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Abstract— Hyperglycaemia is a common complication in the 

intensive care unit (ICU), and is associated with worsened 

outcomes. Model-based insulin therapy protocols have been 

shown to be safe and effective in intensive care. Such protocols 

rely on correct modeling of glucose-insulin dynamics. In 

particular, model-based control typically relies on insulin 

sensitivity (SI) metrics, which are heavily influenced by plasma 

insulin kinetics. Plasma insulin samples were taken as part of a 

sepsis study and compared to modeled plasma insulin. Samples 

were taken in septic patients at the onset of glycaemic control, 

and once the patient consistently met less than two of the SIRs 

criteria that help define sepsis. It was found that inter-patient 

insulin dynamics were more variable at the onset of insulin 

therapy, than in the later samples after sepsis abated. Overall, 

the model adequately captured crucial steady state dynamics. 

Transient dynamics in plasma insulin following a bolus were 

faster than modeled, indicating greater clearance of insulin 

than currently modeled. 

I. INTRODUCTION 

Stress-induced hyperglycaemia is a common complication in 

the intensive care unit (ICU), even in patients with no 

history of diabetes [1-3], and is associated with increased 

mortality and morbidity [1, 4-9]. Insulin therapy can be used 

to treat hyperglycaemia, but can result in hypoglycaemia, 

which is associated with increased mortality [10], and results 

from excessive intra- and inter- patient variability. STAR is 

a physiological model-based insulin therapy protocol that 

has proven safe and effective in intensive care [11, 12].  

Model-based protocols rely on the inherent accuracy and 

usability of their models [13]. Key aspects of a glucose-

insulin system compartment model, when used in control, 

are the plasma and peripheral insulin concentrations. Insulin 

mediates glucose uptake into body cells, where it is stored or 

used. Insulin is cleared via liver and kidney clearance, as 

well as diffusion to interstitial fluid and cellular degradation 

[14]. Within the STAR model-based framework, an insulin 

sensitivity parameter is used to describe the time varying and 
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patient-specific metabolic effect of insulin on insulin-

mediated glucose uptake [15]. Thus, accuracy of plasma 

insulin dynamics has a significant impact of identified 

parameters such as insulin sensitivity (SI), and, in turn, on 

the recommended dosing. 

In particular, insulin sensitivity is used alongside stochastic 

modelling methods to predict future changes in blood 

glucose for a given dose [11, 16]. Thus, reduction of error in 

modelled plasma insulin can reduce SI variability and 

further increase the accuracy and utility of the parameter for 

glycaemic control. This paper evaluates the accuracy of 

insulin system models for intravenous (IV) insulin 

administration. Plasma insulin blood samples from a study 

of sepsis were used to evaluate these models.  

II. PATIENTS AND METHODS 

A. Sepsis Study Patients 

19 patients enrolled in a prospective clinical trial studying 

sepsis at the Christchurch Hospital Intensive Care Unit 

(ICU) each had an additional two sets of blood samples 

assayed for insulin and C-peptide. Patients received insulin 

therapy (Actrapid, Actrapid, Novo Nordisk, Denmark) under 

the SPRINT protocol [17], a precursor to the STAR 

protocol.  Patients were included in the study if they met all 

of the following criteria:  

 Age ≥ 16 years  

 Expected survival ≥ 72hrs 

 Expected ICU length of stay ≥ 48hrs 

 Entry to the SPRINT glycaemic control protocol (2 

sequential BG measurements ≥ 8mmol/L) 

 Suspected sepsis or SIRS score ≥ 3 

Patient characteristics are in Table I. 

TABLE I. SUMMARY OF SEPSIS STUDY PATIENT 

CHARACTERISTICS. DATA ARE SHOW AS MEDIAN [IQR] WHERE 

APPROPRIATE. 

N 19 

Age (years) 68 [57-75] 

Gender (M/F) 10/9 

APACHE II score  22.0 [18.3-26.8] 

Confirmed Sepsis 79% 

Hospital mortality (L/D) (13/6) 

Diagnosed T2DM 3 
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Patients received treatment for suspected sepsis 

with antibiotics. No type 1 diabetic patients were 

included. This study was approved by the Upper 

South Regional Ethics Committee, New Zealand.  

One additional sepsis patient admitted to the ICU 

after pancreatoduodenectomy (Whipple 

procedure) was excluded from this analysis as 

this procedure involved removing a section of the 

pancreas and may thus have affected insulin 

secretion beyond model assumptions.  Two other 

patients each only had one set of blood samples 

assayed as one was discharged from the ICU 

within 48 hours and the other did not meet the 

criteria for the second set to be taken. 

Each patient had two sets of blood samples taken, 

where each set consisted of 4 separate samples. 

The first set of samples (Sample Set 1) was taken 

at the commencement of the SPRINT protocol 

[17]. The second set (Sample Set 2) was taken 

when the patient consistently met less than 2 of the SIRS 

criteria (Systemic Inflammatory Response Syndrome) [18].   

The  first  sample  of  each  set  was  taken  immediately  

prior  to  bolus  delivery  of insulin as required by SPRINT (t 

= -1 min). The remaining three samples were taken at t = 10, 

40, and 60 minutes. Plasma was separated from the blood 

samples and frozen for subsequent analysis.    

Insulin concentrations were determined using immunometric 

assays (Elecsys 2010, Roche Diagnostics, Germany).  The 

reported coefficients of variation (CVA) for the insulin 

assays were 3.8% [19, 20]. 

B.  ICING Model  

For this study, the clinically validated Intensive Control 

Insulin-Nutrition-Glucose (ICING) model of the glucose-

insulin system was used [11, 15] to describe blood glucose, 

G, plasma insulin, I, and peripheral insulin, Q, 

concentrations: 

𝐺̇ = −𝑝𝐺𝐺(𝑡) −  𝑆𝐼𝐺(𝑡)
𝑄(𝑡)

1 + 𝛼𝐺𝑄(𝑡)
  +

𝑃(𝑡) + 𝑃𝑁(𝑡)

𝑉𝑔
 

+
 𝐸𝐺𝑃𝑏 − 𝐶𝑁𝑆

𝑉𝑔
 

(1) 

 𝐼 ̇ =  − 
𝑛𝐿𝐼(𝑡)

1 + 𝛼𝐼𝐼(𝑡)
− 𝑛𝐾𝐼(𝑡) − 𝑛𝐼(𝐼(𝑡) − 𝑄(𝑡)) + 

𝑢𝑒𝑥(𝑡)

𝑉𝐼
 

+(1 − 𝑥𝐿)𝑢𝑒𝑛 

(2) 

𝑄̇ = 𝑛𝐼 (𝐼(𝑡) − 𝑄(𝑡)) − 𝑛𝐶

𝑄(𝑡)

1 + 𝛼𝐺𝑄(𝑡)
 (3) 

𝑢𝑒𝑛 = 𝑚𝑎𝑥 (16.67,
14 ∗ 𝐺

1 + 0.0147 ∗ 𝐺
− 41) (4) 

Where P and PN are glucose appearance from enteral and 

parenteral routes respectively. 𝑢𝑒𝑥 is insulin introduced via 

IV bolus or infusion, and 𝑢𝑒𝑛 is pancreatic insulin secretion. 

Further parameter descriptions and values can be found in 

Table 2. 

C. Analysis of model accuracy 

Model error was analyzed in terms of the difference between 

measured and modeled insulin (vertical error) and 

perpendicular error. Vertical error is defined: 

𝐸𝑣𝑒𝑟𝑡 = 𝐼𝑎𝑠𝑠𝑎𝑦 − 𝐼𝑚𝑜𝑑𝑒𝑙𝑙𝑒𝑑  (5) 

Perpendicular error is the smallest distance between a data 

point and the model, and better takes into account timing 

(horizontal) error in cases where the model gradient is very 

high. Perpendicular error is minimized a total least squares 

approach [21]. Perpendicular error is defined: 

𝐸𝑝𝑒𝑟𝑝 = 𝑚𝑖𝑛 (√(𝐼𝑎𝑠𝑠𝑎𝑦 − 𝐼𝑚𝑜𝑑𝑒𝑙𝑙𝑒𝑑,𝑡𝑛+𝑖)
2

+(𝑡𝑎𝑠𝑠𝑎𝑦 − 𝑡𝑛+𝑖)
2
 (6) 

Where tn is the assay time, and tn+i is the time corresponding 

to some nearby model solution. For each set of 4 samples the 

RMS vertical and perpendicular error was calculated. 

To test sensitivity of insulin dynamics to clearance 

parameter values nL, nK, nI and nC were multiplied by a 

constant, ξ, which was allowed to range between 0.1 and 3.0. 

The intention was to find the ξ which resulted in the best 

model fit with minimized perpendicular and vertical error.  

III. RESULTS AND DISCUSSION 

Measured sample results are shown in Table III. While 

plasma insulin was not significantly different (p=0.11), 

plasma C-peptide concentration was much higher across 

Sample set 1 (p<<0.001, Table III), indicating that insulin 

secretion was much higher in these samples, or clearance of 

C-peptide was lower but insulin clearance was not. This was 

also true when comparing C-peptide concentration across the 

first sample of each sample set (2225 [980-2735] vs. 799 

[478 – 1000] pmol/L, p=0.002), indicating that steady-state 

pre-insulin-bolus insulin secretion is higher when patients 

are septic.  

TABLE  II. ICING MODEL PARAMETER DESCRIPTION AND VALUES. 

 
Variable Description 

Value  and/or 

units 

𝑝𝐺  Endogenous glucose clearance 0.006 min
-1

 

𝑆𝐼  Insulin sensitivity* L/mU/min 

𝛼𝐺 Insulin-mediated glucose uptake saturation 1/65 L/mU 

𝐸𝐺𝑃𝑏  Basal endogenous glucose production 1.16 mmol/min 

𝐶𝑁𝑆 Central nervous system glucose uptake 0.3 mmol/min 

𝑉𝑔 Distribution volume for glucose 13.3 L 

𝑛𝐿 Liver clearance of insulin 0.158 min
-1

 

𝑛𝐾 Kidney clearance of insulin 0.054 min
-1 

𝑛𝐼 Plasma ↔ interstitial insulin diffusion 0.0075 min
-1

 

𝑛𝐶 Peripheral degradation of insulin 0.0075 min
-1

 

𝑥𝐿 First pass hepatic clearance of insulin 0.67 

𝛼𝐼 Saturation on liver clearance of insulin 1.7x10
-3

 L/mU 

𝑉𝐼 Distribution volume for insulin 4.0 L 

*Insulin sensitivity is fit on a time varying, per-patient basis from 

measured BG data. 
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TABLE III: RAW RESULTS FROM EACH SAMPLE SET 

 
Time since 

TGC onset 

[hrs] 

Insulin 

[mU/L] 

C-peptide 

concentration 

[pmol/L] 

Sample set 1 - 24.0 [10.4 – 52.7] 2050 [993 – 2770] 

Sample set 2 84 [77-142] 20.9 [7.9 – 42.9] 758[487 – 1052] 

All - 20.9 [8.6 – 51.4] 1270 [558 – 2345] 

Plasma insulin concentrations and model solution are shown 

in Figure I. It can be seen that in most cases the initial 

insulin clearance is faster than currently modeled. This result 

is also seen in Table II, where ξ>1 resulted in improved 

model fit across most of the samples. Across both initial and 

follow up sampling groups, the median [IQR] value of ξ that 

was required to optimize model fit was 2.1 [1.3 – 2.7], 

suggesting that generalized insulin clearance is twice as fast 

as the value originally modeled, and thus that one or more of 

the clearance dynamics is significantly faster than currently 

modeled.  

In the original formulation of ICING model parameters, Lin 

et al used a combination of known C-peptide dynamics,  and 

grid search over a likely physiological parameter range [15]. 

The grid search selected values such that the difference 

between modeled and measured BG was minimized. It is 

thus likely that, while these insulin clearance parameters are 

within a physiologically likely range, insulin dynamics may 

in reality be faster.  

Model error was higher (p≤0.06) in the first set of blood 

samples, corresponding to the onset of tight glycaemic 

control in a septic patient, reflecting the higher inter-patient 

variability seen in plasma insulin clearance at this stage in a 

patient’s infection state. Table III indicates that insulin was 

cleared faster at the time the first set of samples was taken 

(higher ξ).  C-peptide results also suggest higher insulin 

secretion in the septic sample cohort, reflecting relative 

insulin resistance. This result seems to indicate that insulin 

dynamics are disease state dependant in their value. 

The second set of samples were taken when a patient 

consistently met less than two of the SIRS criteria, reflecting 

improved patient condition. Lower model error in this set of 

samples indicates that in less ill patients insulin dynamics 

are more consistent between patients, and are thus more 

easily modeled. ξ was also lower, indicating that insulin was 

cleared more slowly than in the first sample sets. 

 Model error in general was higher in the first half hour 

following the insulin bolus, where plasma insulin was more 

dynamic. The vertical error is greater than the 3.8% error 

associated with the immunoassay procedure. However, the 

difference between vertical and perpendicular error is high, 

indicating that slight offsets in time result in significant 

differences in insulin concentration due to large gradients in 

the modeled trajectory around a bolus. In this situation, 

perpendicular error gives a more informative reference for 

model error, as timing offsets between model and samples in 

samples are clinical reality due to a number of factors, such 

as timing differences in sampling and therapy.  

In the case of the STAR protocol, the ability of the model to 

capture the steady state dynamics is more important than the 

ability to capture the first transient insulin peak following an 

IV insulin bolus. This priority occurs because, while 

transient plasma insulin contributes to initial BG drop, final 

BG at the end of an hour is more dependent on the steady 

state plasma insulin concentration. This final BG value is 

what drives the control protocol, and measured response 

based on infrequent BG measurements is more important 

than the transient trajectory in between those measurements.  

 

FIGURE I. ASSAY VALUES AND MODELED RESPONSE ACROSS 

ALL PATIENTS AND SAMPLING GROUPS. 
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TABLE IV: MODEL FIT TO INSULIN ASSAY DATA FOR DIFFERENT INSULIN CLEARANCE PRAMTERS 

 ξ=1.0 Minimum error 

RMS 

Vertical error 

[mU/L] 
√[𝒎𝑼]𝟐 + [𝒎𝒊𝒏]𝟐  

RMS 

Perpendicular 

error 
ξ 

RMS 

Vertical error 

RMS 

Perpendicular error 

Sample set 1 202 [116.2 – 454.3] 24.8 [18.9 – 71.7] 2.4 [1.1 – 2.7] 158.6 [64.6 –318.9] 16.0 [11.7 – 31.2] 

Sample set 2 87.4 [101.1 -128.3] 18.6 [13.7 – 33.2] 1.8 [1.3 – 2.3] 62.1 [29.6 – 128.6] 11.3 [ 4.7 – 18.0] 

All 123.7 [89.2 – 234.7] 22.7 [15.4 – 37.9] 2.1 [1.3 – 2.7] 97.1 [43.5 – 192.5] 13.3 [9.3 – 19.8] 
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Blood samples were to be taken at 0, 10, 40, and 60 minutes 

after an IV insulin bolus, but in some cases clinical workload 

and/or repeated sampling requirements resulted in a delay. 

Figure I shows that this sampling regime is insufficient to 

capture the initial data peak. A sampling regime of 0, 5, 10, 

20 and 60 minutes would better capture initial insulin 

dynamics. 

In general, Figure I shows that the insulin kinetics of the 

ICING model fall within what might be clinically observed. 

Across most samples, insulin clearance was higher than 

currently modeled, and insulin clearance was highest at the 

onset of glycaemic control when the patients were most 

unwell. Inter- and intra- patient variability in the rate of 

insulin clearance (Table IV) reflects previously observed 

variability in human glucose-insulin physiology [22], and 

the need for adaptive control methods [23].  

These results suggest that the insulin clearances within the 

model should be made faster. However, the ICING model 

must be generalisable to all patient cohorts across the ICU, 

unless clear condition or patient specific differences can be 

consistently noted at the bedside. Further work over other 

ICU patient cohorts and underlying disease conditions is 

required to develop more condition and time dependant 

modeling of clearance parameters. Overall, crucial steady 

state plasma insulin levels following an IV insulin bolus are 

captured.  

IV. CONCLUSION 

Plasma insulin samples were taken in sepsis patients at 

glycaemic control onset, and once the patient met less than 2 

of the SIRs criteria, a median of 84 hours later. The ICING 

model’s insulin kinetic models were evaluated against these 

samples, and it was found that in general plasma insulin 

clearances were faster than currently modeled. Inter-patient 

variability was higher at the onset of glycaemic control. 

Model fitting error and insulin clearance was lower in the 

second set of samples. C-peptide concentration was higher in 

the first set of samples, with similar plasma insulin 

concentrations, suggesting that insulin secretion was higher 

when the patient was more ill, and relative insulin sensitivity 

was lower. These overall results suggest that insulin kinetics 

are condition dependant. Thus, it is critical to develop 

greater data sets and delineate the variation across common 

or particularly critical, such as sepsis, patient conditions. 

Capturing this variability in the insulin dynamics modeling 

will ensure that all other, already well-proven models remain 

fully generalisable. 
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