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1 Introduction
The polynomial nonlinear state space (PNLSS) approach
[1] is a powerful tool for modeling nonlinear systems. A
PNLSS model consists of a discrete-time linear state space
model, extended with polynomials in the state and the output

equation: v 1 1y —  Ax(r)+ Bu(r) + EC(t) )
y(t) = Cx(t)+Du(t)+Fn(r) @)

where §(x(¢),u(t)) and 1 (x(¢),u(r)) are both vectors with
monomials in the states x(¢) and the inputs u(¢). The ma-
trices E and F contain the polynomial coefficients. The
PNLSS model is very flexible as it can capture many dif-
ferent types of nonlinear behavior, such as nonlinear feed-
back and hysteresis. This flexibility generally comes at the
cost of a large number of parameters. Increasing the order
of the polynomials for example leads to a combinatorial in-
crease of the number of parameters due to the multivariate
nature of the polynomials E{ (x(¢),u(r)) and Fn(x(z),u(t)).
In this study, the PNLSS approach is used to model a Bouc-
Wen hysteretic system [2]. The multivariate polynomials
E&(x(¢),u(t)) and Fn(x(¢),u(t)) are decoupled using the
method in [3]. Like this, the nonlinearity in the PNLSS
model is described in terms of univariate polynomials for

which increasing their order is not so parameter expensive.
2 Methodology
In a first step, we estimate the best linear approximation

(BLA) [4] of the system. A linear state-space model esti-
mated on the BLA serves as an initial guess for the PNLSS
model in (1) and (2), which is optimized using a Levenberg-
Marquardt approach. In a second step, the multivariate poly-
nomials E{(¢) and F1(z) are decoupled using the decompo-
sition method in [3]:

E(x(1),u(r) = Wig (VT [ﬁg]) 3)
Pris(oat) ~we (v [100]) @

where the matrix V transforms the states and inputs in new
variables & = V7 [x(t) u(t)]T. The function g is a col-
lection of univariate polynomials g;(&;) for i =1,2,---,r :
2(8) = [21(&) (&) g-(&)]" that act as basis
functions for the decoupled state-space model. The matrices
W, and W), contain the corresponding basis function coeffi-
cients.
3 Results

The Bouc-Wen model is excited with a random-phase mul-
tisine of 8192 samples, once with a standard deviation (std)
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Figure 1: The validation output spectrum (in blue), the error of linear

model (cyan) and the error of PNLSS (green) for 2" and 3"

degree monomials of states and inputs in state updates (F =

0), and the error for the decoupled model with 111" degree

polynomials (in red).
of 6.8130 N and once with a std of 4.6419 N. Twenty real-
izations and 5 steady-state periods are used to estimate the
BLA, a 3" order linear model, and the full and decoupled
PNLSS model. The results on the validation data (using a
multisine with a std of 4.6419 N) are plotted in Figure 1. The
rms error on the test data are 1.8703 x 107> (multisine) and
1.2024 x 10~ (swept sine) for the full PNLSS model and
3.7406 x 10~* (multisine) and 3.8806 x 10~ (swept sine)
for the decoupled model. The decoupled model has an rms
error higher than that of the linear model on the test data.

4 Conclusion
A PNLSS model can capture the behavior of a Bouc-Wen
system. On the lower amplitude data, a decoupled PNLSS
model reaches a similar accuracy, but has less than two third
of the number of parameters (67 instead of 106). The order
of the polynomials in the decoupled model can also be in-
creased without blowing up the number of parameters, as it
is the case for the full PNLSS model. On the higher ampli-
tude benchmark data, the decoupling fails.
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