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Abstract We introduce a new method based on wavelets (EWMD) for decompos-
ing a signal into quasi-periodic oscillating components with smooth time-varying
amplitudes. This method is inspired by both the “classic” wavelet-based decomposi-
tion and the empirical mode decomposition (EMD). We compare the reconstruction
skills and the period detection ability of the method with the well-established EMD
on toys examples and the ENSO climate index. It appears that the EWMD accu-
rately decomposes and reconstructs a given signal (with the same efficiency as the
EMD), it is better at detecting prescribed periods and is less sensitive to noise. This
work provides the first version of the EWMD. Even though there is still room for
improvement, it turns out that preliminary results are highly promising.

Keywords Wavelets ·Wavelet mode decomposition · Empirical mode decomposi-
tion · Continuous wavelet transform · ENSO index

1 Introduction

The aim of this paper is to provide and apply a new mode decomposition method
using a wavelet-based approach. This decomposition has been introduced in [1];
we now improve it to develop a simple yet powerful mode decomposition method
that we call empirical wavelet mode decomposition (EWMD). The basic idea is to
extract successively “quasi-periodic” oscillating components from the continuous
wavelet transform of the original signal. Each component is associated to a mean
frequency but, unlike the Fourier transform, this decomposition does not lead to pure
cosines: the amplitudes and frequencies slowly evolve through time. This allows to
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drastically decrease the number of terms needed to accurately rebuild the signal by
taking into account only the terms carrying most of the information. By doing so, the
reconstructed signal resolves the main variations of the original one without taking
the noise into account. For a detailed description of the theory of continuous wavelet
transforms and analogies with the Fourier transform, the reader is referred to e.g. [2,
3, 4]. Let us add that several wavelet-based mode decomposition methods have been
developed in recent years (see e.g. [5] and references therein). We do not intend to
write a review of these techniques nor to compare our results with these studies in
the present paper.

In this work, we compare the skills of the EWMD with those of the famous
empirical mode decomposition (EMD) (see e.g. [6, 7, 8]). This method has proven
to be well-suited for the analysis of nonlinear and nonstationary signals, despite its
lack of mathematical background. It allows to decompose accurately a signal into a
finite (often small) number of modes, called intrinsic mode functions (IMFs) without
leaving the time domain. The basic idea of the EMD is simple and consists in the
following steps. First, compute h = f −m where f is the signal andm is the mean of
the upper and lower envelopes of f , then repeat the process with h instead of f until h
is considered to be an IMF i1. Compute f1 = f −i1 and repeat thewhole processwith
f1 instead of f to obtain the next IMF i2, then compute f2 = f1−i2, etc.More details
can be found in e.g. [6, 7, 8]. We found that the idea of extracting one component at
a time, then subtracting it from the remaining data was appealing because it could
reveal components that are overshadowed by the dominant modes of the signal. As
explained in the next section, this idea combined with the wavelet decomposition
provided in [1] led us to this first version of the EWMD. Usual criticism made
about the EMD is its lack of solid theoretical background, the high sensitivity to
noise, and the inability of separating modes with frequencies close to each other
but with a large difference in amplitudes. Even though this mode-mixing problems
and the robustness to noise have been improved (to the detriment of computational
resources) in several revisions of the EMD, such as the Ensemble EMD (EEMD
[9]) and Complete Ensemble Empirical Mode Decomposition with Adaptive Noise
(CEEMDAN [10]), the original EMD is not outdated and is still a good starting point
for assessing the quality of a new mode decomposition method.

2 Method

In this section we describe step-by-step our empirical wavelet mode decomposition.
The wavelet ψ used in this study is a Morlet-like wavelet with exactly one vanishing
moment ([1]):

ψ(t) = eiΩt
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with Ω = π
√
2/ ln 2. The Fourier transform of ψ is given by
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ψ̂(ω) = sin
(πω

2Ω

)
e

−(ω−Ω)2

2 . (2)

The decomposition procedure explained below is largely inspired by the wavelet
mode decomposition in [1] but has an added feature of the empirical mode de-
composition: extracting only one component then subtracting it from the signal and
iterating the process. The successive steps of the EWMD are the following.

a) Perform the continuous wavelet transform of the signal f :

W f (a, t) =
∫

f (x)ψ̄

(
x − t

a

)
dx

a
(3)

where ψ is the chosen wavelet, ψ̄ is the complex conjugate of ψ , t stands for the
time (position) parameter, and a > 0 is the scale parameter.

b)Compute the wavelet spectrum Λ associated to f :

Λ(a) = E |W f (a, .)| (4)

where E denotes themean over time. Then look for the scale a∗ at whichΛ reaches
its global maximum.

c) Extract the component related to a∗:

|W f (a∗, t)| cos(arg W f (a∗, t)) . (5)

d)Subtract this component from f to get, say, f ′, and repeat steps (a) to (d) with f ′
instead of f .

e) For now, we stop the process when the extracted components are not relevant
anymore. More precisely, in this paper, we decided to stop the process when
Λ(a∗) < 0.15. A more adequate data-driven stopping criterion should still be
found. The sum of the components successively extracted is an accurate recon-
struction of f , though a slight vertical rescaling can be performed to minimize the
root mean square error (RMSE) with f (this will also be done with the EMD).

If we denote by c1, c2, ..., cK the components successively extracted with the
EWMD (i.e. these components are the counterparts of the IMFs of the EMD), then
the signal c0 = f − ∑K

k=1 ck is considered as the remaining noise and therefore the
decomposition of f can be completed with this noisy component:

f =
K∑

k=0

ck . (6)

Similarly to the EMD, and contrary to the method presented in [1], where there is
no iterative process, i.e the components are extracted from the local maxima of the
spectrum, the procedure described above extracts one component at a time. This has



962 A. Deliège and S. Nicolay

the advantage of unveiling components that are easily hidden by dominant modes.
Also, the components successively extracted here are ordered following their energy
level, while they are sorted according to their frequencywith the EMD (which always
gives a few noisy IMFs to start with). Consequently, more adequate data-driven
stopping criteria could be based on the energy level of the component to extract.

Let us note that, in the following, the comparison between a reconstructed signal
and the original one is made via two indicators: the RMSE between the signals and
their Pearson product-moment correlation coefficient (PCC). Also, the reconstructed
signals (with both the EMD and EWMD) will not be shown since they can barely be
distinguished from the original ones with the naked eye.

3 Results

3.1 Accuracy of the Reconstruction

We first apply the EWMD on the two classic examples presented in [8] and for
which the EMD gives accurate results. We show that our method is comparable
to the EMD regarding the accuracy of the reconstruction of such signals. The first
example consists of the sum of two frequency-modulated sinusoidal signals and a
Gaussian wavepacket (see [8]). The signal is represented in Fig. 1 (left) with the
successively extracted components with the EWMD. Though these components are
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Fig. 1 Two signals analyzed with the EMD in [8] and the components extracted from the wavelet-
based mode decomposition.
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not the exact components of the original signal, they still manage to decompose
it in an effective way. Indeed, when their sum is computed, the RMSE between
the reconstructed signal and the original one is 0.086 and the PCC is 0.968. Such
results are comparable to those obtained with the EMD, for which the RMSE is 0.07
and the PCC is 0.979. The second signal is the sum of a sinusoidal wave (constant
frequency ω) and two triangular waveforms (one with a frequency larger than ω,
the other smaller than ω). The signal and the components extracted are displayed in
Fig. 1 (right). It can be seen that the three components are clearly recovered, though
the triangular waveforms are somehow smoothed out. The RMSE and PCC related
to the reconstructed signal compared to the original one are respectively 0.085 and
0.992, compared to 0.023 and 0.999 with the EMD. Although it seems that the EMD
does a slightly better job at decomposing and reconstructing the signals, one can
more than reasonably consider that the EWMD passed this test.

3.2 Period Detection Skills

One of the key features of both the EMD and wavelet decomposition is their ability
to identify the periodicities hidden in a signal. In other words, they usually allow to
recover the period of a sinusoidal signal as well as the mean period of an amplitude-
modulated and frequency-modulated (AM-FM) signal (provided the frequency does
not vary too much). Let us test the period detection skill of both methods on a toy
example. We consider the signal f (x) = ∑4

i=1 fi (x) where

f1(x) =
(
1 + 0.5 cos

(
2π

200
x

))
cos

(
2π

47
x

)
(7)

f2(x) = ln(x)

14
cos

(
2π

31
x

)
(8)

f3(x) =
√

x

60
cos

(
2π

65
x

)
(9)

f4(x) = x

2000
cos

(
2π

23 + cos
(

2π
1600 x

) x

)
. (10)

We thus have a signal made of three AM-components and one AM-FM component;
the target periods to detect are ≈ 23, 31, 47, 65 units. The signal and its components
are plotted in Fig. 2. The successive steps (wavelet spectrum - period detection -
component extraction - repeat the process) leading to the final decomposition are
illustrated in Fig. 3. One can clearly notice that the extracted components match the
original ones, confirming the fact that the EWMD is well-suited for that type of task.
The RMSE between the reconstructed signal and f is 0.069 and the PCC is 0.996.
Moreover, the periods detected by this method are 21.6, 30.6, 46.4 and 65.6 units,
which are extremely close to the target periods (≈ 23, 31, 47, 65 units). On the other
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hand, the IMFs obtained with the EMD are plotted in Fig. 4. One can clearly see that
they do not recover the original ones as good as the components obtained from the
EWMD; it can also be noticed that the first IMF on its own is extremely similar to the
signal, having alone a PCC of 0.925. Also, even though the RMSE and PCC of the
reconstructed signal are still excellent (resp. 0.068 and 0.998), the periods extracted
from the Hilbert-Huang transform are of ≈ 41, 75, 165, 284 units and are thus far
from the expected ones.

1 200 400 600 800

−2

−1

0

1

2

−1
0
1

−1
0
1

−1
0
1

1 200 400 600 800
−1
0
1

Fig. 2 The signal f (left) made of four amplitude-modulated and period-modulated components
(right) used to compare the extraction and period detection skills of the EWMD and the EMD.
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Fig. 3 Left: the wavelet spectra obtained from the successive wavelet transforms. The red dashed
lines indicate where the global maximum is reached thus giving the period at which the correspond-
ing component has to be extracted. Right: the components extracted from the wavelet transform,
based on the associated wavelet spectra. The periods detected by the method are respectively (from
top to bottom) 46.4, 30.6, 65.5 and 21.6 units (targets: 47, 31, 65, 23 units). The extracted compo-
nents clearly match the original ones. The RMSE between the reconstructed signal and the original
one is 0.069 and the PCC is 0.996.
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Fig. 4 The IMFs extracted from theEMD.One can see that they do notmatch accurately the original
ones; the first IMF on its own is extremely similar to the whole signal. The periods extracted from
the Hilbert-Huang transform (41, 75, 165, 284) are far from the target values (≈ 23, 31, 47, 65
units).eps

3.3 Real-Life Data: ENSO Index

The EWMD is now applied to a real-life signal. For that purpose, the El Niño South-
ern Oscillation (ENSO) index is analyzed (ERSST.V3B SST Niño 3.4 time series
provided by the Climate Prediction Center). It is a climate pattern consisting of
monthly-sampled sea surface temperature anomalies (SSTA, in Celsius degrees) in
the Eastern Pacific Ocean recorded from Jan. 1950 to Dec. 2014 (see Fig. 5). An
anomalous warming in the SSTA is known as El Niño, while an anomalous cooling
bears the name of La Niña. ENSO is well recognized as the dominant mode of in-
terannual variability in the tropical Pacific Ocean. It affects the atmospheric general
circulation which transmits the ENSO signal to the other parts of world; these remote
effects are called “teleconnections” and induce changes in the occurrence of severe
weather events, which dramatically affect human activities and ecosystems world-
wide (see e.g.[11, 12, 13, 14]). Therefore, the ENSO index is of primary importance
for climate scientists and appears as an interesting choice for testing the EWMD.
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Fig. 5 The ENSO index, i.e. monthly sea surface temperature anomalies in the Equatorial Pacific
Ocean.



966 A. Deliège and S. Nicolay

As it can be seen in Fig. 6, the components extracted from the EWMD and the
EMD are somehow comparable. The periods detected are respectively (from top to
bottom in Fig. 6) 44.8, 28.6, 17, 65.6, 140.6 months for the EWMD and 9.8, 21, 38.6,
75.9, 138.4 for the EMD. It turns out that the periods detected with the EWMD seem
more in agreement with previous studies than those obtained from the EMD (see e.g.
[15, 16]). Let us note that both methods recover the famous ≈ 11-years period of
the solar cycle. Regarding the reconstruction skills of the methods, the former has a
RMSE of 0.277 and a PCC of 0.941, while the latter has a RMSE of 0.193 and a PCC
of 0.973. Although these numbers seem to be better with the EMD, the 9.8-months
component is likely a side effect due to the noise within the signal. Indeed, the EMD
is known for having trouble to deal with noise, exhibiting IMFs very valuable for the
reconstruction but with a rather poor physical interpretation. If that noisy component
is not taken into account, the RMSE rises to 0.355 and the correlation drops to 0.903.
Let us add that our first tests (not shown) indicate that the EWMD is not as sensitive
to noise as the EMD, thus giving more reliable results especially for real-life data
analysis. This has to be more carefully studied.
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Fig. 6 Left: the components extracted from the ENSO signal with the EWMD. Right: the IMFs
given by the EMD. The periods detected are 44.8, 28.6, 17, 65.6, 140.6 months (EWMD) and 9.8,
21, 38.6, 75.9, 138.4 (EMD). Those obtained with the EWMD seem to be more in agreement with
some previous works. The reconstructions (not shown) are both satisfying. Let us note that the EMD
displays a noisy component that artificially improves the reconstruction skills.

4 Conclusion

We presented a new wavelet-based method (EWMD) for decomposing an oscillat-
ing signal into several quasi-periodic components and compared the results with the
famous empirical mode decomposition (EMD). It turns out that the decomposition-
reconstruction skills of the EWMD are globally as good as those of the EMD. More-
over, the period detection abilities of the EWMD seem to outperform those of the
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EMD. Regarding real-life data, we analyzed the ENSO index, i.e. temperatures of the
PacificOcean. It appears that the periods detected by the EWMDseemmore in agree-
mentwith previous studies, while bothmethods excel in decomposing-reconstructing
the original signal. In general settings, the EWMD extracts components following
somehow a decreasing level of energy while the EMD successively gives compo-
nents with increasing mean frequency. Therefore, the EMD is highly sensitive to
noise while the EWMD is barely affected; this should be investigated in detail in
future works.

Let us note that the present paper is merely of an experimental nature and the
skills of the promising EWMD have to be explored in more details. Also, we are
well-aware of the fact that the EMD has been considerably improved since its first
version (which is the one chosen here for comparing results). Therefore, it will be
necessary to compare the EWMD with e.g. the EEMD and CEEMDAN as well as
with other mode decomposition methods (such as e.g. [5] and methods mentioned
therein). Let us finally note that this is the first version of the EWMD; improvements
will bemade in the near future, but the examples presented here show that the EWMD
appears as a challenging candidate in the area of mode decomposition methods; we
are optimistic about the possibilities it offers.
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