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This study aimed to determine the effects of exogenous application of salicylic acid on the toxic
effects of salt in relation to ethylene and polyamine synthesis, and to correlate these traits with the
expression of genes involved in ethylene and polyamine metabolism in two tomato species differing in
their sensitivity to salt stress, Solanum lycopersicum cv Ailsa Craig and its wild salt-resistant relative
Solanum chilense. In S. chilense, treatment with 125 mM NaCl improved plant growth, increased
production of ethylene, endogenous salicylic acid and spermine. These productions were related to a
modification of expression of genes involved in ethylene and polyamine metabolism. In contrast,
salinity decreased plant growth in S. lycopersicum without affecting endogenous ethylene, salicylic or
polyamine concentrations. Exogenous application of salicylic acid at 0.01 mM enhanced shoot growth
in both species and affected ethylene and polyamine production in S. chilense. Concomitant
application of NaCl and salicylic acid improved osmotic adjustment, thus suggesting that salt and SA
may act in synergy on osmolyte synthesis. However, the beneficial impact of exogenous application of
salicylic acid was mitigated by salt stress since NaCl impaired endogenous SA accumulation in the
shoot and salicylic acid did not improve plant growth in salt-treated plants. Our results thus revealed
that both species respond differently to salinity and that salicylic acid, ethylene and polyamine

metabolisms are involved in salt resistance in S. chilense.
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Abbreviations — ACC, 1-aminocyclopropane-1-carboxylic acid; ACCS, 1-aminocyclopropane-1-
carboxylic acid synthase; ACCO, 1-aminocyclopropane-1-carboxylic acid oxidase; ACN, acetonitrile;
ADC, arginine decarboxylase; DW, dry weight; EF/a, elongating factor 1 alpha; FW, fresh weight; g,
stomatal conductance; ODC, ornithine decarboxylase; PAs, polyamine; Put, putrescine; ¥s, osmotic
potential; SA, salicylic acid; SAM, S-adenosyl-1-methionine; SAMDC, S-adenosylmethionine
decarboxylase; Spd, spermidine; Spds, spermidine synthase; Spm, spermine; Spms, spermine

synthase; WC, water content.

Introduction

Tomato (Solanum lycopersicum) is one of the most important fruit vegetables in the economic sphere.
Under unfavorable conditions such as those occurring in arid and semi-arid conditions, irrigation is
required to ensure tomato production. Intensive irrigation, however, often leads to soil salinization.
Salinity is now a major critical environmental stress limiting agriculture world-wide (Flowers 2004,
Munns and Tester 2008, Ruan et al. 2010). In cultivated tomato, it drastically affects plant growth and
compromises yield (Bolarin et al. 1993).

Although cultivated tomato is quite sensitive to salt toxicity, several of its wild relatives are able
to cope with high salinity levels and exhibit halophyte properties (Spooner et al. 2005). Solanum
chilense is spontaneously present in a salt-affected areas of North Chile and originates from the
Atacama Desert, one of the most salted and arid areas in the world (Chetelat et al. 2009). It is
distributed in southern Peru to northern Chile where it is found in arid plains and deserts. This species
can dwell in hyper arid areas and is distributed from sea level up to 3500 m in the Andes (Chetelat et
al. 2009). This self-incompatible perennial was historically included in the polymorphic S. peruvianum
but is now considered as a distinct species found in a geographically restricted area and characterized
by narrow ecological niches (Igic et al. 2007, Nakazato et al. 2010, Tellier et al. 2011).This wild
tomato species is able to grow in diverse environments and to cope with many biotic and abiotic
constraints (Martinez et al. 2012, 2014). It is commonly considered as a valuable source of genes for
resistance to viruses such as Pseudomonas syringae (Thapa et al. 2015) or tomato yellow leaf curl
disease (Pérez de Castro et al. 2013). Surprisingly, physiological basis of salt-resistance in S. chilense
has received only minor attention until now in comparison to other salt-tolerant wild-relatives, such as
S. cheesmanii, S. pimpinelifolim and S. pennellii (Mittova et al. 2002, Albacete et al. 2009, Galvez et
al. 2012, Almeida et al. 2014). Comparing the behavior of the cultivated glycophyte S. lycopersicum
with its wild-relative halophyte plant species S. chilense will help to unravel the strategies of plant
response to salt stress and may also lead to identification of genes able to confer salt resistance to the
cultivated tomato. Martinez et al. (2012, 2014) reported that S. chilense displays a contrasting behavior
in response to prolonged exposure to moderate salinity compared with S. [ycopersicum and that salt
stress does not markedly affect plant biomass and fruit yield in this species.

Salt stress impairs water uptake and results in nutrient imbalance due to accumulation of Na" and
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CI" occurring concomitantly with a decrease of K' (Munns and Tester 2008). Salinity induces
oxidative stress, inhibits photosynthesis and hastens leaf senescence processes (Mittova et al. 2002). It
also drastically modifies hormonal status and some plant growth regulators may assume positive
functions in plant adaptation to salt stress (Ghanem et al. 2011). Beside the well-known abscisic acid
(Yang et al. 2014) or cytokinins (Zizkova et al. 2015), salicylic acid (SA) was also found to improve
plant tolerance to salt stress (Miura and Tada 2014, Jayakannan et al. 2015). Applications of
exogenous SA indeed mitigated the damaging effects of salinity in Arabidopsis (Jayakannan et al.
2013) and in tomato (Szepesi et al. 2009, Poor et al. 2011, Manaa et al. 2014). Exogenous SA may
induce stomatal closure (Miura and Tada 2014), improve selectivity of ion uptake and transport
(Jayakannan et al. 2015), and increases antioxidative defenses in stressed tissues (Nazar et al. 2011).
Salicylic acid is thought to interact in a complex way with other hormonal compounds. It has been
reported to inhibit ethylene biosynthesis (Tirani et al. 2013) although a stimulation (Liang et al. 1997)
or absence of effect (Poor et al. 2013) on ethylene biosynthesis has also been reported in some
experimental systems.

In optimal conditions, ethylene regulates diverse aspects of plant growth and development,
including germination, leaf, stem, and root growth, fruit ripening, organ abscission, leaf and flower
senescence. Ethylene is also reported to act as a stress hormone, hastening senescence and ultimately
contributing to programmed cell death (Koyama 2014). Salt stress has been reported to increase
ethylene production from its precursor 1-aminocyclopropane-1-carboxylic acid (ACC) (Bleecker and
Kende 2000, Nadeem et al. 2010). According to Ghanem et al. (2008), salt stress increase of ACC in
tomato leaf tissue is related to premature leaf senescence and coincides with the onset of oxidative
damage and the decline in chlorophyll fluorescence prior to massive Na' accumulation. In contrast,
ethylene was reported to improve salt tolerance in Arabidopsis mainly through the maintenance of K"
absorption and translocation (Jiang et al. 2013), thus suggesting that ethylene may assume dual
functions in plants exposed to salinity.

The complexity of ethylene involvement in salt-stressed plant response may at least partly results
from its interaction with polyamine synthesis. Polyamines (PAs) are polycationic organic compounds
involved in various aspects of plant development as well as in stress responses and they assume
numerous protecting functions in salt-treated plants (Hu et al. 2012, Lutts et al. 2013). Polyamines and
ethylene share a common precursor [S-adenosyl-L-Methionine (SAM)], and the biosynthesis of these
molecules is often considered as competitive (Pandey et al. 2009, Lutts et al. 2013) although Quinet et
al. (2010) showed that there is no direct antagonism between PAs and ethylene pathways in rice.
Transgenic tomato plants overexpressing SAM decarboxylase accumulate high concentration of PAs
and showed improved tolerance to salinity (Hazarika and Rajam 2011). Exogenous application of PAs
could also enhance tolerance of tomato plants to salt stress (Hu et al. 2012, 2014). Previous data in
Medicago sativa demonstrated that application of exogenous SA inhibits ethylene under salt stress,

and concomitantly increases PAs content (Palma et al. 2013). Szepesi et al. (2009) confirmed that

This article is protected by copyright. All rights reserved.



Accepted Article

tomato pre-treatment with 10™* M SA provided protection against salinity stress in relation to higher
level of free putrescine and spermine. The impact of SA on the expression of genes involved in
ethylene synthesis and PAs metabolism however remains poorly studied. Although salt stress has an
impact on PAs content in S. pennellii (Santa-Cruz et al. 1997, 1998), no data are available, to the best
of our knowledge for S. chilense.

The present work focuses on the interaction between SA, ethylene and PAs in plant response to
salinity stress in the cultivated glycophyte S. lycopersicum and its halophyte wild-relative S. chilense.
Our aims were to (1) compare SA, ethylene and PAs concentrations in the two considered species, (2)
investigate the impact of salt stress on their concentrations in both species, (3) compare the impact of
exogenous SA application on plant behavior in the absence and presence of salt and (4) analyze the
expression of genes involved in ethylene synthesis and PAs metabolism in response to salt and

exogenous SA in the two species.
Material and methods

Plant material and growth conditions

Seeds of cultivated tomato Solanum Ilycopersicum cv. Ailsa Craig (TGRC accession number
LA2838A) and of the wild species Solanum chilense (TGRC accession number LA4107) were
obtained from the Tomato Genetics Resource Center (University of California, Davis, USA). After
germination in peat compost, sixteen-day-old seedlings were transferred to a hydroponic culture
system into growth chamber at 24/22°C under a 16/8 h day/night period. Light intensity was 245 pmol
m > s '(Master TL-D reflex Super 80 58W / 840 from Philips) and relative humidity was 70 + 5%.
Seedlings were fixed on polystyrene plates floating on aerated half-strength Hoagland nutrient solution
containing: 5 mM KNOs, 5.5 mM Ca(NOs),, 1 mM NH4H,PO4, 0.5 mM MgSO,, 25 uM KCl, 10 uM
H;BO,, 1 pM MnSO,, 0.25 pM CuSOy, 1 pM ZnSO4, 10 uM (NH4)Mo,O and 1.87 g I Fe-EDTA.
Solution was renewed every week and pH was adjusted daily to 5.5-6 using 5 M KOH. For each
treatment, seedlings were distributed among four tanks (six seedlings per tank) containing 50 I of
solution in a complete randomized block design. After 1 week of acclimatization in control conditions
the seedlings were randomly divided into four groups: (1) control, (2) NaCl: solution containing 125
mM NaCl, (3) AS: solution containing 0.01 mM SA, (4) NaCl + SA: solution containing 125 mM
NaCl + 0.01 mM SA. Two actively growing leaves, present at the moment of treatment application
(leaf number 3 and 4, numbering from the base of the plant) were tagged for subsequent growth
measurements (leaf 3), and for senescence monitoring (leaf 4). After 7 days of treatment, the plants
(30 days old) were harvested and divided into roots and leaves for physiological and biochemical

parameter determinations.

Plant growth, water content, stomatal conductance and osmotic potential

Plant growth was determined on the basis of shoot and root dry weight (DW) per plant (estimated on 6
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individual plants per treatment). Roots were quickly, blotted dry and weighed for fresh weight (FW)
determination. For DW determination, roots and shoots were incubated in an oven at 70°C for 72 h.
Water content (WC) was calculated as WC = (FW-DW)/FW*100. Osmotic potential (¥s) was
estimated on the extracted sap using a Wescor 5500 vapor pressure osmometer as previously detailed
(Lutts et al. 1999). Leaf stomatal conductance (g;) was measured on the fourth fully expanded leaf on
6 plants per treatment using an AP4 diffusion porometer (Delta-TDevices Ltd., Cambridge, UK). All

measurements were performed between 2 p.m. and 4 p.m.

Deter mination of Na', K*

For Na" and K" quantification, the third leaf and root tissues of three plants per treatment were oven-
dried at 70°C for 3 day and 50 mg of DW were incubated in 4 ml of 35% HNO; at 80°C. The residue
was redissolved with aqua regia (HCI 37%: HNO; 65% 3:1) and filtered (Whatman, 11 mm). Elements
were quantified by flame atomic absorption spectrophotometry (ICE 3300; Thermo Scientific;
Waltham, MA).

Salicylic acid quantification

Endogenous SA was extracted according to Molinari and Loffredo (2006). The procedure was
modified as follows: 200 mg of fresh plant tissue was incubated with 1.8 ml 1 mM HCI under
mechanical shaking at 2 g. The mixture was sonicated at 5°C for 1 min and centrifuged at 15 000 g at
5°C for 15 min. The supernatant was collected and added to 2 ml of ethyl acetate before vortexing for
1 min and centrifugation at 15 000 g at 5°C for 15 min. The ethyl acetate fractions were combined and
evaporated to dryness on a speedvac at 45°C. The residue was dissolved in 0.5 ml of water/acetonitrile
(ACN)(1:1 v/v) before SA quantification by high performance liquid chromatography (HPLC) (5 pl of
sample was injected). The system consisted of an Agilent 1260 series equipped with an automatic
injector and a column (Inertsil ODS-3; 250 x 3.0 mm, 3 pm) oven both thermostated at 30°C. Salicylic
acid was detected by a fluorescence detector at a 315 nm emission and a 408 nm excitation
wavelengths. The mobile phase was a water/ACN gradient from 10 to 100% ACN and the flow was
1.0 ml min"'. Quantification of SA was performed by external calibration using SA standards with

concentrations from 0.78 to 100 pM.

Ethylene quantification

The ethylene production was measured by ethylene detector ETD-300 (Sensor Sense, Nijmegen, The
Netherlands) in three replicates according to Cristescu et al. (2002). Three leaves per replicate were
placed in glass dishes on two layers of filter paper moistened with 5 ml of water. As a control from the
obtained emission rates, the levels of ethylene were measured in a similar dish without leaves. The
measurements were conducted in a growth chamber (16 h photoperiod, 200 umol m* s irradiance,
22°C) in a stop-and-flow mode with each cuvette being alternatively flushed with a flow of 3 1 h™'

during 22 min.
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Polyamine quantification

Free PAs were extracted and dansylated according to Quinet et al. (2014) from approximately 500 mg
FW of shoots and 250 mg FW of roots (3 independent samples per condition). Samples were injected
onto a Nucleodur C;3 Pyramid column (125 x 4.6 mm internal diameter, 5 pm particle size; Macherey-
Nagel) maintained at 40°C. Analyses were performed by a Shimadzu HPLC system coupled to a RF-
20A fluorescence detector (Shimadzu,‘s-Hertogenbosch, The Netherlands) with an excitation
wavelength of 340 nm and an emission wavelength of 510 nm. The mobile phase consisted of a

water/ACN gradient from 40 to 100% ACN and the flow was 1.0 ml min """

Rever setranscription-PCR (RT-PCR)

Primers of tomato genes involved in ethylene and polyamine metabolism were designed using Primer
3 software (Rozenand and Skaletsky 2000) (Table S1). Total RNA was isolated from 150 mg of plant
material, cDNA was synthetized using 1 pg of total RNA and PCR fragments were amplified (33
cycles) according to Quinet et al. (2014). Expression differences were analyzed by gel densitometry
using Imagel] software and expressed as relative values compared to EF1 a expression (peak size of
target gene/peak size of EF1 a). Gene expression analyses were repeated three times on two

independent cultures and gave similar results.

Statistical treatment

Normality distributions and homoscedasticity were verified using Shapiro-Wilk and Levene’s tests
respectively and data were transformed when required. Data were analyzed using two-way analysis of
variance (ANOVA). The model was defined on the basis of fixed main effects (treatment and duration
of stress). When the ANOVA was significant at P < 0.05, differences between means were scored for
significance according to Student-Newman-Keuls test. Data were analyzed using SAS Enterprise

Guide 6.1 (SAS 9.4 system for windows). Results are presented as means + standard errors.
Results

Shoot and root dry weight, water content and stomatal conductance

Plant weight was higher in S. /ycopersicum than in S. chilense mainly regarding shoot growth (Fig.
1A, B, P < 0.001). In S. chilense, both salinity and exogenous SA application increased shoot DW,
compared to control condition (Fig. 1A). Shoot DW was increased in response to SA in the absence of
salt compared to controls in S. [ycopersicum but SA had no impact in salt-treated plants (Fig. 1A). The
root DW was lower in S. chilense plants submitted to both SA and NaCl compared to the other
treatments while none of the treatments affected root growth of S. lycopersicum after one week of
stress (Fig. 1B). The stomatal conductance (g;) was differently affected by salt stress in the two
considered species (Fig. 1C, P < 0.0001). In S. chilense, NaCl either applied alone or combined to SA

increased g, by more than 100%, while exogenous SA application alone did not affect g.. In S.
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lycopersicum, all treatments decreased g; compared to controls.

Salinity had no significant impact on the leaf water content (Table 1). Salicylic acid decreased the
leaf WC in S. chilense and such a decrease was especially conspicuous in the case of the mix treatment
(NaCl + SA). Root water content was slightly decreased in response to salt stress in S. lycopersicum.
Salinity reduced ¥s in leaves of S. chilense and S. lycopersicum but to a higher extent in the former
than in the latter. A decrease in the leaf ¥'s was also observed in response to SA in S. lycopersicum but
not in S. chilense. In contrast, the NaCl + SA treatment strongly reduced ¥s value in both species.
Salinity reduced the root ¥s but exogenous SA had no impact on this parameter. However, NaCl + SA

also reduced ¥s value in S. chilense root.

Sodium and potassium concentrations

Salt stress induced an increase of Na' in leaves and roots in both species whatever the SA treatment
(Fig. 2A, B). In leaves, sodium concentration was higher in S. chilense than in S. lycopersicum while
an opposite trend was recorded for roots (Fig. 2B). Potassium accumulated to significantly higher
levels in response to all treatments in the shoots and roots of the salt resistant species S. chilense
compared to controls (Fig. 2C, D). In S. lycopersicum, leaves K* concentration was not significantly
affected by the applied treatments (Fig. 2C). However, the shoot K concentration was higher in plants
treated with SA alone compared to salt stressed plants treated or not with SA (Fig. 2C). At the root

level, NaCl + SA treatment significantly decreased K concentration in S. lycopersicum. (Fig. 2D)

Endogenous SA concentration

Salicylic acid concentration was higher in the shoots than in the roots (Fig. 3A, B, P = 0.0009). The
shoot SA concentration was higher in S. chilense than in S. lycopersicum (P < 0.0001, Fig. 3A). After
7 days of treatment, shoot SA concentration increased in S. chilense treated with NaCl, SA and
combined treatment compared to controls (Fig. 3A) while root SA concentration was not affected by
the applied treatments (Fig. 3B). In S. lycopersicum, NaCl had no impact on root and shoot
endogenous SA concentration which increased in response to exogenous SA application and combined
treatment only (Fig. 3A, B). At the shoot level, the highest SA concentration was observed in plants
treated with SA alone in both species and addition of NaCl to SA decreased the endogenous SA shoot

concentration (Fig. 3A).

Ethylene production

The salt resistant S. chilense exhibited a higher ethylene production than the salt sensitive S.
lycopersicum even in control conditions. Ethylene biosynthesis strongly increased in response to salt,
SA and combined treatments in the salt-resistant species S. chilense (Fig. 3C). In S. chilense, the
highest ethylene concentration was observed in response to NaCl and additional exogenous SA
application significantly decreased ethylene production compared to plants treated with NaCl alone. In

S. lycopersicum none of the treatment affected ethylene production.
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Polyamine concentration
The leaf PAs concentration was always higher in S. chilense compared to S. lycopersicum (Fig 6, P <
0.0001).

Salt stress decreased Putrescine (Put) concentration of S. chilense while exogenous SA increased
it compared to controls whatever the plant organ but plants subjected to combined treatment had the
same Put concentration than controls (Fig. 4A, B). In S. lycopersicum, the shoot Put concentration
remained unaffected by the applied treatments (Fig. 4A) while application of SA increased the root Put
concentration compared to control and salt stressed plants (Fig. 4B).

Spermidine (Spd) concentration increased in the shoots of S. chilense in response to SA treatment
only (Fig. 4C). In S. lycopersicum, Spd concentration was similar whatever the treatment (Fig. 4C). In
the roots, the applied treatments had an opposite effect on Spd depending on the species: Spd content
increased in S. chilense plants treated with NaCl, SA and NaCl + SA compared to controls while in S.
lycopersicum, salt decreased the Spd concentration (Fig.4D).

Salt stress induced a conspicuous increase in leaf spermine (Spm) concentration in the halophyte
S. chilense. Although SA increased leaf Spm in the absence of stress, it reduced it in salt-treated
plants. In contrast, the root Spm content was not markedly affected by the treatments in S. chilense
(Fig. 4E). Similarly, both leaf and root Spm concentrations remained stable irrespective of the

treatment in S. lycopersicum (Fig. 4E, F).

Expression of genes encoding enzymes involved in ethylene and polyamine biosynthesis
Since SAM is the common precursor of ethylene and PAs, the expression of genes coding for S-
adenosyl-1-methionine (SAM) synthase, namely SAMSI, SAMS2, SAMS3, SAMS4 and SAM
decarboxylase (SAMDC) were compared in S. chilense and S. lycopersicum. Transcripts were not
detected for SAMS1, SAMS?2 and SAM3. In S. chilense, NaCl and SA decreased the SAMS4 expression
level compared to the controls and NaCl + SA treated plants in the shoot (Fig. 5A) and all treatments
decreased SAMS4 transcript level in the root (Fig. 5B). In S. lycopersicum, salt did not markedly affect
SAMS4 expression but exogenous SA application resulted in an increase in its expression in the shoot,
when applied alone, and a decrease in the root (Fig. 5A, B).

The SAMDC was expressed to a higher extent in S. lycopersicum than in S. chilense (Fig. 5C, D,
P < 0.0001). Both NaCl and SA decreased SAMDC transcript level in the shoot of S. chilense while
the root expression was not affected (Fig. SC, D). In S. lycopersicum, exogenous SA application
increased SAMDC expression in the shoot when applied alone but the simultaneous presence of NaCl

suppressed the response (Fig. 7).

Ethylene biosynthesis
The expression of genes coding for aminocyclopropane-1-carboxylate (ACC) synthase (ACCS2,
ACCS3, ACCS4, ACCSS5, ACCS6) and ACC oxidase (ACCO0, ACCOI, ACCO3, ACCO4, ACCOS,
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ACCO6, ACCO7) was investigated and their expression levels depended on the species, the treatment,
the organ and the considered gene.

Overall, our RT-PCR results showed that NaCl applied alone or in combination with SA
increased the total ACCS expression level in the leaves of both S. chilense (Fig. 6A, P <0.0001) and S.
lycopersicum compared to the other treatments (Fig. 6C, P < 0.0001) mainly due to the expression of
ACCS2 (Fig. 6A) and ACCS3 (Fig. 6C) respectively. At the root level, there was no significant
differences between treatments in S. chilense (Fig. 6 B, P = 0.1220). In S. lycopersicum roots, NaCl
and SA decreased the total ACCS expression level compared to control while NaCl + SA caused an
increase in the expression of two genes (ACCS3 and ACCS5) (Fig. 6D).

Regarding ACCO expression, the total transcript levels increased in response to both NaCl and
SA in S. chilense shoot with the highest level observed for the shoot of plants exposed to NaCl + SA
(Fig. 6E, P < 0.0001). In S. chilense roots, SA applied alone or in combination with NaCl increased
the total ACCO expression level compared to roots of control or NaCl treated plants (Fig. 6F, P <
0.0001), mainly in relation to ACCO5 and ACCO?7 stimulation. In the shoot of S. lycopersicum, the
ACCO transcript abundance decreased in plants treated with SA but increased in plants treated with
SA + NaCl (Fig. 6G, P < 0.0001). At the root level, NaCl and SA applied alone decreased the total
ACCO expression level compared to control and NaCl + SA (P < 0.0001) (Fig. 6H).

Polyamine metabolism
Expressions of genes coding for arginine decarboxylase (ADCI, ADC2), ornithine decarboxylase
(ODC), spermine synthase (Spms) and spermidine synthase (Spds) were compared (Fig. 7).

Total ADC expression level decreased in response to NaCl in S. chilense (Fig. 7A, B, P =0.0009)
and increased in response to SA and NaCl + SA in the shoot (Fig. 7A, P <0.0001). In S. lycopersicum,
ADC genes were more expressed in NaCl treated plants at the shoot level (Fig. 7C, P = 0.0329) while
their expression decreased in response to both NaCl and NaCl + SA at root level (Fig. 7D, P <
0.0001).

The level of ODC expression decreased in S. chilense shoot under NaCl and SA conditions but
increased under combined treatment relative to controls (Fig. 7A, P < 0.001) while it was not affected
by the applied treatments at the root level (Fig. 7B, P < 0.05). In S. lycopersicum, the ODC transcript
abundance increased with NaCl and NaCl + SA in the shoot (Fig. 7C, P < 0.0001) and with all
treatment in the roots (Fig. 7D, P < 0.0001).

Spms was more expressed in the roots than Spds whatever the species (Fig. 7F, H). The Spms
expression increased in S. chilense shoots (Fig. 7E, P < 0.0001) but decreased in its roots (Fig.7F, P <
0.0001) in response to SA and NaCl + SA. However, the Spds expression was not affected by the
treatment in S. chilense shoot (Fig. 7E, P < 0.05) and increased in NaCl treated plants at the root level
compared to controls (Fig. 7F, P < 0.0001). In S. lycopersicum shoots, both Spms and Spds expression
was reduced in NaCl and NaCl + SA treated plants compared to the other treatments (Fig. 7G, P <
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0.0001, respectively). At the root level, Spms expression was highly stimulated in the SA treated
plants. (Fig. 7H, P < 0.0001) and Spds was almost not expressed (Fig. 7H).

Discussion

Solanum lycopersicum and S. chilense exhibited contrasting levels of salt-resistance

Improvement of salt and drought resistance is an important challenge for tomato breeding (Cuartero et
al. 2006, Bai and Lindhout 2007). The present work demonstrates that S. chilense typically behaves as
a halophyte plant species. Salt indeed slightly stimulated shoot growth (Fig. 1) and this was not related
to any Na' exclusion since this element accumulated to higher concentration in the aerial parts of S.
chilense comparatively to S. lycopersicum. Some transporters play crucial roles in Na“ homeostasis.
High Affinity K" Transporter (HKT) are involved in retrieving Na' from transpiration stream and
Almeida et al. (2014) recently demonstrated that the Na' includer behavior of the halophyte S.
pennellii correlated with a lower affinity of HKT1;2 for Na™ comparatively to the glycophyte S.
lycopersicum. Similarly, NHX proteins promote Na™ accumulation in the vacuole: the corresponding
coding genes were shown to be more expressed in the wild salt-tolerant S. pimpinelifolium than in the
salt-sensitive cultivated species S. lycopersicum (Gélvez et al. 2012).

Beside regulation of ion accumulation, adaptation to the water stress component of salt stress also
appears as an important determinant of salinity resistance (Flowers 2004, Munns and Tester 2008).
Some studies analyzed the genetic basis of drought tolerance in S. chilense which occurred as the
result of a positive selection (Giombini et al. 2009, Xia et al. 2010, Fischer et al. 2013). We
demonstrated here that the water stress resistance of S. chilense was associated with a conspicuous
capacity of osmotic adjustment in the leaves (Table 1). Such a property probably allowed the plant to
keep the stomata open for CO, assimilation while the salt-sensitive S. lycopersicum adopted a water-
saving strategy through a strong decreases in g, values. A higher leaf dry mass per area (Gharbi,
unpublished results) may also help the wild tomato species to allow greater photosynthetic rate under
high irradiance and drought conditions occurring in its native area (Muir et al. 2014).

Pillay and Beyl (1990) previously suggested that S. chilense displays specific pattern of hormonal
responses to abiotic stress but these authors did not consider ethylene. The present study demonstrated
that NaCl-treated plants of S. chilense increased ethylene production to higher extent than S.
lycopersicum. In most terrestrial plants, ethylene was until recently considered as a senescing hormone
(Ghanem et al.2008, Koyama 2014). Recent studies, however, provided evidences that an optimal
ethylene synthesis may be required for salt-resistance processes (Nazar et al. 2014). Yang et al. (2013)
argued that ethylene may help to retain K in the shoot rather than limiting Na" translocation and our
data partly confirmed this view since ethylene overproduction in S. chilense was partly correlated with
NaCl-induced increase in both shoot and root K concentrations (Fig. 2). Jiang et al. (2013) also

recently demonstrated that ethylene may enhance sodium/potassium homeostasis. It might thus be
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hypothesized that optimal ethylene synthesis for salt resistance is high in S. chilense and it has already
been reported to be involved in stress-induced gene expression in this species (Tapia et al. 2005). In
the present case, ethylene oversynthesis triggered by NaCl in S. chilense appeared to be directly
related to 4CCS2 gene induction which was never observed in S. lycopersicum under our experimental

conditions.

Salicylic acid had different impact on S. lycopersicum and S. chilense

Salicylic acid is an important determinant for salt stress tolerance in plants. In tomato, it was reported
to improve membrane stability (Stevens et al. 2006), to maintain redox homeostasis through
glutathione transferase induction (Csizar et al. 2014), to induce abscisic acid accumulation (Szepesi et
al. 2009, Horvath et al. 2015), antioxidant enzyme activities (Molina et al. 2002) and photosynthetic
performances (Poor et al. 2011). It is therefore noteworthy that endogenous concentration of SA was
higher in control and NaCl-treated plants of S. chilense than in S. lycopersicum. Contradictory
information are available regarding SA impact on g,. Some authors reported that exogenous SA may
decrease g, values (see Miura and Tada 2014 for review) while others reported to increase g in salt-
treated plants (Stevens et al. 2006, Eraslan et al. 2007). In our study, a NaCl-induced increase in
endogenous SA may be, at least partly, related to the above-mentioned NaCl-induced increase in g
value in S. chilense.

An exogenous application of SA may appear as an attempt to confirm or to infirm its putative
involvement in salt-resistance mechanisms. It is however based on the assumption that endogenous SA
is not sufficient to provide protection to stressed tissues and constitutes the main limiting factor of
salinity resistance. In most if not all studies dealing with exogenous application of SA, this compound
is applied before stress imposition, as a priming agent allowing hardening process, and the impact on
such exogenous application on the endogenous concentration is rarely quantified to check the plant’s
ability to absorb and accumulate it. In the present case, SA was applied either on unstressed plants, or
concomitantly with NaCl. We showed that exogenous SA improved shoot growth in the absence of
NaCl only and had no impact on the root system. It is noteworthy that in response to exogenous SA,
SA concentration increased in the shoot but not in the roots, thus suggesting that this compound was
efficiently absorbed by the root and translocated to the shoot but does not accumulate in the root
system. However, the presence of NaCl somewhat impaired SA translocation to the shoot in both
species and thus reduced its accumulation.

Jayakannan et al. (2013) demonstrated in Arabidopsis that SA improves salinity tolerance by
preventing salt-induced K" loss via GORK channel. The situation appeared different in tomato since
exogenous SA had no significant impact on Na" or K™ concentration of salt-treated plants, although it
significantly improved the K" nutrition of S. chilense in the absence of stress. In contrast to this limited
impact of exogenous SA on ion nutrition, a strong positive effect of SA was recorded on the osmotic

adjustment of salt-treated plants, thus suggesting that salt and SA may act in synergy on osmolyte
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synthesis.

Salicylic acid has been reported as an effective inhibitor of ethylene synthesis (Tirani et al. 2013,
Jayakannan et al. 2015). The present work, however, showed that in S. chilense SA increased ethylene
synthesis in the absence of NaCl while it decreased it in NaCl-treated plants. However, when all
individual plants exposed to a given treatment were considered, a highly significant positive linear
correlation was recorded between SA content and ethylene synthesis for S. chilense (R*=0.90 and 0.93
for NaCl and NaCl + AS treatments, respectively). In contrast, no correlation was observed for S.
lycopersicum, thus suggesting that SA impact on ethylene synthesis may be species specific. Salicylic
acid had no obvious impact on ACCS and ACCO gene expression in leaves of S. chilense, except

regarding specific ACCO1 induction.

Salicylic acid impact on polyamine metabolism

Polyamines are present in all organisms and are involved in the control of plant growth and
development during the whole cycle, from germination to fruit maturation. Small aliphatic amines
(Put, Spd, Spm) are also involved in plant response to abiotic stresses and assume positive functions in
free radical scavenging, stabilization of biological membranes, regulation of ion homeostasis and
delaying of stress-induced senescence processes (Lutts et al. 2013). In the present study, the shoot
polyamine concentrations were always higher in the halophyte S. chilense than in the glycophyte S.
Iycopersicum. Salt stress drastically increased endogenous concentration of the tetramine Spm in the
former species, but not in the latter. Conversely, NaCl reduced endogenous concentration of the
diamine Put. According to Hu et al. (2012), Put accumulation is a negative factor for salinity
resistance in tomato, while higher Spd and Spm contents directly assume protective functions. The
salt-induced decrease in Put titer in S. chilense might be related to a decreased expression of genes
coding for ODC, ADC1 and ADC2 while NaCl clearly increased the expression of those genes in S.
lycopersicum.

Salicylic acid was reported to increase PAs concentration in plant tissues (Németh et al. 2002)
and this process may have an impact on the tomato hardening process (Szepesi et al. 2011). In our
study, exogenous SA increased endogenous PAs in the aerial part of S. chilense while it had almost no
impact on S. lycopersicum. Comparatively to control plants, SA-treated plants of S. chilense increased
ADC1 and ADC?2 expression in the shoot. It may be hypothesized that the produced Put is partly used
for Spd synthesis which accumulated to high extent in SA-treated S. chilense. Spermidine is expected
to assume important roles in tomato salt-tolerance. Transgenic tomato plants overexpressing
MdSPDS]I exhibited higher protection against oxidative stress in the presence of NaCl (Neily et al.
2011) while exogenous application of Spd stabilized the photosynthetic apparatus and prevented
thylakoid membrane photodamage induced by salt stress (Hu et al. 2014). This may once again afford
an advantage if plants are exposed to NaCl after SA treatment. However, when exogenous SA and

NaCl are applied simultaneously, Spd accumulation was not recorded in the shoot, despite ODC,
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ADCI, ADC?2 and Spds stimulation, thus suggesting that post-transcriptional parameters may strongly
influence PAs metabolism in response to NaCl + SA treatment. In contrast, Spd accumulated in the
roots of S. chilense in response to NaCl, SA and NaCl + SA treatment, although the mixed treatment
strongly inhibited Spds gene expression, once again confirming the influence of post-transcriptional
regulation processes.

The PAs and ethylene synthesis pathways are sharing SAM as a common precursor. Only SAMS4
expression was detected in our study and this may be due to the fact that S-adenosyl-L-methionine
synthase genes in plant species are strongly developmentally regulated (Gémez-Gomez and Carrasco
1998). In the present study, NaCl reduced both SAMS4 and SADMC gene expression in S. chilense
suggesting that the observed ethylene and Spm accumulation will not be due to an increase of the
expression of these genes. It is well known that the increase of a compound is not always linked to the
accumulation of transcripts coding for the enzymes involved in its synthesis and that there are several
steps between gene expression and compound synthesis. It might be argued that precursors are
produced in the roots and then translocated to the shoots but SAMS4 expression was also inhibited by
NaCl in the roots while SAMDC was not affected. The SAMDC activity is frequently considered as an
important limiting factor in PAs synthesis (Lutts et al. 2013). The SAMDC gene was clearly more
expressed in S. lycopersicum than in S. chilense, while an inverse trend was recorded for PAs
accumulation. It may therefore be hypothesized that the corresponding mRNA is more efficiently
translated in the halophyte species and/or that the SAMDC enzyme displays strong difference between

the two species in terms of substrate affinity or kinetics properties.

Conclusion

Our results confirmed the salt stress resistance of the wild species S. chilense compared to S.
lycopersicum and showed that this salt tolerance may be related to an increase of SA, ethylene, Spm
and a decrease of Put production in this former while their production seemed not affected by salt
stress in the latter. S. chilense displays thus specific pattern of SA, ethylene and PAs responses to salt
stress. Oversynthesis of ethylene in response to salt stress in S. chilense could be due to ACCS2 gene
induction and Put reduction to the decrease of ODC and ADC gene expression. Exogenous SA
application increased shoot growth in both species and induced ethylene and PAs production
compared to controls in S. chilense without affecting their production in S. lycopersicum. However,
when applied simultaneously to salt, its beneficial impact was less obvious and this could be partly
explained by the impaired shoot SA translocation and accumulation due to salt stress. Nevertheless,
SA application improved the osmotic adjustment of salt-treated plants in both species. In summary, S.
lycopersicum and S. chilense exhibited contrasting levels of salt-resistance and the involvement of SA,

ethylene and PAs in this resistance was species specific.

This article is protected by copyright. All rights reserved.



Accepted Article

Author contributions
S.L., .M. and H.B. conceived the study. E.G., M.Q., M.F. performed the experiments and carried out
the analysis. E.G., M.Q. and S.L. designed the experiments and wrote the manuscript. All authors read

and approved the final manuscript.

Acknowledgement — E.G. is grateful to CAI (conseil de I’action international, Université catholique de

Louvain) for the award of a research fellowship.

References

Almeida P, de Boer GJ, de Boer AH (2014) Differences in shoot Na" accumulation between two
tomato species are due to differences in ion affinity of HKT1;2. J Plant Physiol 171: 438-447

Bai Y, Lindhout P (2007) Domestication and breeding of tomatoes: what have we gained and what can
we gain in the future? Ann Bot 100: 1085-1094

Bleecker AB, Kende H (2000) Ethylene: a gaseous signal molecule in plant. Ann Rev Cell Dev Biol
16: 1-18

Bolarin MC, Perez-Alfocea F, Cano EA, Estait MT, Caro M (1993) Growth, fruit yield and ion
concentration in tomato genotypes after pre- and post-emergence salt treatments. J Am Soc Hortic
Sci 118: 655-660

Chetelat RT, Pertuzé RA, Fatindez L, Graham EB, Jones CM (2009) Distribution, ecology and
reproductive biology of wild tomatoes and related nightshades from the Atacama Desert region of
Northern Chile. Euphytica 167: 77-93

Cristescu SM, De Martinis D, Te Lintel Hekkert S, Parker DH, Harren FJIM (2002) Ethylene
production by Botrytis cinerea in vitro and in tomatoes. Appl Environ Microbiol 68: 5342-5350

Csiszar J, Horvath E, Vary Z, Gallé A, Bela K, Brunner S, Tari (2014) Glutathione transferase
supergene family in tomato: salt stress-regulated expression of representative genes from distinct
GST classes in plants primed with salicylic acid. Plant Physiol Biochem 78: 15-26

Cuartero J, Bolarin MC, Asins MJ, Moreno V (2006) Increasing salt tolerance in the tomato. J Exp
Bot 57: 1045-1058

Eraslan F, Inal A, Gunes A, Alpaslan M (2007) Impact of exogenous salicylic acid on the growth,
antioxidant activity and physiology of carrot plants subjected to combined salinity and boron
toxicity. Scientia Hort 113: 120-128

Fischer I, Steige KA, Stephan W, Mboup M (2013) Sequence evolution and expression regulation of
stress-responsive genes in natural populations of wild tomatoes. PLoS One 8: ¢78182

Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55: 307-319

Galvez FJ, Baghour M, Hao G, Cagnac O, Rodriguez-Rosales MP, Venema K (2012) Expression of
LeNHX isoforms in response to salt stress in salt sensitive and salt tolerant tomato species. Plant

Physiol Biochem 51: 109-115

This article is protected by copyright. All rights reserved.



Accepted Article

Ghanem ME, Albacete A, Martinez-Andujar C, Acosta M, Romero-Aranda R, Dodd IC, Lutts S,
Perez-Alfocea F (2008) Hormonal changes during salinity-induced leaf senescence in tomato
(Solanum lycopersicum L.). J Exp Bot 59: 3039-3050

Ghanem ME, Albacete A, Smigocki AC, Frebort I, Pospisilova H, Martinez-Andujar C, Acosta M,
Sanchez-Bravo J, Lutts S, Dodd IC, Pérez-Alfocea E (2011) Root-synthesized cytokinins improve
shoot growth and fruit yield in salinized tomato (Solanum lycopersicum L.) plants. J Exp Bot 62:
124-140

Giombini MI, Frankel N, Tusem ND, Hasson E (2009) Nucleotide polymorphism in the drought
responsive Asr2 in wild populations of tomato. Genetica 136: 13-25

Gomez-Gomez L, Carrasco P (1998) Differential expression of the S-adenosyl-L-methione synthase
genes during pead development. Plant Physiol 117: 397-405

Hazarika P, Rajam MV (2011) Biotic and abiotic stress tolerance in transgenic tomatoes by
constitutive expression of S-adenosylmethionine decarboxylase gene. Physiol Mol Biol Plants 17:
115-128

Horvath E, Csiszar J, Gallé A, Poor P, Szepesi A, Tari I (2015) Hardening with salicylic acid induces
concentration-dependent changes in abscisic acid biosynthesis of tomato under salt stress. J Plant
Physiol 183: 54-63

Hu L, Xiang L, Zhang L, Zhou X, Zou Z, Hu X (2014) The photoprotective role of spermidine in
tomato seedling under salinity-alkalinity stress. PLoS One 9: e110855

Hu X, Zhang Y, Shi Y, Zhang Z, Zou Z, Zhang H, Zhaio J (2012) Effect of exogenous spermidine on
polyamine content and metabolism in tomato exposed to salinity — alkalinity mixed stress. Plant
Physiol Bichem 57: 200-209

Igic B, Smith WA, Robertson KA, Schaal BA, Kohn JR (2007) Studies of self-incompatibility in wild
tomatoes: 1. S-allele diversity in Solanum chilense Dun. (Solanaceae). Heredity 99: 553-561

Jayakannan M, Bose J, Babourina O, Rengel Z, Shabala S (2013) Salicylic acid improves salinity
tolerance in Arabidopsis by restoring membrane potential and preventing salt-induced K™ loss via
a GORK channel. J Exp Bot 64: 2255-2268

Jayakannan M, Bose J, Babourina O, Rengel Z, Shabala S (2015) Salicylic acid in plant salinity stress
signalling and tolerance. Plant Growth Regul 76: 25-40

Jiang C, Belfield EJ, Cao Y, Smith AC, Harberd NP (2013) An Arabidopsis soil-salinity-tolerance
mutation confers ethylene-mediated enhancement of sodium/potassium homeostasis. Plant Cell
25:3535-3552

Koyama T (2014) The roles of ethylene and transcription factors in the regulation of onset of leaf
senescence. Front Plant Sci 5: 650

Liang WS, Wen JQ, Liang HG (1997) Stimulation of ethylene production in aged potato tuber slices
by salicylic acid. Phytochemistry 44: 221-223

Lutts S, Bouharmont J, Kinet JM (1999) Physiological characterization of salt-resistant rice

This article is protected by copyright. All rights reserved.



Accepted Article

somaclones. Aust J Bot 47: 835-849

Lutts S, Hausman JF, Quinet M, Lefévre 1 (2013) Polyamines and Their Roles in the Alleviation of
Ion Toxicities in Plants. In: Ahmad P, Azooz MM, Prasad MNV (eds) Ecophysiology and
Responses of Plants under Salt Stress. Springer-Verlag, New York, pp 315-353

Manaa A, Gharbi E, Mimouni H, Wasti S, Aschi-Smiti S, Lutts S, Ben Ahmed H (2014) Simultaneous
application of salycilic acid and calcium improves salt tolerance in two contrasting tomato
(Solanum lycopersicum) cultivars. South Afr J Bot 95: 32-39

Martinez JP, Antiinez A, Petrtuzé R, Acosta MDP, Palma X, Fuentes L, Ayala A, Araya H, Lutts S
(2012) Saline water irrigation effects on water status, yield and fruit quality of wild (Solanum
chilense) and cropped (Solanum lycopersicum var. cerasiforme) tomatoes. Exp Agric 48: 573—
586

Martinez JP, Antinez A, Araya H, Petrtuzé R, Acosta MDP, Fuentes L, Lizana XC, Lutts S (2014)
Salt stress differently affects growth, water status and antioxidant enzyme activities in Solanum
lycopersicum L. and its wild-relative Solanum chilense Dun. Aust J Bot 62: 359-368

Mittova V, Tal M, Volokita M, Guy M (2002) Salt stress induces up-regulation of an efficient
chloroplast antioxidant system in the salt-tolerant wild tomato species Lycopersicon pennellii but
not in cultivated species. Physiol Plant 115: 393-400

Miura K, Tada Y (2014) Regulation of water, salinity and cold stress responses by salicylic acid. Front
Plant Sci 5: 4

Molina A, Bueno P, Marin MC, Rodriguez-Rosales MP, Belver A, Venema K, Donaire JP (2002)
Involvement of endogenous salicylic acid content, lipoxygenase and antioxidant enzyme activities
in the response of tomato cell suspension cultures to NaCl. New Phytol 156: 409—415

Molinari S, Loffredo E (2006) The role of salicylic acid in defense response of tomato to root-knot
nematodes. Physiol Mol Plant Pathol 68: 69-78

Muir CD, Hangarter RP, Moyle L, Davis PA (2014) Morphological and anatomical determinants of
mesophyll conductance in wild relatives of tomato (Solanum sect. Lycopersicon, sect.
Lycopersicoides; Solanaceae). Plant Cell Environ 37: 1415-1426

Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59: 651-681

Nadeem SM, Zahir ZA, Naveed M, Ashraf M (2010) Microbial ACC-deaminase: Prospects and
applications for inducing salt tolerance in plants. Crit Rev Plant Sci 29: 360-393

Nazar R, Igbal M, Khan R, Igbal N, Masood A, Khan NA (2014) Involvement of ethylene in reversal
salt-inhibited photosynthesis by sulfur in mustard. Physiol Plant 152: 331-344

Nazar R, Igbal N, Syeed S, Khan NA (2011) Salicylic acid alleviates decrease in photosynthesis under
salt stress by enhancing nitrogen and sulfur assimilation and antioxidant metabolism differently in
two mungbean cultivars. J Plant Physiol 168: 807-815

Neily MH, Baldet P, Arfaoui I, Saito T, Li QL, Asamizu E, Matsukura C, Moriguchi T, Ezura H
(2011) Overexpression of apple spermidine synthase 1 (MdSPDS!) leads to significant salt

This article is protected by copyright. All rights reserved.



Accepted Article

tolerance in tomato plants. Plant Biotech 28: 33—42

Németh M, Janda T, Horvath E, Paldi E, Szalai G (2002) Exogenous salicylic acid increases
polyamine content but may decrease drought tolerance in maize. Plant Sci 162: 569-574

Palma F, Lopez-Gomez M, tejera NA, Lluch C (2013) Salicylic acid improves the salinity tolerancre
of Medicago sativa in symniosis with Sinorhizobium meliloti by preventing nitrogen fixation
inhibition. Plant Sci 208: 75-82

Pandey S, Ranade SA, Nagar PK, Kumar N (2009) Role of PAs and ethylene as modulator of plant
senescence. J Biol Sci 25: 291-299

Pérez de Castro A, Julian O, Diez MJ (2013) Genetic control and mapping of Solanum chilense
LA1932, LA1960 and LA1971-derived resistance to Tomato yellow leaf curl disease. Euphytica
190: 203-214

Pillay I, Beyl C (1990) Early responses of drought-resistant and susceptible tomato plants subjected to
water stress. J Plant Growth Regul 9: 213-219

Poor P, Gémes K, Horvath, Szepesi A, Simon ML, Tari I (2011) Salicylic acid treatment via the
rooting medium interferes with stomatal response, CO, fixation rate and carbohydrate metabolism
in tomato, and decreases harmful effects of subsequent salt stress. Plant Biol 13: 105-114

Poor P, Kovacs J, Szpoko D, Tari M (2013) Ethylene signaling in salt stress- and salicylic acid-
induced programmed cell death in tomato suspension cells. Protoplasma 250: 273-284

Quinet M, Ndayirajige A, Lefévre I, Lambillotte B, Dupont-Gillain CC, Lutts S (2010) Putrescine
differently influences the effect of salt stress on polyamine metabolism and ethylene synthesis in
rice cultivars differing in salt-resistance. J Exp Bot 61: 2719-2733

Quinet M, Bataille G, Dobrev PI, Capel C, Gomez P,Capel J, Lutts S, Motyka V, Angosto T,

Lozano R (2014) Transcriptional and hormonal regulation of petal and stamen development by
STAMENLESS, the tomato (Solanum lycopersicum L.) orthologue to the B-class APETALA3
gene. J Exp Bot 65: 2243-2256

Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers.
Meth Mol Biol 132: 365-386

Ruan CJ, Teixeira da Silva J, Mopper S, Qin P, Lutts S (2010) Halophyte improvement for a salinized
world. Crit Rev Plant Sci 29: 329-359

Santa-Cruz A, acosra M, Pérez-Alfocea F, Bolarin MC (1997) Changes in free polyamine levels
induced by salt stress in leaves of cultivated and wild tomato species. Physiol Plant 101: 341-346

Santa-Cruz A, Pérez-Alfocea F, Caro M, Acosta M (1998) Polyamines as short-term salt tolerance
traits in tomato. Plant Sci 138: 9-16

Spooner DM, Peralta IE, Knapp S (2005) Comparison of AFLPs with other markers for phylogenic
interference in wild tomatoes (Solanum L., section Lycopersicon (Mill;) Wettst.). Taxon 54: 43—
61

Stevens J, Senaratna T, Sivasithamparanm K (2006) Salicylic acid induces salinity tolerance in tomato

This article is protected by copyright. All rights reserved.



Accepted Article

(Lycopersicum esculentum cv. Roma): associated changes in gas exchange, water relations and
membrane stabilisation. Plant Growth Regul 49: 77-83

Szepesi A, Csiszar J, Gémes K, Horvath E, Horvath F, Simon ML, Tari (2009) Salicylic acid
improves acclimation to salt stress by stimulating abscisic aldehyde oxidase activity and abscisic
acid accumulation, and increases Na' content in leaves without toxicity symptoms in Solanum
lycopersicum L. J Plant Physiol 166: 914-925

Szepesi A, Gémes K, Orosz G, Peto A, Takacs Z, Vorak M, Tari I (2011) Interaction between salycilic
acid and polyamines and their possible roles in tomato hardening processes. Acta Biol
Szgediensis 55: 165-166

Tapia G, Verdugo I, Yafiez M, Ahumada I, Theoduloz C, Cordero C, Poblete F, Gonzélez E, Ruiz-
Lara S (2005) Involvement of ethylene in stress-induced expression of the TLC1.1
retrotransposon from Lycopersicon chilense Dun. Plant Physiol 138: 2075-2086

Tellier A, fischer I, Merino C, Xia H, Camus-Kulandaivelu L, Stidler T, Stephan W (2011) Fitness
effects of derived deleterious mutations in four closely related wild tomato species with spatial
structure. Heredity 107: 189—199

Thapa SP, Miyao FM, Michael Davis R, Coaker G (2015) Identification of QTLs controlling
resistance to Pseudomonas syringae pv tomato race 1 strains from the wild tomato, Solanum
habrochaites LA1777. Theor Appl Genet 128: 681-692

Tirani MM, Nasibi F, Kalantari KHM (2013) Interaction of salicylic acid and ethylene and their
effects on some physiological and biochemical parameters in canola plants (Brassica napus L.).
Photosynthetica 51: 411418

Xia H, Camus-Kulandaivelu L, Stephan W, Tellier A, Zhang Z (2010) Nucleotide diversity patterns of
local adaptation at drought-related candidate genes in wild tomatoes. Mol Ecol 19: 4144-4154

Yang L, Zu YG, Tang ZH (2013) Ethylene improves Arabidopsis salt tolerance via retaining K in
shoots and roots rather than decreasing tissue Na" content. Environ Exp Bot 86: 6069

Yang R, Yang T, Zhang H, Qi Y, Xing Y, Zhang N, Li R, Weeda S, Ren S, Ouyang B, Guo YD
(2014) Hormone profiling and transcription analysis reveal a major role of ABA in tomato salt
tolerance. Plant Physiol Biochem 77: 23-34

Zizkova E, Dobrev PI, Muhovski Y, Motyka V, Lutts S, Hichri I (2015) Characterization of the tomato
SIIPTI and SIIPT?2 isopentenyltransferases and their response to salt stress. BMC Plant Biol 15:
85

Edited by Z. Gong

This article is protected by copyright. All rights reserved.



Figurelegends

2
A j— S. chilense
6 === §. lycopersicum
5
]
4
® % i °
S 3
~ » b
2
O )
1 I 5
. C
° ﬁ 08
B A
H a
a
% 0.6 a .
C]
= A
2 04
B
£ A
0.2
B
0.0
1400
1200 C A
@ <> 1000
E
= 800
H g a
E 600 B
& B b
o, < b
200 c
@ 0
Control NaCl SA NaCl+SA
< ’ Fig. 1. Plant growth parameters and stomatal conductance (g) of Solanum chilense and Solanum
lycopersicum cv Ailsa Craig plants exposed during 7 days to control conditions (Control), 125 mM
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roots. Values sharing a common letter are not significantly different at P < 0.05 for a same species.
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Fig. 2. Sodium (A, B) and potassium (C, D) concentration in the third leaf (A, C) and the roots (B, D)
of Solanum chilense and Solanum Iycopersicum cv Ailsa Craig plants exposed during 7 days to control
conditions (Control), 125 mM NaCl (NaCl), 0.01 mM salicylic acid (SA) and combined treatments
(NaCl + SA). Values sharing a common letter are not significantly different at P < 0.05 for a same

species. Vertical bars are the SE.
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Fig. 4. Endogenous polyamine concentrations in Solanum chilense and Solanum lycopersicum cv
Ailsa Craig plants exposed during 7 days to control conditions (Control), 125 mM NaCl (NaCl), 0.01
mM salicylic acid (SA) and combined treatments (NaCl + SA): putrescine (A, B), spermidine (C, D)
and spermine (E, F) concentrations in the shoots (A, C, E) and the roots (B, D, F). Values sharing a

common letter are not significantly different at P < 0.05 for a same species. Vertical bars are the SE.
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Fig. 5. Semi-quantitative RT-PCR expression analysis of genes coding for (A, B) S-adenosyl-1-
methionine synthase (SAMS4) and (C, D) S-adenosyl-l-methionine decarboxylase (SAMDC) in (A, C)
shoots and (B, D) roots of Solanum chilense and Solanum lycopersicum cv Ailsa Craig plants exposed
during 7 days to control conditions (Control), 125 mM NaCl (NaCl), 0.01 mM salicylic acid (SA) and
combined treatments (NaCl + SA). Actin transcripts were used as a PCR control. Relative expression
level was analyzed by gel densitometry. Note that vertical scales are not the same for shoots and roots.
Values sharing a common letter are not significantly different at P < 0.05 for a same species. Vertical

bars are the SE.
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Fig. 6. Semi-quantitative RT-PCR expression analysis of genes coding for (A—D) aminocyclopropane-
1-carboxylate (ACC) synthase (4CCS2,3,5,6) and for (E-H) aminocyclopropane-1-carboxylate (ACC)
oxidase (ACCO0-7) in (A, E, C, G) shoots and (B, D, F, H) roots of (A, B, E, F) Solanum chilense and
(C, D, G, H) Solanum Iycopersicum cv Ailsa Craig plants exposed during 7 days to control conditions
(Control), 125 mM NaCl (NaCl), 0.01 mM salicylic acid (SA- and combined treatments (NaCl + SA).
Actin transcripts were used as a PCR control. Relative expression level was analyzed by gel
densitometry. Values sharing a common letter are not significantly different at P < 0.05 for a same

species.
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Fig. 7. Semi-quantitative RT-PCR expression analysis of genes coding for (A-D) arginine
decarboxylase (4DC 1,2) and ornithine decarboxylase (ODC) and (E-H) spermine synthase (Spms)
and spermidine synthase (Spds) in (A, C, E, G) shoots and (B, D, F, H) roots of (A, B, E, F) Solanum
chilense and (C, D, G, H) Solanum lycopersicum cv Ailsa Craig plants exposed during 7 days to
control conditions (Control), 125 mM NaCl (NaCl), 0.01 mM salicylic acid (SA) and combined
treatments (NaCl + SA). Actin transcripts were used as a PCR control. Relative expression level was
analysed by gel densitometry. Note that vertical scales are not the same for shoots and roots. Values

sharing a common letter are not significantly different at P < 0.05 for a same species.
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Table 1. Water content (WC) and osmotic potential (¥;) in the leaves and the roots of Solanum

chilense and Solanum lycopersicum cv Ailsa Craig plants exposed during 7 days to control conditions

(Control), 125 mM NaCl (NaCl), 0.01 mM salicylic acid (SA) and combined treatments (NaCl + SA).

Mean + SE. Values sharing a common letter are not significantly different at P < 0.05 for a same

species and organ.

Leaves Roots

S. chilense S. lycopersicum S. chilense S. lycopersicum
WC (%)
Control 945+2.1A 95.0+0.30a 87.4+158B 95.3+0.28a
NaCl 95.9+1.6A 942+1.2a 94.1+1.7A 93.6+0.33b
SA 90.3+0.33A 94.1+1.2a 94.1+0.16 A 959+0.42a
NaCl + SA 75.6+0.16 B 93.6+0.63a 95.7+0.13A 94.2+0.45b
Y, (MPa)
Control -0.69+0.02 A -0.49+0.024a -0.45+0.02 A -0.42+0.007 a
NaCl -0.90+0.03B -0.79+0.03¢ -0.90+0.01B -0.99+0.04 b
SA -0.72+0.02A -0.68+0.01b -0.43+0.01A -0.39+0.01a
NaCl + SA -1.78+0.01C -1.25+0.007 d —0.95+0.003C -0.96£0.02 b
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