
P2P Implications on Web Surfing

Merciadri Luca
Luca.Merciadri@student.ulg.ac.be

First written: July 1, 2009
Last update: August 8, 2009

Abstract. P2P (Peer-to-Peer) technology comprises various ways to exchange information rapidly,
each participant sharing a portion of his own resources ([1]). However, despite of the numerous advan-
tages of using P2P, a real problem is often encountered when using cheap internet connections: web
surfing becomes so slow that it seems impossible to reach a web page, for the P2P’s user. It is especially
the case when using connections with a low upload speed. The problem has also an importance, even
if it is minor, when using high-speed connections (VDSL, . . . ), as it is also a waste of capacity.

Keywords: P2P, Peer-to-Peer, downloading.

1 Introduction

P2P (Peer-to-Peer) technology comprises various ways to exchange information rapidly, each participant
sharing a portion of his own resources ([1]). Anyway, despite of the numerous advantages of using P2P, a
real problem is often encountered when using cheap internet connections: web surfing becomes so slow that
it seems impossible to reach a web page, for the P2P’s user. It is especially the case when using connections
with a low upload speed. The problem has also an importance, even if it is minor, when using high-speed
connections (VDSL, . . . ), as it is also a waste of capacity.

2 Causes

This phenomenon is principally due to two concepts intrinsically linked to the user’s P2P client:

1. The P2P client maintains lots of connections with other P2P clients and servers, for various purposes,

2. The P2P client tries to upload at the maximum speed it can upload, so it “shares” as much as it can
with P2P’s clients. This maximum speed is either (manually, or automatically1) set in the P2P client’s
options, or is simply the maximum the ISP (Internet Service Provider) allows its user to use.

Unexperimented users do not modify the DownLoad (DL)/UpLoad (UL) rules, as they are often available
(only) in special panels, except for BitTorrent clients. It is also disadviced for beginners to modify them, as
they appear to be “critical” settings, the efficiency of their P2P client greatly depending upon it. Most of P2P
clients-servers use as maximum speeds the maximum available bandwidth (essentially for upload, download
speed being sometimes limited by default, to prevent users with connections having high bandwidths from
downloading too much). Thus, every user who does not modify these settings uses a client which uploads
and downloads at the highest speed it can, depending on the available bandwidth.

1 Even if in most cases, there is no speed limit for upload by default, when installing the P2P client-server, for
evident reasons: by this way, clients can download your files, if needed, as fast as you can really upload.



3 Implications

However, when a P2P’s user wants to visit a website, he needs (or will resign to his fate) to stop these
downloads, if his P2P client-server is working, as it takes too much bandwidth, and engender too much
connections. Regrettably, stopping these downloads results in lost connections with other P2P’s users. As
there are very often queues for overwhelmed servers2, the P2P’s user who simply wanted to visit a website
loses his progression in others’ queues. He will thus download at a potentially lower speed when using his
P2P client on its next restarting, assuming it is restarted just after he visited the page that he reached
instantly.

That is a pretty waste of time, and of computer resources. It should be avoided. Although a P2P client
has to establish lots of connections, P2P should not avoid web surfing. Think about future: it is normal (i.e.
a desirable thing) to download legal files, such as legally-downloadable TV series, or free books, using P2P,
when surfing, both simultaneously, isn’t it?

The problem could appear simple, but it is not the case, as the P2P community can only work if there
is a bigger global upload bandwidth. Let ubandwidth denote the maximum global upload bandwidth given
by all the users. Let dbandwidth denote the maximum global download bandwidth, the adjective “global”
meaning that, if there are n persons downloading or/and uploading pieces of information, we have

ubandwidth =

n
∑

i=1

ui,

dbandwidth =

n
∑

i=1

di,

the ui and di being respective upload and download contributions of all the users to the community network.
If the P2P community has (assuming3 it has not stopped entirely; this phenomenon occuring during an
infinitesimal time) a global ratio verifying

ubandwidth

dbandwidth

< 1,

during a δt �, it is litteraly dying during a δt time, as dbandwidth > ubandwidth. Such a situation, if en-
countered, is often perceived as not being an issue, as, if it happens, we have δt �. If δt was progressively
bigger and bigger each time it happens, more and more people would mistrust P2P, imagining the illegal
files they are downloading and the ones they have downloaded previously are progressively being identified
by government authorities, or by other “legal enemies,” or thinking about other scenarii which could make
them stopping their downloads, and, consequently, their uploads. It would cause P2P’s death.

The principle of P2P is to have a list of files (which is better to have one hand on), previously downloaded
or not, which contains files that can be uploaded to other P2P’s users. The aim of this article is neither to
show P2P’s well-recognized interest, nor to make future predictions about their lifetime, but to show

1. that P2P has to be a community affair. If not, it cannot work,
2. and that making efforts to avoid P2P clients from litteraly consuming the whole bandwidth can be

interesting.

Clearly, making P2P is as brilliant as well as Blizzard Entertainment uses it for its game, named “World of
Warcraft”’s updates.

We could sum up these concepts in saying that a compromise has to be found between an equal resources’
sharing (as in any community) and a comfortable surfing. Many solutions are available. For example, P2P

2 Overwhelmed servers are a big percentage of P2P’s servers, except when P2P servers are sharing uninteresting
(for other users) files which are not much desired by the community.

3 If it had stopped entirely, such a ratio would not be possible, as, for a given upload, there is a given download.



programs could lower their download and upload speeds when the user’s browser would be requesting pieces
of information from the World-Wide Web (WWW). Diminishing the number of connections they habitually
manage would not be appreciable to the user, as it would result in low performance, except if priorities were
correctly managed.

4 Results

Three experiments have been conducted, and we here present the results.

4.1 Parameters

Downloads In traditional P2P sessions, and, for an average Internet connection, the number nd of down-
loads is often limited (either by the user, or by the client) to 10 − 20. In the following results, nd = 15.

Connection Parameters The Internet connection’s parameters are defined as follows:

1. ds is the maximum theoretical download speed,
2. us is the maximum theoretical upload speed,
3. r := ds

us

is the theoretical ratio download/upload.

We use here a connection having ds = 4096 Kbps, us = 256 Kbps, r = 16, from Belgium. No other application
susceptible of Internet use is launched. This connection can be qualified of “cheap,” as it costs 34e by month.

Clients and Technologies Two different P2P clients are used: µTorrent (for BitTorrent protocol), and
eMule (for eD2K protocol). For both, ports are open (resulting in “Network OK” and “High ID” respec-
tively).

µTorrent is configured as follows:

– version 1.8, build 11813,
– maximum upload rate: 480 Kb s−1,
– maximum download rate: +∞,
– global maximum number of connections: 375,
– maximum number of connected peers per torrent: 100,
– number of upload slots per torrent: 4,
– use additional upload slots if upload speed is < 90%,
– maximum number of active torrents (upload): 4.

The only parameter we changed from the configuration that µTorrent would have established for our con-
nection is the number of downloads. It was adviced to be 15 for a 10 Mbps DL connection, 8 for a 8 Mbps DL
connection, and 5 for a 1 Mbps DL connection. Using this restricted table of values, and Lagrange’s interpo-
lation, and, for4 values of DL speeds in {1, 10} (Mbps), the given dn (download numbers) for a connection
having a theoretical download speed ds is given by

dn : ds 7→
−d2

s + 21ds + 10

6
,

giving dn = 13 for ds = 4 Mbps. We were thus not very far from the adviced limit of downloads: we have
only two downloads of more.

eMule is configured as follows:

– version 0.48a,
– maximum upload rate: 60 Ko s−1,
– maximum download rate: +∞ (really set to 500000, as eMule does not support this functionality),
– global maximum number of connections: 400,
– maximum number of sources per file: 350.

4 After 10Mbps, the function has evidently an uninteresting behaviour, as it is maximum at ds = 10.5.



Downloaded Files The downloaded files are legal ones, enjoy the same availability on both protocols, are
not the same (as it is difficult to find same legal files sharing same availability on both protocols), and have
a total size of 30 Go.

Uploaded Files The uploaded files are legal ones, enjoy the same availability on both protocols, are the
same, and have a total size of 1 Go.

Accessed Website The accessed website is always the same: http://www.google.com/, and the page is
said to be accessed only when it is completely loaded (i.e. all the elements of the page are displayed entirely
and correctly). The Google webpage is enhanced by personal news and mails widgets, which are conserved
through the experiment. The used Internet browser is always the same (Mozilla Firefox, version 3.0.12), and
the webpage is launched as habitually. The webpage is entirely loaded each time, as the browser’s webcache
is each time made empty. The page’s content is not modified during the experiment.

This page was choosen as it reflects a normal page on the Internet: more text than pictures, no sounds,
no movies, and forms.

Note that during Google’s homepage’s loading, requests are sent to http://clients1.google.com, for
reasons that only Google knows. For this reason, two times were measured, and values are reported in the
following tables.

Measured Values It is well-established that files downloading on eD2K protocol is often slower during
a while (depending on download files’ availability) after the launch of the eD2K’s client (i.e. BitTorrent
protocol is faster at the beginning). This was ignored: chronometers were launched at the same time for
both clients. As eMule takes 3 s of more than µTorrent to be ready, measures were adapted.

It must be taken into consideration that the measures rely on various factors that cannot be simulta-
neously controled, such as only one is modified at a time, in a purely scientific way. Thus, despite of the
attention given to these experiments and measures, results can sometimes be unprecise.

We now give Time To Access Web Pages (TTAWP) when only one client is launched and when both
clients are launched, depending on Time From Client Launch (TFCL), denoted by tl, resp. at Tables 1 and
2, p. 10 and 10. The data is plotted at Figure 1, p. 5.

http://www.google.com/
http://clients1.google.com


TFCL (in min)

T
T
A
W

P
(i

n
se

c)

0 10 20 30 40 50 60 70 80 90
0

10

20

30

40

50

60

70

80

90

Fig. 1. Results of the data Tables 1 and 2. In blue: eMule; in green: µTorrent; in red: both. Extrapolated
results are square-surrounded.

4.2 Errors

As the human reaction time equals here 1 s, and that it can vary with a term ±∆, ∆ = 0.5 s, the biggest
difference between a real time tr and the measure of this same time tm can be up to 1 + 0.5 = 1.5 seconds;
that is, 1.5 s.

Absolute Error As the biggest tm we could find, using a given tr, would be tm = tr + 1.5, the absolute
error is given by

tm − tr = 1.5.

The absolute value of the absolute error verifies

1.5 ≈
1

2
· 100,

so that there are no correct decimals. That is why we did not give any decimals in the results given above.



Very Low-Time Measures The biggest tm we could find, using tr = 1 s, would be 2.5 s. The relative
error is thus given by

2.5 − 1

1
= 1.5,

and verifies

1.5 ≤
1

2
· 101−x,

iff5 x ≤ 1 − log 3. Thus, tm has 1 − log 3 ≈ 0 significative chiffers. That is not a problem, as we were here
concerned with tr = 1 s, and that there is only one measure below this thresold: 0 s, which just gives an idea
about the connection’s speed.

Normal-Time Measures According to the same statements, the biggest tm we could find, using tr = 5 s,
would be 6.5. That is, the relative error is now given by

6.5 − 5

5
= 0.3,

and verifies

0.3 ≤
1

2
· 101−x,

iff6 x ≤ 1 − log(0.6). Thus, tm has 1 − log(0, 6) ≈ 1 significative chiffers. That is not a problem, as we were
here concerned with tr = 5 s: taking, for example, tr = 60 s, would lead in, the worst cases, a tm = 61.5 s,
giving a relative error of

61.5 − 60

61.5
≈ 0,

and verifies

0 ≤
1

2
· 101−x,

whatever x ∈ R. Thus, tm has a number of significative chiffers which is sufficiently high for our measures.
Our measures can thus be considered as sufficiently precise for their application from 1 min.

4.3 Discussion

Remark Our aim is neither to compare eMule and µTorrent applications nor to compare eD2K and
BitTorrent protocols. Both applications and protocols are interesting, for reasons which are not in the scope
of this paper. We are here focused on the webpage’s time to load.

5 It can be stated easily, as 1 − log 3 ≈ 0.52, and if we take x ≤ 0.52, e.g. x = 0, we have

1.5 ≤
1

2
· 101

,

a truth. If ones takes, e.g. x = −100, we have

1.5 ≤
1

2
· 10101

,

which is also true.
6 It can be stated easily, as 1 − log(0, 6) ≈ 1.22, and if we take x ≤ 1.22, e.g. x = 0, we have

0.3 ≤
1

2
· 101

,

a truth. If ones takes, e.g. x = −100, we have

0.3 ≤
1

2
· 10101

,

which is also true.



µTorrent Alone It is clear that, under a threshold τµ (here, τµ ≈ 30 min), the bigger tl, the slower the
displaying of the dummy webpage. After τµ, results are stationary. We only have two downloads of more,
and downloading two less files would result in an average

78 −

(

78

15
· 13

)

= 78 − 67.6 = 10.4 s

time gain on 78 s. We would thus have had to wait 78 − 10.4 = 67.6 s at the place of 78 s for the loading of
the dummy webpage. It is clearly too long. These results confirm the hypothesis that, even if client’s tips
(which were given by µTorrent itself) on its tuning are taken into account, the surfing speed is still too low.

eMule Alone Under a threshold τe (here, τe ≈ 10 s), the bigger tl, the slower the displaying of the dummy
webpage. After τe, results are stationary. These results confirm the hypothesis that, even if client’s tips
(which were default ones) on its tuning are taken into account, the surfing speed is still too low, even if
these results are better than µTorrent’s ones.

Both µTorrent and eMule Under a threshold τµe (here, τµe ≈ 20 min), the bigger tl, the slower the
displaying of the dummy webpage. After τµe, results are stationary. These results confirm the hypothesis
that, even if clients’ tips on their tuning are taken into account, the surfing speed is still too low.



5 Proposition

The best way to surf on the Internet when downloading files via P2P would be to confer to P2P’s clients
the ability to auto-modify their settings, according to the Internet’s browser’s demands. P2P’s clients could
hear the potential Internet’s browser’s demands (e.g. to launch a page, or to quit) so that they modify their
settings in an automatic way (e.g. to lower the number of connections, or to increase it).

Lowering drastically the number of connections would have a bad influence on the P2P’s client’s be-
haviour: it would be unuseful, and disturbating, as it would not download well, and would still use bandwidth
which could be useful for web surfing. Clients for eD2K often keep numerous connections with other P2P’s
servers, even if they are very far in the Queue. It should be avoided. For example, constantly establishing
numerous connections with lots of potential uploaders where your client is only in the end of their upload
queue, has no interest. However, these parameters are not often taken into account, as the developers of
P2P clients do not imagine either Internet connections with such a low bandwidth, or that one could dare
surfing when P2P’ing.

Lowering the download speed would be uninteresting, whatever the percentage of lowering:

1. If the download speed is lowered drastically, the P2P’s client has no interest,
2. If the download speed is not lowered drastically, the P2P’s client still needs to send sufficiently to

contribute to the community’s wellbeing.

Lowering the upload speed would be interesting, but a few remarks have to be done:

1. If it is lowered too much (using a percentage to compare with the past upload speed), and that everybody
does the same, the community will crash, as exposed in Section 3, from p. 2,

2. If it is slightly lowered, it will anyway have an impact on the community, but it is not a problem if the
DL speed is also lowered: people will share less, but download less, and surf more when P2P’ing.

It must be taken into account that the upload speed is often the lowest speed between DL and UL in
commercial Internet solutions. As a result, even if the P2P’s client does neither download too much, nor
establish too much connections, the use of a big percentage (e.g. > 70%) of the upload speed makes web
surfing very slow.

Thus, when modifying parameters of his P2P’s clients, one has to think constantly about:

1. What he wants to receive from P2P, and thus
2. What he wants to share with P2P, and thus
3. How to find a compromise between surfing as much as it is needed, and P2P’ing as much as he wants.

This is the only solution to follow until the P2P clients developers modify the in-depth foundations of their
programs. We hope it will be done soon, for everybody’s sake.



References

1. Schollmeier, Rdiger, A Definition of Peer-to-Peer Networking for the Classification of Peer-to-Peer Architec-

tures and Applications, Proceedings of the First International Conference on Peer-to-Peer Computing, (2002).



TFCL eMule µTorrent

0 s < 0.7 s
20 s 1 s or 3 s for fully charged 0.3 s

1 min 1 s or 3 s for fully charged 3.5 s
5 min 6 s or 10 s for fully charged 30 s or 58 s for fully charged
10 min 7 s or 8 s for fully charged 35 s or 46 s for fully charged
20 min 7 s or 11 s for fully charged 52 s or 76 s for fully charged

30 min
... 62 s or 78 s for fully charged

1 h
... 78 s or 89 s for fully charged

1.5 h
... 66 s or 74 s for fully charged

2 h
...

...

6 h
...

...

Table 1. TTAWP for eMule, and µTorrent (each one being launched alone).

TFCL Both

0 s < 0.7 s
20 s 3 s or 4 s for fully charged

1min 10 s or 17 s for fully charged
5min 16 s or 17 s for fully charged
10min 67 s or 75 s for fully charged
20min 74 s or 84 s for fully charged
30min 58 s or 68 s for fully charged

1 h
...

1.5 h
...

2 h
...

6 h
...

Table 2. TTAWP for eMule and µTorrent (both being launched).


