
Quantum Computers: A Brief Overview

Merciadri Luca
Luca.Merciadri@student.ulg.ac.be

Abstract. A promising technology is the “quantum computers,” and this paper gives a general
overview about this subject.

Keywords: quantum computers.

1 Introduction

A promising technology is the “quantum computers.”
More and more scientists are interested in it because
of the performances’ enhancement it could bring to
the today’s computing world.

Quantum computers require quantum logic, which
is fundamentally different to classical Boolean logic.
This difference leads to a greater efficiency of quan-
tum computation over its classical counterpart. [13]

However, many articles about quantum comput-
ers are still a bit difficult to understand for the “abso-
lute beginner.” Thus, the main aim of this paper is to
give a simple overview, without coming into technical
details, of quantum computing, basing principally on
[3,9,10,13].

2 Prerequisites

We give here some important prerequisites about
quantum computers and quantum computing.

2.1 Dirac’s Notation

Dirac invented the “bra-ket” notation. It is very use-
ful in quantum mechanics. The notation defines the
“ket” vector, denoted by ψ〉, 〈φ| being its conju-
gate transpose (also called Hermitian conjugate: the
“bra”). The “bracket” is then defined by 〈φ|ψ〉. [14]

The inner product is linear, and defined by

〈φ|ψ〉 = c, (1)

c being a number. [10] If c = 〈φ|ψ〉 the complex con-
jugate is

c∗ = 〈φ|ψ〉∗ = 〈ψ|φ〉. (2)

The state of a physical system is identified with
a ray in a complex separable1 Hilbert space, denoted
by H, or equivalently, by a point in the projective
Hilbert space of the system. [14]

Each vector in the ray is called a “ket.” Evidently,
in the ket ψ〉, ψ can be replaced by any symbols, let-
ters, numbers, or even words. The ket can be viewed
as a column-vector and (given a basis for the Hilbert
space) written out in components,

|ψ〉 = ˜(c0, c1, · · ·), (3)

when the considered Hilbert space is finite-
dimensional. In infinite-dimensional spaces there are
infinitely many components and the ket may be writ-
ten in complex function notation, by prepending it
with a bra. [14]

Dirac’s notation’s description is often omitted as
it is supposed to be known, but it is here an intro-
ductary article, and it has thus to be explained.

2.2 Qubit

Definition 1 (Qubit). A qubit is a quantum sys-
tem in which the Boolean states 0 and 1 are repre-
sented by a prescribed pair of normalised and mutu-
ally orthogonal quantum states labeled as {|0〉, |1〉}.
The |0〉 is called “ground state;” the |1〉 is the “ex-
cited state.” As the most general electronic state is a

1 Remind that a topological space is separable if it countains a countable dense subset.
2 More generally, a general normalized vector can be expanded in an orthonormal basis for the space of dimension

2N , N being the number of qubits, by
2

N
−1∑

x=0

ax|x〉, (5)

superposition of the two basic states, we then have

|Ψ1〉 = a|0〉 + b|1〉, (4)

that is, a normalized2 vector, with a, b ∈ C. [3,9,13]

The two states form a “computational basis” and
any other (pure) state of the qubit can be written
as a superposition α|0〉 + β|1〉 for α and β such as
|α|2 + |β|2 = 1. [3] Habitually, a qubit is a micro-
scopic system, such as an atom, a nuclear spin, or a
polarised photon. [3]

2.3 Quantum Register

A collection of n qubits is called a quantum register
of size n. [3]

Example 1. For example, a quantum register of size
4 can store individual numbers such as 13:

|1〉 ⊗ |1〉 ⊗ |0〉 ⊗ |1〉 ≡ |1101〉 ≡ |13〉,

where ⊗ denotes the tensor product.

It can also store the two of them simultaneously. [3]

2.4 Quantum Logic Gates

For this, and for other manipulations on qubits, uni-
tary operations have to be performed. Naturally, the
definitions of quantum logic gate and quantum net-
work follow.

Definition 2 (Quantum logic gate). A quantum
logic gate is a device which performs a fixed unitary
operation on selected qubits in a fixed period of time.
[3]

Definition 3 (Quantum network). A quantum
network is a device consisting of quantum logic gates
whose computational steps are synchronised in time.

A quantum gate acts on superpositions of differ-
ent basis states of qubits, whereas classically this op-
tion is nonexistent. [13]

Basic gates used in quantum computation are
namely the Hadamard gate, the NOT gate, the C-
NOT (Controlled-NOT, also known as as the XOR
or the measurement gate [3]) gate, the controlled
phase-shift gate, the Toffoli gate and the Fredkin
gate. [3,9,13] We will now describe them.

Hadamard Gate The Hadamard gate is a single-
qubit gate H which performs the unitary operation
known as the Hadamard transform whose action is
the following:

|0〉 −→ |0〉 + |1〉 (6)

|1〉 −→ |0〉 − |1〉. (7)

[3] More formally, if we start with a register of size n
in some state y ∈ {0, 1}n, then

|y〉 7→ 2−
n

2

∑

x∈{0,1}n

(−1)y·x|x〉, (8)

where the product of y = (yn−1, · · · , y0) and x =
(xn−1, · · · , x0) is taken bit by bit:

y · x = (yn−1xn−1 + · · · + y1x1 + y0x0). (9)

[3] It is universal3.

NOT Gate The square root of NOT gate is, from
a classical point of view, unusual in its behaviour.
A single square root of NOT gate produces a com-
pletely random output with equal probabilities of the
output being equal to 0 or 1. However two such gates
linked sequentially produce an output that is the in-
verse of the input, and thus behave in the same way
as the a classical NOT gate. We then have

|0〉 −→ 1√
2

(|0〉 − |1〉) (10)

|1〉 −→ 1√
2

(|0〉 + |1〉) . (11)

Thus, an input of |0〉 leads to an equal and opposite
amplitude of the output being |0〉 or |1〉. An input of
|1〉 leads to an equal amplitude of the output of the
gate being |0〉 and |1〉. [8]

the ax’s being in C, satisfying
∑

x
|ax|

2 = 1.
3 We shall see the definition of the universality of a gate in subsubsection 2.4.

Controlled-NOT Gate Controlled-NOT gate (C-
NOT, for short) is a two-qubit gate, where the value
of the first qubit (called control) determines what will
happen to the second qubit (called target) qubit. [13]
More precisely, it flips the second qubit if the first
qubit is |1〉 and does nothing if the control qubits is
|0〉. [3] The gate is thus represented by the matrix

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 , (12)

written in the computational basis {|00〉, |01〉, |10〉, |11〉}.
[3] This gate has attracted much interest in the field
of quantum computation as it is reversible while
requiring only4 two inputs. [8]

Controlled Phase-Shift Gate Another common
two-qubit gate is the controlled phase-shift gate B(φ)
defined as

1 0 0 0
0 1 0 0
0 0 1 1
0 0 0 eiφ

 , (13)

also written in the computational basis
{|00〉, |01〉, |10〉, |11〉}. [3]

Toffoli Gate Toffoli gate is a three-qubit gate
where, if the first two bits are set, the third bit is
flipped. It is then defined by

0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 0 1
1 1 0 1 1 1
1 1 1 1 1 0

, (14)

written in the computational basis

{|000〉, |001〉, |010〉, |011〉 |100〉, |101〉, |110〉, |111〉}.

[21] It is universal.

Fredkin Gate A last common three-qubit gate is
the Fredkin gate. It is universal. It is described with
the following matrix:

0 0 0 0 0 0
0 0 0 0 0 0
0 0 1 0 0 1
0 1 0 0 1 0
0 1 1 0 1 1
1 0 0 1 0 0
1 0 1 1 1 0
1 1 0 1 0 1
1 1 1 1 1 1

, (15)

the first input being directly mapped to the C out-
put. If C = 0, no swap is performed; I1 maps to O1,
and I2 maps to O2. Otherwise, the two outputs are
swapped so that I1 maps to O2, and I2 maps to O1.

Put briefly, it swaps the last two bits if the first
bit is 1. One can notice that the number of 0 and 1
are conserved throughout. An analogy is the billiard
ball model. Using this analogy, the number of balls
is conserved: the same number of balls are output as
input. [15]

Universality

Definition 4 (Universality of gates). Gates are
called universal if they can be used to create any logic
circuit, like the NAND (the conjunctive denial) gate
in classical boolean-based circuits. [8]

An extremely useful result of this universality is that
any quantum computation can be done in terms of a
C-NOT gate and a single-qubit gate (which varies),
although, of course, it might sometimes be more con-
venient to use other gates as well. [13]

Also, a simple concatenation of the Toffoli gate
and the C-NOT gate gives a simplified quantum
adder, which is a good starting point for construc-
tion of full adders, multipliers, and more elaborate
networks. [3]

If a phase gate is defined as a gate that flips the
phase of the upper state of the target qubit only
if the control qubit is in the upper state ([13]), the
Hadamard and phase gates are sufficient to construct
any unitary operation on a single qubit. [3]

4 In fact, the difficulty of building a quantum gate greatly rises with the number of inputs to gate. [8]

3 Quantum Reversibility

Consider the Boolean AND gate. There is no way of
completely deducing the inputs of an AND gate from
the outputs, and thus the AND gate appears not to
be reversible, because of its truth table.

A gate of AND type produces waste heat when
working (i.e. giving outputs to its inputs). The “lost”
information about the inputs are contained in this
waste heat.

In quantum computers, we cannot allow this sit-
uation to occur. The radiation of the heat would de-
pend on the state of the inputs to the quantum gate.

Thus, in effect, the radiation of the heat would
be a measurement on the inputs and decoherence
would ensue. The universes would be so far apart
as to be unable to interfere with each and the result,
which depends upon the interference of these uni-
verses, would be invalid. Thus, quantum gates have
to be reversible.

Reversible gates must, by their very definition,
have an equal number of inputs and outputs. [8] More
formally, an n-bit reversible gate is a bijective map-
ping f from the set {0, 1}n of n-bit data to itself.
[17]

Reversible gates are also useful as they would be
the only potential way to improve the energy ef-
ficiency of computers beyond the fundamental von
Neumann-Landauer limit of

kT ln 2

energy dissipated per irreversible bit operation,
where k is Boltzmann’s constant of 1.38 · 10−23 J/K,
and T is the temperature of the environment into
which unwanted entropy will be expelled. [20]

4 Quantum Entanglement

We say that a pure state of two qubits is entangled
if it cannot be written as a product of the individual
states of the two qubits (thus, with a tensor product),
such as |ν1〉 ⊗ |ν2〉.

For example, the EPR (Einstein-Podolski-Rosen)
state is not decomposable into a direct product of
any form, and is therefore entangled:

|ΨEPR〉 =
(|01〉 + |10〉)√

2
, (16)

as two qubits in this state display a degree of correla-
tion impossible in classical physics and hence violate
the Bell inequality which is satisfied by all local (i.e.
classical) states. [13]

At the opposite, for two qubits (n = 2), the state

α|00〉 + β|01〉 = |0〉 ⊗ (α|0〉 + β|1〉) (17)

is separable: |Ψ1〉 = |0〉 and |Ψ2〉 = α|0〉 + β|1〉. [3]
The exploitation of a number of entangled qubits

can lead to a considerable computational speed-up in
a quantum computer over its classical counterpart.
[13]

This leads us to the interest of using quantum
computers.

5 Quantum Interest

5.1 Finding Prime Factors

Suppose we wish to find prime factors of N . It is
equivalent to finding the smallest r such that ar ≡
1 mod N , where gcd(a,N) = 1. In other words, we
want to determine the period of the function

ar mod N.

There is no known efficient classical algorithm to fac-
torize N . The time of computation is proportional to
the number of divisions we have to perform, and this
is

√
N = 2

l

2 . [9]
Put simply, there are two distinct stages in this

algorithm. Initially, two registers are at the input to
the quantum computer. Then, the first register is pre-
pared5 in a superposition of consecutive natural num-
bers, while leaving the second register in 0 state to
obtain

|Ψ〉 =

M−1∑

n=0

|n〉|0〉,

where M = 2m is some sufficiently large number. In
the second register, the function ai mod N is com-
puted. This can be achieved unitarily and the result
is

|Ψ1〉 =
M−1∑

n=1

|n〉|an mod N.

[9] Then, the period r is extracted from the first reg-
ister. [9]

However, the Shor’s algorithm is probabilistic: it
does not always give the correct answer. Anyway, it

5 By preparing, we want to say that N qubits are put in a standard initial state such as |0〉|0〉 · · · |0〉, or |x = 0〉. [9]

is not a real problem, as the answers’ validity can
be checked very easily: the factors are multiplied and
must equal N . If it does not equal N , the algorithm
loops until the factorization is correct. [9]

In fact, factoring is an example of intractable
problem with the properties [9]:

1. The solution can be easily verified, once found,
2. But the solution is hard to find.

That is, it cannot be solved in a time bounded by a
polynomial in the size of the input, in this case logn.
[9]

The best known factoring algorithm (called “the
number field sieve”) requires a time similarly equal
to

exp
(
c (lnn)

1

3 (ln (lnn))
2

3

)
, (18)

where c = (64/9)
1

3 ' 1.9. The current state of the art
is that the 65 digits factors of a 130 digit number can
be found in the order of one month (!) by a network
of hundreds of work stations. [9] Shor showed that a
computer can factor in polynomial time, e.g. in time
O

(
ln(n)3

)
. [9] It would result in a big difference, as

shown in the next paragraph.
If we had a quantum computer that could factor

a 130 digit number in one month, running Shor’s al-
gorithm could factor 400 digit numbers in less than
3 years, where it would take about 1010 years for a
classical computer. [9]

It has also practical importance, as the difficulty
of factoring is the basis of schemes for public key
cryptography, such as RSA. [9] If quantum comput-
ers were able to break current RSA algorithms, it
would be useful (and imperative!) to use quantum
cryptography.

There are also some digital signature schemes
that are already believed to be secure against quan-
tum computers. For example, Lamport signatures of-
ten use crypto hash functions. Unfortunately each
Lamport key can only be used to sign a single mes-
sage. However, combined with hash trees, a single

key could be used for many messages, making this a
fairly efficient digital signature scheme. [17]

Put this way, quantum computing would have
better performances to time ratio’s than classical
computing. Other examples are simulation of quan-
tum physical processes, from chemistry and solide
state physics, approximation of Jones polynomials,
and solving Pell’s equation6. [17] Anyway, it is not
always as simple, as quantum computation is very
fragile. [9] The justification of this fragility is given
in the following section.

6 Quantum Problem

This section comes from [9]. A big quantum system
cannot be perfectly isolated from its environment. To
perform a complex quantum computation, a delicate
superposition of states of a relatively large quantum
system has to be prepared.

As this sytem cannot be perfectly isolated from
its environment, this superposition decays very
rapidly. Thus, contact between the computer and the
environment (decoherence) cause errors that degrade
the quantum information.

Decoherence is not the only problem. To im-
prove performance, the bits, after each gate, could be
cooled. By this way, small errors that could be made
would wind up, heating the environment rather than
compromising the device’s performance.

Unfortunately, a quantum computer cannot be
cooled this way: contact with the environment would
destroy encoded quantum information. A classical
error-correcting code is a repetition code: a bit we
wish te protect is then replaced by, say, three copies
of this bit. Using it, even if a bit flips, the bit can still
be decoded correctly, by majority voting. Of course,
it is possible for more than one bit to flip. It can be
improved using longer codes. Approaching a Gaus-
sian, the majority vote is said to fail (for large N)
at

Perror ' e−Ne2

. (19)

6 Recall that Pell’s equation is any Diophantine equation of the form

x
2 − ny

2 = 1

where n is a nonsquare integer, and x, y ∈ Z. Many solutions of this equation exist, and they yield good rational
approximations of the form x

y
to the square root of n. [7,16]

7 It was in 1995, and, later, a more general theory of quantum error correction was developed [13]. This development
has continued and has led to an avalanche of different codes that were optimized in different respects and adapted
to special situations. [13] The rough idea is to entangle our information-carrying qubit with some auxiliary qubits
such that we can distribute the information about the information-qubit over many auxiliary qubits. [13]

Anyway, it is not as simple to use this process with
quantum computers: even if Shor has discovered7 an
error-correcting code, there can still be phase errors,
which are serious, as they make the state

1√
2

[|0〉 + |1〉] (20)

fliping to the orthogonal state

1√
2

[|0〉 − |1〉] . (21)

As

σz =

(
0 1
1 0

)
=

1

2

(
1 1
1 −1

)
·
(

0 1
1 0

)
·
(

1 1
1 −1

)
, (22)

if we consider a phase error (σz operator) in a ro-
tated basis, it then appears as an amplitude error,
and vice-versa. This new basis that we obtain from
the {|0〉, |1〉} by using a Hadamard transformation

is given by |0̃〉 = (|0〉+|1〉)√
2

and |1̃〉 = (|0〉−|1〉)√
2

. In this

new basis, a phase error has the effect of an amplitude
error, and has thus the effect σz|0̃〉 = |1̃〉, σz|1̃〉 = |0〉.
Therefore, instead of encoding the state α|0〉 + β|1〉,
we encode it as

α|0〉 + β|1〉 → α|0̃0̃0̃〉 + β|1̃1̃1̃〉. (23)

[13]
Furthermore, measuring the qubits to detect er-

rors would disturb the quantum information they en-
code. Replicating qubits is also difficult, as copying
quantum information cannot be copied with perfect
fidelity.

7 Quantum Programming

This section comes from [18].
Using quantum programming, one can allow the

expression of quantum algorithms using high-level
constructs [18]. Its aim is to provide a tool for re-
searchers to understand better how quantum com-
putation works and how to formally reason about
quantum algorithms.

7.1 Imperative Quantum Programming
Languages

Quantum Pseudocode Firstly, a quantum pseu-
docode was proposed by E. Knill. It was the first
formalised language for description of quantum al-
gorithms.

Quantum Computer Language After it, a Quan-
tum Computer Language (QCL) was proposed. It is
one of the first implemented quantum programming
languages. Its syntax resembles syntax of the C pro-
gramming language and classical data types are sim-
ilar to data types in C.

The basic built-in quantum data type in QCL is
the qureg (quantum register). It can be interpreted
as an array of qubits (quantum bits). An example of
such a code would follow the following model.

qureg x1[2]; // 2-qubit quantum register x1

qureg x2[2]; // 2-qubit quantum register x2

H(x1); // Hadamard operation on x1

H(x2[1]); // Hadamard operation on the first qubit of the register x2

As the qcl interpreter uses qlib simulation li-
brary, it is possible to observe the internal state of
the quantum machine during execution of the quan-
tum program:

qcl> dump

: STATE: 4 / 32 qubits allocated, 28 / 32 qubits free

0.35355 |0> + 0.35355 |1> + 0.35355 |2> + 0.35355 |3>

+ 0.35355 |8> + 0.35355 |9> + 0.35355 |10> + 0.35355 |11>

Fortunately, the dump operation is different from
measurement, since it does not influence the state of
the quantum machine and can be realised only using
a simulator. Mainly, the QCL standard library pro-
vides standard quantum operators used in quantum
algorithms such as:

1. controlled-not with many target qubits,
2. Hadamard operation on many qubits,
3. parse and controlled phase.

The most important feature of QCL appears to
be the support for user-defined operators and func-
tions. Like in modern programming languages, it is
possible to define new operations which can be used
to manipulate quantum data.

Q Language Q Language is the second imple-
mented imperative quantum programming language.

It was implemented as an extension of C++
programming language. It provides classes for ba-
sic quantum operations like QFourier, QHadamard,
QNot, and QSwap, which are derived from the base
class Qop . New operators can be defined using C++
class mechanism. Quantum memory is represented
by class Qreg.

Here is an example of Q code.
Qreg x1(); // 1-qubit quantum register with initial value 0

Qreg x2(2,0); // 2-qubit quantum register with initial value 0

Computation process is executed using provided sim-
ulator. Noisy environment can be simulated using pa-
rameters of the simulator.

qGCL Quantum Guarded Command Language
(qGCL) was defined by P. Zuliani in his PhD thesis.
It is based on Guarded Command Language created
by Edsger Dijkstra. It can be described as a language
of quantum programmes specification.

7.2 Functional Quantum Programming
Languages

During the last few years many quantum program-
ming languages based on the functional program-
ming paradigm were proposed. Functional program-
ming languages are well-suited for reasoning about
programs.

QFC, QPL QFC and QPL are two closely related
quantum programming languages defined by Peter
Selinger. They differ only in their syntax: QFC uses
a flow chart syntax, whereas QPL uses a textual syn-
tax.

These languages have classical control flow, but
can operate on quantum or classical data. Selinger
gives a denotational semantics for these languages in
a category of superoperators.

QML QML is a Haskell-like quantum program-
ming language by Altenkirch and Grattage. Un-
like Selinger’s QPL, this language takes duplication,
rather than discarding, of quantum information as
a primitive operation. Duplication in this context
is understood to be the operation that maps |φ〉 to
|φ〉 ⊗ |φ〉.

Quantum Lambda Calculi Quantum lambda cal-
culi are extensions of the lambda calculus, intro-
duced by Alonzo Church and Stephen Cole Kleene
in the 1930s. The purpose of quantum lambda calculi

is to extend quantum programming languages with
a theory of higher-order functions8.

The first attempt to define a quantum lambda
calculus was made by Philip Maymin in 1996. His
lambda-q calculus is powerful enough to express any
quantum computation. This language can efficiently
solve NP-complete problems, and therefore appears
to be strictly stronger than the standard quantum
computational models (such as the quantum Turing
machine9 or the quantum circuit model10).

In 2003, André van Tonder defined an extension
of the lambda calculus suitable for proving correct-
ness of quantum programs. He also provided an im-
plementation in the Scheme programming language.

In 2004, Selinger and Valiron defined a strongly
typed lambda calculus for quantum computation
with a type system based on linear logic.

8 The Future

8.1 Overview of Research

As said in [3], research in quantum computation and
in its all possible variations has become vigorously
active and any comprehensive review of the field must
be obsolete as soon as it is written.

The following text comes from [13].

8.2 Practical View of Realising a Quantum
Computer

To realize a quantum computer (or indeed any other
computer) we have to have a physical medium in
which to store and manipulate information. It is here
that quantum information becomes very fragile and
it turns out that the task of its storage and manipu-
lation requires a lot of experimental ingenuity.

8 Remind that high-order functions are functions which can take one or more functions as an input, and output a
function.

9 As in classical computers, a Turing machine is an abstract machine which aims to model the effect of a computer.
Here, the computer is a quantum computer. The Turing machine thus provides a very simple model which cap-
tures all of the power of quantum computation. Any quantum algorithm can be expressed formally as a particular
quantum Turing machine; thus, quantum Turing machines have the same relation to quantum computation that
normal Turing machines have to classical computation. Quantum Turing machines can be related to classical
and probabilistic Turing machines in a framework based on transition (stochastic) matrices, as shown by Lance
Fortnow. [4,19]

10 This latter is often prefered to quantum Turing machines. Here, a computation is a sequence of reversible trans-
formations on a quantum mechanical analog of an n bit register. This analogous structure is referred to as an
n-qubit register. [17]

A very beautiful proposal for an ion-trap quan-
tum computer was made by Cirac and Zoller. Sub-
sequently, other realistic suggestions such as quan-
tum computation based on nuclear magnetic reso-
nance methods have been made. Although these new
proposals are very interesting, we confine ourselves
here to the summarized description of the linear ion
trap implementation of Cirac and Zoller.

Linear Ion Trap The linear ion trap is one of the
more promising proposals for a physically realizable
quantum computer. Here, information is stored into
electronic states of ions, which are in turn confined
to a linear trap and cooled to their ground state of
motion. Laser light is then used to manipulate infor-
mation in the form of different electronic transitions.

However, the uncontrollable interactions of ions
with their environment induce various errors known
as decoherence (such as e.g. spontaneous emission in
ions) and thus severely limit the power of computa-
tion.

There is a method to combat decoherence during
computation known under the name of quantum er-
ror correction. This then leads to the notion of fault-
tolerant quantum computation, which is a method of
performing reliable quantum computation using un-
reliable basic components (e.g. gates) providing that
the error rate in this components is below a certain
allowed limit.

Much theoretical work has been undertaken in
this area at the moment and there is now a good
understanding of its powers and limitations. The
main task is now with the experimentalists to try
to build the first fully functional quantum computer,
although it should be noted that none of the present
implementations appear to allow long or large scale

quantum computations and a breakthrough in tech-
nology might be needed.

Despite the fact that at present large computa-
tional tasks seem to lie in the remote future, there is
a lot of interesting and fundamental physics that can
be done almost immediately with the present tech-
nology. A number of practical information transfer
protocols use methods of quantum computation.

However, implementing large numbers of quan-
tum gates on many qubits is not easy because noise
from all kind of sources will disturb the quantum
computer. Of course, also a classical computer suf-
fers from the interaction with a noisy environment
and nevertheless works very well.

The advantage of a classical computer is, how-
ever, that it is a classical device in the sense that one
bit of information is represented by the presence or
absence of a large number of electrons. Therefore a
small fluctuation in the number of electrons does not
disturb the computer at all.

On the contrary, in a quantum computer, the
qubit is stored in the electronic degree of freedom
of a single atom. Even worse than that, a quantum
computer crucially depends on the survival of quan-
tum mechanical superposition states which are no-
toriously sensitive to decoherence and dissipation.
This makes a quantum computer extremely sensi-
tive to small perturbations from the environment. It
has been shown that even rare spontaneous emissions
from a metastable state rule out long calculations un-
less new ideas are developed.

We hope that quantum factorization and other
large and important quantum computations will
be realized eventually. Fortunately, there is a vast
amount of effort and ingenuity being applied to these
problems, and the future possibility of a fully func-
tioning quantum computer still remains very much
alive.

References

1. Berkeley University, The Mathematical Formalism of Quantum Mechanics, (2006). Physics 221A, University
of California, Berkeley; http://bohr.physics.berkeley.edu/classes/221/0708/notes/hilbert.pdf.

2. Dowek, Gilles and Arrighi, Pablo, Linear-algebraic Lambda-calculus: higher-order, encodings and conflu-

ence, Quantum Physics, (2006). http://arxiv.org/abs/quant-ph/0612199.
3. Ekert, Artur, Hayden, Patrick and Inamori, Hitoshi, Basic concepts in quantum computation, (2001).
4. Fortnow, Lance, One complexity theorist’s view of quantum computing, (2002). http://

www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V1G-44M2G3W-4&_user=10&_rdoc=1&_

fmt=&_orig=search&_sort=d&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&

md5=60761b323b55062ac8cd2ea22abb88b0.
5. Grattage, J, QML: A Functional Quantum Programming Language, 2009. http://sneezy.cs.nott.ac.uk/

qml/.
6. Iriyama, Satoshi and Ohya, Masanori, On generalized quantum Turing machine and its language classes,

(2007). http://wseas.us./e-library/conferences/2007dallas/papers/567-277.pdf.
7. Lenstra, H.W. Jr., Solving the Pell Equation, American Mathematical Society, (2002). http://www.ams.org/

notices/200202/fea-lenstra.pdf.
8. Marshall, Jonathan, Simulating Quantum Circuits, 2009.
9. Preskill, John, Quantum Information and Computation, 1998.

10. Saffman, M., Dirac Notation and rules of Quantum Mechanics, (2006). Atomic and Quantum Physics; http://
hexagon.physics.wisc.edu/teaching/2007f_ph448/diracnotation.pdf.

11. Selinger, Peter, Towards a Quantum Programming Language, (2003). http://www.mathstat.dal.ca/

~selinger/papers/qpl.pdf.
12. van Tonder, Andr, A Lambda Calculus for Quantum Computation, SIAM Journal on

Computing, (2004). http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&

id=SMJCAT000033000005001109000001&idtype=cvips&gifs=yes; http://www.het.brown.edu/people/andre/

qlambda/.
13. Vedral, Vlatko and Plenio, Martin B., Basics of Quantum Computation, (2002).
14. Wikipedia, Bra-ket notation - Wikipedia, the free encyclopedia, 2009.
15. , Fredkin gate - Wikipedia, the free encyclopedia, 2009.
16. , Pell’s equation - Wikipedia, the free encyclopedia, 2009.
17. , Quantum computer - Wikipedia, the free encyclopedia, 2009.
18. , Quantum programming - Wikipedia, the free encyclopedia, 2009.
19. , Quantum Turing machine - Wikipedia, the free encyclopedia, 2009.
20. , Reversible computing - Wikipedia, the free encyclopedia, 2009.
21. , Toffoli gate - Wikipedia, the free encyclopedia, 2009.

The articles coming from Wikipedia have naturally been rechecked. The URI related to these documents
have voluntarily been given, but keep in mind that these pages are often subject to numerous modifications.
Links with no given author (which constitute the most of the given links) are classed by date of browsing.

http://bohr.physics.berkeley.edu/classes/221/0708/notes/hilbert.pdf
http://arxiv.org/abs/quant-ph/0612199
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V1G-44M2G3W-4&_user=10&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=60761b323b55062ac8cd2ea22abb88b0
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V1G-44M2G3W-4&_user=10&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=60761b323b55062ac8cd2ea22abb88b0
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V1G-44M2G3W-4&_user=10&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=60761b323b55062ac8cd2ea22abb88b0
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6V1G-44M2G3W-4&_user=10&_rdoc=1&_fmt=&_orig=search&_sort=d&view=c&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=60761b323b55062ac8cd2ea22abb88b0
http://sneezy.cs.nott.ac.uk/qml/
http://sneezy.cs.nott.ac.uk/qml/
http://wseas.us./e-library/conferences/2007dallas/papers/567-277.pdf
http://www.ams.org/notices/200202/fea-lenstra.pdf
http://www.ams.org/notices/200202/fea-lenstra.pdf
http://hexagon.physics.wisc.edu/teaching/2007f_ph448/diracnotation.pdf
http://hexagon.physics.wisc.edu/teaching/2007f_ph448/diracnotation.pdf
http://www.mathstat.dal.ca/~selinger/papers/qpl.pdf
http://www.mathstat.dal.ca/~selinger/papers/qpl.pdf
http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=SMJCAT000033000005001109000001&idtype=cvips&gifs=yes
http://scitation.aip.org/getabs/servlet/GetabsServlet?prog=normal&id=SMJCAT000033000005001109000001&idtype=cvips&gifs=yes
http://www.het.brown.edu/people/andre/qlambda/
http://www.het.brown.edu/people/andre/qlambda/

