. This factor is derived from the difference between 

plasma glucose and whole blood glucose concentration for an individual with a normal hematocrit level.  



The Abbott test strips are validated for a hematocrit range of 20-70 [13]. The top section of Table 1 

shows the error model derived from the experimental Abbott and BGA data. There were a total of 724 

paired meter-BGA measurements available for the model.  

 

The Nova Statstrip GLU was designed for point of care testing in the hospital environment and adjusts 

for hematocrit level when calculating plasma glucose concentration. The Nova test strips used in this 

study were validated for a hematocrit range of 20-65% [27]. The middle section of Table 1 shows the 

error model derived from the 229 paired meter-BGA measurements.  

 

The Roche Accu-chek Inform II was also designed for point of care testing and monitoring in hospitals. 

This device also adjusts for hematocrit level and test strips were validated for a hematocrit range of 10-

65% [15].  The bottom section of Table 1 shows the error model derived from 344 paired meter-BGA 

measurements.  

Table 1: Measurement error data for the Abbott Optium Xceed, Nova Statstrip, and Roche Accu-chek 
Inform II glucose meters. The Nova and Roche models have a reduced number of bins to avoid 

skewing due to low measurement numbers. 

Abbott Error Model 

Reference BG (mmol/l)  < 5.9  6.0 - 6.9 7.0 – 7.9 8.0 – 8.9 > 9.0 

Number of measurements 141 277 224 42 40 

Error mean (mmol/L) 0.5099 0.5433 0.2299 0.1952 0.635 

Error std. dev. (mmol/L) 0.4982 0.7519 0.5521 0.8748 0.3965 

Nova Error Model 
Reference BG (mmol/l)  < 6.9 7.0 – 7.9 > 8.0 

Number of measurements 67 74 123 

Error mean (mmol/L) -0.0134 -0.0823 -0.1905 

Error std. dev. (mmol/L) 0.2564 0.2471 0.3463 

Roche Error Model 
Reference BG (mmol/l)  < 6.9 7.0 – 7.9 > 8.0 

Number of measurements 174 160 10 

Error mean (mmol/L) -0.181 -0.4212 -0.27 

Error std. dev. (mmol/L) 0.2615 0.2645 0.0949 



 

All three measurement error models were validated against the error characteristics described by the 

manufacturers [13, 16, 21]. The Roche and Nova measurement error models compared well to the 

manufacturers data. The Abbott measurement error model has increased bias and variation compared 

to the manufacturer’s data. Finally, the models described here are comparable to what has been 

reported in the literature for these devices [17, 28].  

 

2.4 Analysis 

This analysis used CGM and BG data from 155 babies admitted to the Waikato NICU study. Timing and 

measurement errors from the models described in Sections 2.2/2.3 were added to calibration BG 

measurements, before CGM data were re-calibrated using a published calibration algorithm [12]. 

Hypoglycemia of each infant was quantified by: 

 Number: Number of independent hypoglycemic events  

 Duration: Percentage of CGM recordings below 2.6mmol/L 

 Hypoglycemic index: Total area between the 2.6mmol/L threshold and the CGM trace (when 

CGM < 2.6mmol/L), divided by the total monitoring duration 

 

Monte Carlo (MC) methods were employed to reduce the impact of randomly sampled outliers on 

results. A 1000-run MC simulation was completed for each individual model (two timing and three 

measurement error models) resulting in 5 simulations. Simulations were also run for all possible 

combinations of timing/measurement error models (a further 6 simulations). The simulation protocol 

can be summarized as follows: 



1. For every MC run on a given infant CGM trace, the difference between the number of 

hypoglycemic events in the CGM data for that MC run and the number of hypoglycemic events 

in the baseline (no added error) clinical data was determined as [Number(MC run) -  

Number(baseline)]. 

2. The median difference across 1000 MC runs for each patient was recorded 

3. The Median [IQR] (90th percent confidence interval) of the values calculated in step 2 for all 

patients were included in the results table 

4. Steps 1-3 were repeated for hypoglycemia percent duration and hypoglycemic index.  



3.0 Results 

3.1 Timing error only 

Timing error tends to have little effect on the number of hypoglycemic events, shown in Table 2. Both 

timing error models have a median difference from the original metrics of 0 and the 90% CI variation is 

only ±2 events. Percent duration and hypoglycemic index are increased by timing error for both models. 

The Waikato model had a positive median difference of 0.21 (duration) and 0.27 (index) and the 

Christchurch model had a positive median difference of 0.17 (duration) and 0.18 (index). The Waikato 

timing error model shows a larger increase in duration and index, and greater variation, resulting in it 

over-reporting more frequently than the Christchurch model.    

 

3.2 Glucometer Error 

The Abbott Optium Xceed results have a negative median difference across all metrics and the variation 

is skewed to the left, shown in Table 2. Hence, the Abbott results tended to under-report all 

hypoglycemic metrics. The number of hypoglycemic events recorded had a median difference of -1 [IQR: 

-3 0]. The Nova Statstrip tended to over-report percent duration and hypoglycemic index, with median 

and IQRs of 0.49[0.1 1.6] and 2.93 [0.5 8.2] respectively. The Roche Accu-chek Inform II tended to over-

report hypoglycemia the most and also had the largest variation, with median differences of 4.45[1.8 

10] for duration and 19.4[4.2 38] for index. When compared to the Abbott and Roche results, the Nova 

results are closest to the baseline hypoglycemic metrics.    

 

The tendency to under or over-report hypoglycemia metrics can be seen in Figure 2, which shows a 

single patient data set simulated with each measurement error model. The original recalibrated trace 



(dark blue line) shows a significant hypoglycemic event between 430 and 570 minutes.  With the Abbott 

error model (A in Figure 2) this hypoglycemic event only appears in approximately 50% of the 1000 MC 

runs. In the Nova (B in Figure2) and the Roche (C in Figure 2) simulations this hypoglycemic event is 

detected for 100% of the MC runs.  As a consequence of the negative bias, especially in the Roche 

model, this event tends to drop below the 2.6mmol/L threshold earlier and rise later than the baseline 

trace, resulting in a concomitant increase in duration and Index. 

 

Figure 3 shows the baseline (no error) duration of hypoglycemia (x-axis) plotted against the duration of 

hypoglycemia for each MC run (y-axis), for a 1000MC run simulation. Essentially, the spread in the y 

direction shows the amount of variation in the hypoglycemia metric for the 1000MC runs. The left plot 

shows results when using the Abbott model, with a clear tendency to under-report the duration of 

hypoglycemia. The right plot is for the Roche model, showing that the duration metric has been over 

estimated, with the majority of results above the MC=baseline 45° line.  

 

3.3 Combined Measurement and Timing Error 

The combination of measurement and timing error leads to an increase in both the median difference 

and variation of these across all metrics. However, the results are not additive and the contribution from 

timing error is dominated by measurement error, as shown in Table 2.    

 

 

 



Table 2: Overall cohort results from each 1000 run MC simulation showing the median [IQR] (90% CI) 
difference in hypoglycemia metrics from baseline. 

Baseline Hypoglycemia 

Number of Hypoglycemic Events 2 [1  5] (0  13)    

Percentage Duration 6.13 [1  13] (0  29)    

Hypoglycemic Index 10.13 [1.3  27] (0  87)    

     

Results From Error Monte Carlo Simulations Using Error Models 
Number of Hypoglycemic events No Measurement Error Abbott measurement error Nova measurement error Roche measurement error 

No timing error  -1 [-3  0] (-8  0) 0 [0  1] (-3  2) 0 [0  2] (-3  4) 

Waikato timing error 0 [0  1] (-2  2) -1 [-2  0] (-8  0) 0 [0  1] (-3  2) 1 [0  2] (-3  4) 

Christchurch timing error 0 [0  0] (-2  2) -1 [-2  0] (-8  0) 0 [0  1] (-3  2) 1 [0  2] (-3  4) 

     

Percentage Duration     

No timing error  -4.68 [-9.0  -1.0] (-17  0) 0.49 [0.1  1.6] (-0.1  6.7) 4.45 [1.8  10] (0  23) 

Waikato timing error 0.21 [0  1.3] (-1.7  4.1) -4.25 [-9.0  -1.0] (-15  0) 1.02 [0.1  3.2] (-0.5  8.7) 5.36 [2.1  11] (0  26) 

Christchurch timing error 0.17 [0  0.9] (-1.5  3.6) -4.40 [-8.5  -0.6] (-15  0) 0.84 [0  2.7] (-0.4  8.1) 5.23 [2.2  11] (0  25) 

     

Hyperglycemic Index     

No timing error  -7.64 [-22  0] (-59  0) 2.93 [0.5  8.2] (0  16) 19.4 [4.2  38] (0  70) 

Waikato timing error 0.27 [0  3.1] (-3.3  14) -6.84 [-22  -0.3] (-48  0) 3.84 [0.7  12] (-0.1 27) 20.8 [4.1  42] (0  82) 

Christchurch timing error 0.18 [0  2.3] (-2.9  11) -7.24 [-21  -0.4] (-50  0) 3.77 [0.60  11] (0  23) 21.3 [4.7  42] (0  80) 

 
 
 



 

Figure 2: Example CGM traces showing the effect of A) Abbott measurement error, B) Nova 
measurement error, and, C) Roche measurement error. The coloured band in each plot shows the 5th-
95th percentile variation in the CGM trace over 1000MC simulations. 

 

 

Figure 3: Duration of hypoglycemia in each of 1000 MC runs plotted against baseline duration of 
hypoglycemia, for all 155 CGM data sets. Plot ‘A’ shows simulation results using Abbott measurement 
error and plot ‘B’ shows simulation results using Roche measurement error. 



4.0 Discussion 

4.1 Timing error vs. Measurement error 

The observed timing errors noted in the clinical practice have little impact on CGM hypoglycemic 

metrics. Measurement error alone has a much larger effect on the hypoglycemic metrics than timing 

error alone. The best performing measurement model, the Nova, increases the median duration of 

hypoglycemia by more than double that of the Waikato timing error model. The median hypoglycemic 

index of the Nova measurement error model is ten times that of the Waikato timing error model. The 

variation seen in these metrics is also greater for the Nova. Additionally, when the effects of 

measurement and timing error are combined, there is little change to the results compared to 

measurement error alone. Thus these results clearly illustrate the dominance of measurement error 

over timing error in the overall cohort.  

 

Clinically, when real-time CGM devices are used to help detect neonatal hypoglycemia, the effects of 

these errors can be reduced by assessing the state of the CGM trace at the time of calibration. It is 

widely recommended that CGM devices be calibrated during periods of stable glycemia to avoid 

substantial errors in CGM data that may result from timing errors. In these cases, time and care can be 

taken to ensure the most accurate measurement of blood glucose levels is obtained, employing a BGA (if 

available) instead of a point of care glucometer.  

 

If the CGM must be calibrated during a time of rapidly changing glucose, the user should be aware that 

the discrepancy between the calibration BG measurement and the true BG level increases with delay in 

entering the calibration measurement. This is potentially a problem in newborn babies whose glucose 



levels can fluctuate significantly during the first few hours of life. In these specific cases, it is highly 

recommended that the calibration measurement is obtained and entered into the CGM without delay, 

suggested within 5 minutes. In the context of hypoglycemia, any error in the ‘calibration factor’ due to 

time delay can have an effect on the level of measured hypoglycemia hours after the calibration has 

occurred. However, if BG levels are low and trending downward at the time of calibration it may be 

more advisable to obtain a very accuracy BGA measurement as a measure of safety.  

 

4.2 The Impact of Bias  

The tendency of Abbott to under-report the hypoglycemic metrics, while Nova and Roche over-report, is 

related to the direction and magnitude of their measurement bias. The negative biases of the Nova and 

Roche models cause the trace to be pulled down more frequently during calibration. Hence, the number 

of hypoglycemic events tends to increase, as do the time and area below the threshold.  In contrast, the 

positive bias in the Abbott meters causes the trace to be pulled up during calibration causing 

hypoglycemia to be under-reported.  

 

It is likely that the Abbott meter, not being designed specifically for the ICU environment, is more 

sensitive to clinical factors including varying hematocrit and medications such as acetaminophen, 

ascorbic acid and dopamine [29]. The cohort data used to create the models came from patients with 

median [IQR] (90%CI) hematocrit levels of 27.7% [25 31] (24 36) and while they all remained within the 

validated range for the test strip, the median is significantly lower than the normal hematocrit level of 

40-45%. The combination of low hematocrit levels and a constant correction factor of 1.12 is likely to 

have contributed to the positive bias seen in the Abbott model. Using a whole blood to plasma 



conversion equation [30] and a hematocrit value of 27%, the ‘true’ conversion factor is calculated to be 

1.07 which is 5% lower than the constant Abbott value. Additionally, newborn babies can have 

hematocrit levels as high as 65% [31] causing the Abbott meter to under-report the true plasma glucose 

by ~6%.   

The clinical impact of these findings could be significant for future studies using CGM devices to classify 

hypoglycemia in neonates. However, it is not yet possible to quantify what percentage of under/over 

reporting of hypoglycemia is clinically significant, as the long term effects of hypoglycemia on infants are 

still being investigated. Glucometer device characteristics such as bias and clinical factors such as 

hematocrit could have a substantial impact on the results of a study of glycaemia. For example, if two 

separate studies were investigating hypoglycemia using CGM devices, the study outcomes could differ 

simply due to the type of glucose meter used to calibrate the CGM. Systematic reviews and meta-

analyses need to be considered when studies using different glucometers are compared. Thus, it is 

important to select an appropriate method of measuring glucose for calibration when undertaking CGM 

studies, and to understand the range of impact or uncertainty that the device may impart to the results.   

4.3 Variation in hypoglycemia metrics   

The IQR and 90%CI in the results table are used to assess the variation in the hypoglycemia metrics 

across the 1000 MC runs. The results showed a counter-intuitive trend: the Roche results had a wider 

90%CI (more variation in results), for duration and index, than the results from the lower precision 

Abbott meter. The negative bias of the Roche was deemed to be the cause of this unexpected result as 

the increased amount of hypoglycemia allows more variation to be observed.  

 



In Figure 3 it is evident that truncation in the variation of hypoglycemia metrics occurs when calibration 

causes the CGM to be lifted above the hypoglycemic threshold. Plot A in Figure 3 illustrates how the 

negative bias in the Roche model increases the area and time below the 2.6mmol/L threshold, allowing 

more variation to be seen in the hypoglycemia metrics. Conversely, plot B in Figure 3 shows that the full 

effect of the Abbott precision is only experienced by patients with large baseline durations of 

hypoglycemia. The positive bias of the Abbot error causes the majority of points to fall below the 45° 

line and the variation observed in duration is truncated at zero, causing the tighter 90%CI seen in 

results. Finally, the widths of the bands in Figure 2 reinforce this point and show the true effect of 

precision on the overall CGM trace. 

 

4.4 Limitations 

The main limitation of this study is the method used to calibrate the CGM after adding timing and 

measurement error to calibration BGs. The proven calibration algorithm from Signal et al [12] was 

designed to be used with very accurate calibration BG measurements, with little or no timing error. 

Thus, it inherently assumes the calibration BGs are perfect and forces the CGM trace to pass through 

them. Inbuilt CGM calibration algorithms typically use regression techniques [32] to reduce the impact 

of individual erroneous measurements on the output CGM trace. However, the details of these 

algorithms are not typically fully disclosed, and therefore it was not possible to use one directly in this 

study. Although the effect of glucometer calibration errors on hypoglycemic metrics might be reduced 

with the use of an inbuilt calibration algorithm, it is likely that the trends discussed in this study will still 

remain as such algorithms would only moderate the impact of calibration error and not eliminate it.  

 



A second limitation is that the CGM devices used in this study are not the latest CGM technology 

available on the market. This is a post-hoc analysis of data that was collected between 2008 and 2010, 

using devices purchased for first use in 2006 as part of another research study. At the time of purchase, 

the CGMS Gold was the most widely reported CGM device used for research. While the exact numerical 

results may differ with newer devices or different technologies, it is likely that the trends in results and 

overall conclusions reported in this study would still be observed.  

 

Finally, the assessment of hypoglycaemia in CGM data does not account explicitly account for potential 

inaccuracies in the CGM data itself. The recalibration algorithm exploits the very accurate and frequent 

calibration BG measurements in order to minimize CGM error, but it is likely that the recalibrated CGM 

data still contains some degree of error. This remaining error could potentially affect the exact 

numerical results when quantifying hypoglycemia, but again, it is likely the key trends and observations 

discussed in this study would still remain. 



5.0 Conclusions 

This study aimed to quantify the effect of calibration delays and glucometer measurement error on the 

hypoglycemic metrics detected using CGM devices in infants at risk of hypoglycemia soon after birth. 

Overall, measurement error tends to have a much larger impact on hypoglycemia metrics than timing 

error. The effect of bias in calibration BG measurements was twofold: 1) A negative error bias increases 

the prevalence of hypoglycemia; and, 2) it also increases the amount of variation seen in hypoglycemic 

metrics.  The opposite was also true for positive biases. Finally, if CGM devices are to be used clinically 

for assessing events such as hypoglycemia it is important that the investigators are aware of the 

potential impact that errors in calibration BG measurements can have on event detection.   
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