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1 Introduction

The Sudoku game has gained much interest for a dozen years. It is now put in various magazines and
mathematical research is more and more interested in it. This document aims at providing some newer
information about the mathematical properties of the Sudoku, but not according to graphs’ theory. We
do not speak about the “minimum number of clues,” but about Sudokus’ matrix interpretation: general
properties of its determinant, in relation to eigenvalues; transpose; non-Hermitian character; neither sym-
metric nor antisymmetric character; non-normal character; non-orthogonal character when the matrix has
a determinant of 0, conjecture when the determinant is not equal to 0; order; condition number.

2 Conventions

Through this paper, we use the following conventions:

— &S denotes the set of all the (solved) Sudokus. We have |S| ~ 6.771 - 10?2, according to [3],

— S;,; denotes the element at the 7th row and the jth column of the general S Sudoku square matrix. We
shall use 1 < i < n, 1 < j < n, where n denotes the number of rows (or columns, as it is always a square
matrix) of the Sudoku (we always consider n > 4). S has thus the following form:

S11 812 Sim
S21 S22 -+ Sap

Sn,l Sn,2 T Sn,n



- Z?zl Sij= w, 1 <4 <n (i being free in this interval) denotes the sum of all the elements on one

line ¢ of S. Evidently,

n

" nn+1) nn+1)
Zsi,j =—5 = ZSi,j =—5
i=1

Jj=1

because of the fundamental properties of the Sudoku,
— Z* denotes the set of the integers without 0; that is, Z \ {0},
— (' is the transpose of the matrix C,

— C* is the adjoint of the matrix C, i.e. C,

- TT(C) = Z?:l Cii, antiTr(C) = Z?:l Cin—i+1,

— M™% is the algebraic minor of the element at the ith row and the jth column of a given matrix,

— cofact(C; ;) = (—1)" . M,

— The dimension of a Sudoku matrix is expressed as a product n x n, where n denotes its dimension, and
n? the number of elements it is filled with,

— When taking matrices with a n > 9 (i.e. 16 x 16 or 25 x 25), we assume there exists a sufficiently
complete alphabet A which has n distinct symbols. For example, when speaking about 16 x 16 Sudokus,
“A” is used for “10,” “B” is used for “11,” ..., until “G” is used for “16.”

Evidently, we assume the reader is familiar with the notions of Sudoku, Latin Square, and related concepts.

3 Determinants

3.1 General Case

As S is a square matrix, one can wonder about the value of det(S), for a given n. Based on many experiments,
det S has the following properties:

— It isin Z* or in Z,
— The assertion

(det(S) (mod 2) =0)V (det(S) (mod 2) # 0) (1)

is always true, but det S is sometimes even, and sometimes odd.

3.2 Why it Sometimes Does Not Equal Zero

Theorem 1 (Determinant of S sometimes equals 0). The determinant of the S matriz, det S, formed
by the elements of a complete Sudoku, can equal 0. a

Proof. Consider the two following cases:

— Let’s take
947258136

123467985
658193724
895642371
det(B) = |764931258|#£0,
312875469
489726513
236519847
571384692




— It is shown in [2] that

abcd abdc
cdabl _|edbal a g pa 4 gh 9022 9022 L 9p2e2 90202 _ 912 — 22d2 + Sabed,
decba bacd

badec dcabd

which is logical, as there is an even number of permutations of rows (and columns) between the first
and the second matrix. In the standard case, i.e. if (a, b, ¢,d) are mapped bijectively to (1,2,3,4), we

have
at + bt + ¢t + d* — 2a%0% — 2a%? — 2022 — 2a2d? — 2b6%d% — 2¢%d? + 8abed = 0.
Note that
673514982
921368754
584792136
896237415
215946378/ =0
347185269
452871693
169453827
738629541

(This result will be used later.)
O

Remark 1 (Possible configurations). Given a matrix S, [at least] two rows in S will never be formed by the
same elements in the same order than another row. If this happens, S is not a valid Sudoku anymore, as it
leads to a part of S (the example is for the rows of S, but it is as trivial for the columns of S) like

1 2 3---n
1 2 3---n|’
where 1,2,--- ,n can be in a different order. This would also be shown by the determinant of a submatrix

of

kk+1k+2.---n
kk+1k+2---n)’

which always equals 0 (thus leading to a rank p less than 2),
Beginning by the end, i.e. using the following configuration:

can only lead to linearly independent rows. The rank p of a matrix A being defined as the biggest dimension
of the square submatrices of # 0 det extracted from A, we know that



under some given conditions which will be determined now. For k € {1,--- ,n — 1}, we have

=k(n—k)—nk+1)=kn—k*> —kn—n=—k* —n;

nn—=k

kk+w

That is, —k?> —n < 2 iff —n <24+ k2, leading ton > -2 — k%. As -2 —k? = -3 iff k=1 and
o k2P o 12 = 2 on 3,

we must ask
n>-n’+2n+3
n>-3

which is equivalent to

)

(v <ol

thus giving

)

(v el erlule

> -3
and
1++5
n e [ ,—|—oo[,
2
which is always the case, as
! +2\/g ~ 1.618,

and the dimension of a Sudoku is always the square of a number. Thus, the first interesting Sudoku’s
dimension would be 4 = 22 (thus greater than the golden ratio). O

4 Erroneous Sudokus

Theorem 2 (Finding if a Sudoku matrix is erroneous or not). There is no way to be sure about the
correctness of a Sudoku matriz by only computing its determinant. O

Proof. An erroneous Sudoku can have a determinant of zero, but it is not always the case. Furthermore,
having a determinant of zero cannot even be a sufficient condition to be an erroneous Sudoku matrix, as
there are correct Sudoku matrices which have a determinant of 0.

Let’s take two erroneous Sudokus:

1. The first will verify,

123 45 6789
126 543 7 9 8 70,
assuming the --- can be filled correctly to make no other mistake. At least a given Sudoku can thus

have a non-zero determinant,



2. The second is “more” erroneous:

— =
o N -

w w
S e
Lot -

oo -
IR

0 00
=
Il
[=)

which is very clear, as
123456789 1
P\\123456789)) =~
We have also seen before that

abed abdc

cdabl _edbal _a g4 gt 9022 9422 op2e2 _ 90202 _ 9120 — 922 + Sabed,
dcba bacd

badec dcabd

which equals 0 iff (a, b, ¢,d) are mapped bijectively to (1,2,3,4), leading however to a correct Sudoku. O

5 Sudoku Eigenvalues

5.1 General Case

Let’s take the eigenvalues of S; that is, let’s compute det(S —AI). Depending on the dimension of S, denoted
by n, det(S — AI) will be a polynom of a different order: this order will always be of n. That is,

det(S — AI) = aX" + BA" 4o 4 (A0 =) "o (2)
i=0
for a general S matrix of dimension n.

5.2 Example: Dimension Nine

As a 9 x9 Sudoku is also a magic square, det(S — AI) = 0 for exactly a A; = 45 (found in [3]). The spectrum
of S (restricted to a real spectrum), composed of the )\; also verifies

max  \; = 45.
1<i<n,

N ER
Equation [2 can be rewritten (for a 9 x 9 Sudoku) as

n—1
det(S — AI) = (A—45) [T (A= ). (3)
i=1

the n roots being counted with their multiplicities.

Why 457 One can notice easily two facts:

—9x5=45,
_ 1+2+3+...+9:%:%:45

Thus, the dominant eigenvalue in the spectrum of S, with a size of 9, equals the sum of all the elements of
a given line (the first fact cannot be extended to other dimensions).

It is said in [3] that the determinant of a Sudoku 9 x 9 is always divisible by 45, and it is even the case
if at least one eigenvalue is in C.



5.3 Return to General Case

Theorem 3 (Perron). If all of the entries of a matriz are positive, then the matriz has a dominant
etgenvalue that is real and has multiplicity 1. a

The proof of this theorem is not given here.

Theorem 4 (Max eigenvalue of a square and positive matrix). The dominant eigenvalue of any
square and positive matrixz where each row and column have the same sum, will equal that sum. a

Proof. Easily stated by using Theorem [3l O

Corollary 1 (Eigenvalues of S). A Sudoku matriz S with a dimension of n always verifies

- n(n+1)
A=Y 8=t
max j:15J >

1<1<n,
X ER
for exactly one \;. This is thus the dominant eigenvalue of the matriz S. This eigenvalue has multiplicity
1. O
Proof. Trivial using Theorem [3]and Theorem 4! O

Corollary 2. A Sudoku square matriz S, of dimension n, and of determinant det(S), always verifies
det(S) mod max A; | =0,

which is equivalent to ask

det(S) mod <"(”+1)) =0.

Proof. The determinant of a (square) matrix is the product of its eigenvalues.

Ezample 1 (Divisibility of the determinant of S if it represents a 4 x 4 Sudoku). Whatever the 4 x 4 Sudoku,

its determinant is always divisible by @ = 10. Evidently, it can be divisible by 45, for example, but it
might not always be the case. Od
6 Transpose
One could ask if o
S11 51,2 - Sin S11 521 -+ Sna
~ Sa1 S22 -+ Sap Si12 S22 -+ Sn
S = . . . = . . .
Sn,l Sn,2 e Sn,n Sl,n S2,n o Snm

is still a valid Sudoku matrix (i.e. it fulfills the rules of Sudoku).



An example would be given by

—_~

629385147 658421397
513764829 214973865
847129653 937658142
496231785 371296458
B=1275948361|=1862345971
138657492 549187236
381492576 186734529
964573218 425869713
752816934 793512684

It is noticeable that B is still a valid Sudoku matrix, but B # B.

Theorem 5 (Transpose of a Sudoku matrix). The transpose of a Sudoku matriz is still a correct, but
different, Sudoku matriz (of the same dimension). O

Proof. According to the rules of Sudoku, at least one number cannot be repeated at least two times on a
row, a column, or in a nt x nt square, where n is the dimension of the Sudoku. The matrix which is the
result of the transposition is still a valid Sudoku matriz, as

1. EJ] = B, ; if i = j (i.e. (4,7) is a diagonal couple),

2. If we let joiq := j, j := 1 and @ := joq, everywhere in B, we obtain B. By reversing rows and columns,
rules of Sudoku are still respected, as the rules of Sudoku are applicable on both,

3. For subsquares, rules are still respected, because of the last point.

We now have to prove that it is always different. We have to prove that there is no Sudoku matrix in S
which verifies S; ; = 5; ; for all 1 <7 <n, and 1 < j < n. Let’s reason by contradiction. All the S matrices
verify -

Si,j = Sl',j
fori=7j.Let 1 <i<mn,1<j<n.Isthe same equality possible with these conventions? We shall now try
to construct such a matrix. Let’s reason first with a 4 x 4 matrix. We define

Bi1 B2 Bi3 Bia Ci1Ci2C13C1a
By1 Bog Boz Boy = C2,1 Ca2 Ca3 Coy
Bs 1 B3a B33 B3 ' C3,1 C32 C33C34
Ba1 Byo By Baa Cy1 Ca2Cu3Cyuy

It is clear that B; ; = /B:/] foralll1<i<nand1<j<niff B;; = C;; for all i and j. The C matrix has
thus to be exactly B. It is the case iff B; j = B;;, with 1 <4 <n and 1 < j <mn, thus iff B is symmetric.
Let’s try to construct a symmetric B. Such a B would be symmetric:

Bi1 Bay B3 By
By Bas B3 Byo
Bs1 B3 B33 Biz |’
Ba1 Baj Bz Baa

but it does not respect the rules of Sudoku, as there is at least one subsquare of dimension 42 x 42 =2x 2
where two elements are the same (here, there is only one: By ). Here is the generalization of this fact. If we
take

Bi1 Bi2 - Bin
B3y Bag -+ Bap

B = ) .o ) ,
Bn,l Bn,2 e Bn n

)



B should verify
Bi1 By -+
Byq1 Bayg - --

n’

n,2

Syjliss!

Bn,l Bn,2 o Bn,n
to be symmetric. It is symmetric, but does not respect the rules of Sudoku anmyore, as, at the place of the

- and the - - -, zooming at the end would lead to the submatrix

571,,2

. e Sn,.nfl
Sn,Z e Sn,nfl Sn,n

6.1 Determinant

Theorem 6 (Determinant of the transpose of a square matrix). For every square matriz C,

det(C) = det(C). O
This theorem is not proved here, even if it is evident.

Corollary 3 (Determinant of the transpose of a Sudoku matrix). If S is the matriz of a given

Sudoku, det(S) = det(S). O
Corollary 4. If S is the matriz of a given Sudoku, S its transpose, and n their dimension (which is the

e det(S) mod <“(“;1)> — det(5) mod <n(nz+1)> -

Proof. Trivial, as det(S) = det(S).

6.2 Trace
Theorem 7 (Trace of a transpose). Whatever the matriz E, Tr(E) = Tr(E). O
This theorem is not proved here, even if it is evident.

Corollary 5 (Trace of the transpose of a Sudoku matrix). If S is the matriz of a given Sudoku,
Tr(S) = Tr(S). O

7 Non-Hermitianity

A matrix C' is Hermitian if and only if

C=C~.
As, for any Sudoku matrix S, S = S, as * is the complex conjugate of -, and the Sij,1<i<n,1<j<n,
asking if any Sudoku matrix is Hermitian or not is equivalent to ask if, for S, S = S. However, this is not
true, as we have B

S#£S,
thanks to Theorem [5.



Corollary 6 (Every Sudoku matrix is not Hermitian). There is no Hermitian Sudoku matriz. O
Proof. Direct using Theorem 5, as S; ; = S;; for 1 <i<n,1<j<n,asS;; €R. ad

Corollary 7 (Every Sudoku matrix is not antisymmetric). S is not antisymmetric, for clear reasons:
Si_’j 7£ *Sj,i. O

*

Proof. The S; ; are in Z*. If we take —S;; for 1 <1 <n and 1 < j < n, all the S;; will lie in Z* , or no
Sudoku matriz can have negative elements. a

8 Non-Normality

A matrix C' is normal if and only if

cCcr=cCrC.
It is equivalent to ask, for now clear reasons,
cC =Cc,
if C' is a Sudoku matrix.
Theorem 8 (Every Sudoku matrix is not normal). There is no normal Sudoku matriz. ad

Proof. Let’s try to build such a matrix. If we have

S11 81,2 - S Si1 521 - S
So1 S22 San L~ S12 S22 -+ Sp2

= . . . and S =8= . . ) ,
Sn,l STMQ e Sn,n Sl,n SQ,n ce Sn,n

we have SS = S iff

Sl,l 51,2 e Sl,’n Sl,l 32,1 e Sn,l Sl,l 52,1 e Sn,l Sl,l 51,2 e Sl,’n
Sa21 S22 -+ San S12 S22 -+ Sn2 Si2 S22 -+ Sn2 Sa21 S22 -+ San
Sn,l Sn,2 e Sn,n Sl,n SQ,n e Sn,n Sl,n SZ,n e Sn,n Sn,l Sn,Q e Sn,n
thus asking an equality between
Sti+Sfo+---+57, S1,182,1 + 51,2822+ +S1,nS2,n - S1,150,1 + S1,28n,2+ -+ S1,nSn,n
S2,151,1 + 52,2512+ -+ 52,0510 S5+ S5+ +S5, T 52,18n,1 + 5228024+ 52,0500
Sn,151,1 +Sn,251,2+ -+ Sn,nS1,n Sn,152,1 +Sp,2522+ -+ SnnSapn - S%,l + Si,z +e+ S%,n
and
S%,l + 55,1 +- S%,l S1,151,2 + 52,1822+ -+ Sn15n,2 -+ S1,151,n + 52,1520 + -+ Sn,1Sn,n
S1,251,1 + 822521+ -+ Sn 25n1 51,22+S§,2+-'-+5n,22 c 81251 n +S2 2820+ + Sp 29,0
S1,nS1,1 +S2,nS2,1+ -+ Sn,nSn1 S1nS1,2+S2nS22+ -+ SnnSn2 - SiJ + 52,712 +o+ Si,n
leading to such a system:
2 _ Q2
Sl,n - Sn,l
S12 =521
Sn,l = Sl,n .
Sn,2 = S2,n

The condition S; 2 = S21 already goes against Sudoku’s rules. Anyway, it is clear that S has to be symmetric
to respect these equalities. However, it was proven at Theorem 5]that S cannot be symmetric. a



9 Orthogonality Discussion

A matrix C is orthogonal if and only if B
cC=1,.

Theorem 9 (Non-orthogonality of S if det(S) = 0). If det(S) =0, S cannot be orthogonal. O

Proof. We have _ _
det(S - S) = det(S) det(S),

which equals 0 if det(S) = 0, and det(I,,) = 1. O

If det(S) # 0, S has to coincide with S~* to make S orthogonal. Using Theorem 5, S # S. But one might
ask the question “Can S equal S~!?” The answer to this question is not known yet.

Congecture 1 (Non-orthogonality of S if det(S) # 0). If det(S) # 0, S cannot be orthogonal. O

Suggestion 1 The only way to make S orthogonal is to have S =S8-1. Or this equality should be impossible:
as

S™! = cofact(S) - (det(S))™*,

it would be equivalent to ask

—_~—

S = cofact(S) - (det(S))™?,

which should never be true for a S Sudoku matriz. O
10 Order
Theorem 10 (Every invertible matrix has a finite order). Every invertible matriz has a finite order.
O
This theorem is proved in many books, and its proof does not enter in the scope of this paper.
Corollary 8. Iff det(S) #0, S has a finite order. O
Ezample 2. The determinant
1234
3412
det(B) =1, 391
2143
equalling 0, there is no smallest k > 0 such that B* = I,,. a

However, there is no special remark to do about this and Sudokus: there seems to be no link between the
order of a Sudoku matrix S and other concepts related to Sudoku’s matrices.



11 Condition Number

Theorem 11 (No well-conditioning for S can arise). The system Sx = b can be else than well-

conditioned (assuming b # 0y, ).

Proof. Consider Example (3!

Ezample 3 (Extreme example). Consider the matrix

It verifies

As k(P) >, trying to solve

is really error-prone. Let’s take

#(P)oo ~ (2.052475887800532) - 1017 >

det(P) = 0.

673514982
921368754
584792136
896237415
215946378
347185269
452871693
169453827
738629541

673514982
921368754
584792136
896237415
215946378
347185269
452871693
169453827
738629541

S I A 2 W R

N QDT X MY T >

O

O



Using numerical analysis, we can now solve

673514982
921368754
584792136
896237415
215946378
347185269
452871693
169453827
738629541

The result is roughly

1015_

Let’s now compute A := A+ (0.1)g and b := b+ (0.1)9. We now want to solve

6.171315111419.18.12.1
9.12111316.1817.15.14.1
5.1814171912111316.1
819.16.1213171411.15.1
21115191416.13.17.18.1
3141711181512.16.19.1
41512181711.16.19.13.1
1.16.19.141513181217.1
71318161219.151411.1

The result is now

1017_

12 Trace

S I AN 2 ™D

—6.259323629462618
3.426654756202998
—2.859392164516785
—0.213786330057330
2.235038905144813
6.094125101691045
0.146978101914415
0.070452313314347
—2.640747054230881

S I AN 2 WO

—1.201790136856824
0.657917713190976
—0.549003295587223
—0.041046975371007
0.429127469787804
1.170072019524681
0.028219795567568
0.013526844156355
—0.507023434412329

© 00~ O Uk Wi

1.1
2.1
3.1
4.1
5.1
6.1
7.1
8.1
9.1

Theorem 12 (The trace of a Sudoku matrix is not constant). The trace of a Sudoku matriz is not

constant.

O



Proof. Consider

673514982
921368754
584792136
896237415
215946378
347185269
452871693
169453827
738629541

whose traces are 32 and 44, respectively.

and B =

947258136
123467985
658193724
895642371
764931258
312875469
489726513
236519847
571384692
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