
 

Abstract: The basic
procedure as it is us
generation of a compl
that contains as muc
parameters to be ident
homogeneous deformat
specimen less regular. A
conditions more comple
combined by using th
perforated cruciform s
hardening of the mate
described by a Swift 
anisotropic Hill48 criter
constrained gradient b
that in every iteration
performed in order t
parameters are to be o
is a least-squares expr
measured and the simu
numerical routines as 
different parameters, 
discussed. 

Keywords:  inverse m
surface, full-field strain

 

The accuracy of a 
deformation strongly d
and the value of the 
The identification of 
done based on homog
those obtained in uni-a
performed in different
to identify plastic mat
of an experiment exhi
field. Material param
integrate optimization 
as the finite elemen
alternative tool. The m
the optimal estimates 
a selected measure-of-
and the model [1-3]
proposed for the iden
two parameters of a 
four parameters of the
field surface measurem
to biaxial tensile loadi
Identification of yield locus parameters of metals  
using inverse modeling and full field information 

 
D. Lecompte1, S. Cooreman2, H. Sol2, J. Vantomme1, L. Rabet1, A.M. Habraken3

1 Department of Materials and Construction, Royal Military Academy 
Av. De la Renaissance 30, 1000 Brussel, Belgium 

2 Mechanics of Materials and Constructions, Vrije Universiteit Brussel 
Pleinlaan 2, 1050 Brussels, Belgium 

3 Mechanics of Materials and Structures, Université de Liège, 
Chemin des Chevreuils 1, 4000 Liège, Belgium 

email : david.lecompte@rma.ac.be; stcoorem@vub.ac.be; hugos@vub.ac.be 
 principle of the inverse modeling 
ed for parameter identification is the 
ex and heterogeneous deformation field 
h information as possible about the 
ified. One way of obtaining such a non-
ion is by making the geometry of the 
nother possibility is to make the loading 

x. In this paper both options are actually 
e concept of a biaxial tensile test on a 
pecimen. In the present paper, the work 
rial is assumed to be isotropic and it is 
law. The yield locus is modeled by the 
ion. The optimization technique used is a 

ased Newton-type routine, which means 
 step, a sensitivity calculation has to be 
o indicate the direction in which the 
ptimized. The functional to be minimized 
ession of the discrepancy between the 
lated strain fields at a certain load. The 
well as the identification results of the 
based on simulated strain fields, are 

odeling, Swift hardening law, Hill48 yield 
 information 

I. INTRODUCTION 
Finite Element Simulation for plastic 
epends on the chosen constitutive laws 
material parameters within these laws. 
those mechanical parameters can be 

eneous stress and strain fields such as 
xial tensile tests and simple shear tests 

 plane material directions. Another way 
erial parameters is by inverse modeling 
biting a heterogeneous stress and strain 

eter identification methods, which 
techniques and numerical methods such 
t method (FEM), indeed offer an 
ost common approach is to determine 

of the model parameters by minimizing 
fit between the responses of the system 
. In the present study a method is 
tification of the initial yield stress, the 
Swift isotropic hardening law and the 
 Hill48 yield surface, based on the full-
ents of a cruciform specimen subjected 

ng. Experimental forces and strains are 

in this case compared to the simulated values. A finite 
element model of the perforated specimen serves as numerical 
counterpart for the experimental set-up. The difference 
between the experimental and numerical strains (εx, εy and 
εxy) is minimized in a least squares sense by updating the 
values of the different parameters simultaneously. The 
sensitivities used to obtain the parameter updates are 
determined by finite differences, using small parameter 
perturbations. The optimization routine used, is based on a 
constrained Newton-type algorithm. 

Paragraph two gives a description of the experimental 
equipment that will be used for the actual tensile testing of the 
cruciform specimens. In paragraph three, some information is 
given about the choice of the numerical model. Paragraph 
four talks about traditional elasto-plastic material 
identification, whereas paragraph five concerns the numerical 
aspects of the optimization routine and the sensitivity analysis 
used in the inverse modeling procedure for parameter 
identification. And finally, paragraph six shows some results 
obtained based on simulated strain fields. 

II. BIAXIAL TESTING 
Different experimental techniques and specimens have been 

used to produce biaxial stress states. These techniques may be 
mainly classified into two categories [4]: (i) tests using a 
single loading system and (ii) tests using two or more 
independent loading systems. In the first category the biaxial 
stress ratio depends on the specimen geometry —their main 
disadvantage—, whereas in the second category it is specified 
by the applied load magnitude. Examples of the first category 
are bending tests on cantilever beams, anticlastic bending of 
rhomboidal shaped plates and bulge tests. Examples of the 
second category are thin-walled tubes subjected to a 
combination of tension/compression with torsion or 
internal/external pressure, and cruciform specimens under 
biaxial loading [5]. The most realistic technique to create 
biaxial stress states consists of applying in-plane loads along 
two perpendicular arms of cruciform specimens. The use of 
hydraulic actuators represents a very versatile technique for 
the application of the loads. The main difference between the 
existing techniques is the use of one or two actuators per 
loading direction. One actuator per loading direction [6] will 
cause movements of the centre of the specimen causing a side 
bending of the specimen. This results in undesirable non-
symmetric strains. Systems with four actuators [7] with a 



close-loop servo control using the measured loads as feedback 
system, allow the centre of the specimen standing still. 
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 The plane biaxial test device using cruciform specimens 
developed at the Free University of Brussels has four 
independent servo-hydraulic actuators with an appropriate 
control unit to keep the centre of the specimen explicitly still. 
The device (Figure 1) has a capacity of 100 kN in both 
perpendicular directions, but only in tension. As no cylinders 
with hydrostatic bearing were used, failure or slip in one arm 
of the specimen will result in sudden radial forces which 
could seriously damage the servo-hydraulic cylinders and the 
load cells. To prevent this, hinges were used to connect the 
specimen to the load cells and the servo-hydraulic cylinders to 
the test frame. Using four hinges for each loading direction 
results in an unstable situation in compression and 
consequently only tension loads can be performed.  

For the determination of the plastic strain rate, an 
associative flow rule is used: 

 

 
σ∂
Φ∂

λ=ε && pl  (3) 

 
in which is the plastic multiplier and Φ is the yield 

function. This plastic multiplier can be determined using the 
loading-unloading conditions: 
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B. Yield surface chape 
 

The yield function Φ which governs the onset and 
continuance of plastic deformation is chosen to be represented 
by the Hill48 yield criterion. This criterion allows the 
introduction of material anisotropy, which is interesting for 
sheet specimens, cut out of a cold rolled material. In an 
orthogonal coordinate system, based on the axes of orthotropy 
of the material the criterion can be written as: 
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in which fσ  represents the current flow stress and H, G, F, 

N and M define the form of the yield surface. The Hill48 
quadratic yield criterion is a widely used yield criterion for 
the simulation of sheet metal material behavior. The plane of 
the sheet contains the x- and y-axis, while the z-axis is 
perpendicular to it. In that case the out of plane 
stresses σ , and can be neglected, leading to a plane 

stress condition. Assuming this simplified stress situation, 
equation (5) reduces to: 

xz σ yz zσ

Figure 1: Plane biaxial test device for cruciform specimens 

In an ideal situation no displacement of the centre point of 
the specimen is observed. Even when using four actuators, a 
small displacement might occur in a real situation.However, it 
is possible to quantify this small load difference and to use 
this as a control signal.  

This type of experiment has already been used in the past 
for the identification of the elastic orthotropic parameters of 
composite materials [8]. 
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 III. NUMERICAL MODELING The parameters to be identified are F, G, H and N. 

A. Constitutive model C. Hardening function 
The first assumption made, concerning the material model 

used, is that it exhibits rate independent elasto-plastic 
behaviour. Furthermore the elastic part is assumed to be linear 
and isotropic. The constitutive law used in the FE-formulation 
is based on a hypoelastic-plastic model, assuming the additive  
decomposition of the total strain into a reversible elastic part 

 and an irreversible plastic part . In rate form this 
condition becomes: 

elε plε

A hardening model is needed to represent the evolution of 
the yield surface during the process of plastic deformation. 
The type of hardening considered in the present study is a 
Swift type of isotropic hardening which describes the 
evolution of the yield surface size: 
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in which fσ  represents the actual flow stress, y0σ  is the 

initial yield stress and ε represents the equivalent plastic 

strain, which can be calculated using the following relation: 

pl
eq

 
 The stress rate is always related to the elastic strain rate by 

means of the elastic moduli E: 
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 , K and n are the three unknown parameters to be 

identified 
y0σ

IV. HOMOGENEOUS PARAMETER IDENTIFICATION  
The orthogonal coordinate system defined for rolled 

material is based on three principal axes of that material, i.e. 
the rolling direction, the transverse direction and the normal 
direction. The local xyz-coordinate system for a tensile 
specimen cut out of a plate material is defined by the angle 
between the rolling direction and the specimens longitudinal 
axis defines. For a sheet metal sample, the x- and y-axis lie in 
the material plane and the z-axis is perpendicular to it.  

Traditionally the parameters of the hardening law are 
determined based on a tensile test, performed on a specimen 
cut out in the rolling direction. The parameters of the Hill48 
yield criterion on the other hand are determined by the 
Lankford coefficients r0°, r45° and r90°. These coefficients 
represent the ratio between the transversal plastic strain rate 
and the through thickness plastic strain rate occurring during a 
tensile test in respectively the 0°, 45° and 90° direction from 
the rolling direction. As the thickness strain cannot easily be 
measured, it is calculated using the assumption of volume 
conservation during plastic deformation. It can be shown that 
the relations between the Lankford coefficients and the 
different Hill48 parameters reduce to: 

 

 
G
Ηr

pl
z

pl
y

pl
z

pl
y/0

0 =
ε

ε
=

ε

ε
= °

°
&

&

&

&
 (9) 

 
F
Ηr

pl
z

pl
x

pl
z

pl
y/90

90 =
ε

ε
=

ε

ε
= °

°
&

&

&

&
 (10) 

 
G)2(F

G-F-2Nr
pl
z

pl
45y/

45 +
=

ε

ε
= °

°
&

&
 (11) 

 
As the equivalent yield stress is equal to the stress in a uni-

axial tensile test in the rolling direction, it can be stated that  
H+G=2.Together with this relation, equations 9-11 lead to a 
fully determined system of equations allowing to determine 
the four unknown parameters F, G, H and N. 

Another possibility to identify the parameters of the yield 
criterion is by fitting the expression on a number of 
experimentally obtained stress states. To this end a number of 
standard tests can be performed: uniaxial tensile tests in the 0° 
and 90° direction from the rolling direction; plane strain 
tensile test; in plane equi-biaxial tensile test; pure shear test. 
The stress states corresponding to these tests can be 
represented in the - σ - -space (fig.2). The axes 

correspond respectively to the stress in the rolling direction, 
the stress in the transverse direction and the shear stress. 
These stresses are not necessarily the principal stresses. This 
is only the case when the shear component is absent. 
Information about the experimental equipment that can be 

used to attain the different stress states can be found in ref [9]. 
Results of this type of initial yield surface identification are 
discussed in refs.[10-11]. All of the performed experiments in 
these references possess the same property: the obtained strain 
field has to be as homogeneous as possible to allow a 
straightforward determination of the stress and the strain 
values. The hypothesis of homogeneity however, is not 
always verified.  

xσ y xyσ

Therefore, a method is proposed based on the coupling 
between Finite Element simulation and full-field surface 
displacement data. In this case the homogeneity of 
deformation is not longer needed, it is even avoided. 

 

  
Figure 2: Different stress states on the initial yield surface 
expressed in the - σ - -space defined by the axes of 

orthotropy 
xσ y xyσ

V. INVERSE MODELING 

A. Introduction 
A direct problem is the classical problem where a given 

experiment is simulated in order to obtain the final geometry 
of the specimen, the stresses and the strains. Inverse problems 
on the other hand are concerned with the determination of the 
unknown state of a mechanical system considered as a black 
box, using information gathered from the response to stimuli 
on the system [12].  

The inverse problem is a problem where certain input data 
of the direct problem is deduced from the comparison 
between the experimental results and the numerical FE-
simulation of that same problem. Not only the boundary 
information is used, but relevant information coming from 
local or full-field surface measurements is also integrated in 
the evaluation of the behavior of a given material. This type 
of parameter identification can also be found in refs. [13-14]. 

The values of the material parameters cannot be derived 
immediately from the experiment. A numerical analysis is 
necessary to simulate the actual experiment. However, this 
requires that the material parameters are known. The 



identification problem can then be formulated as an 
optimization problem where the function to be minimized is 
some error function that expresses the difference between 
numerical simulation results and experimental data. In the 
present case the strains are used as output data. Figure 3 
represents the flow-chart of the present inverse modeling 
problem.  
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By developing a Taylor expansion of the numerical (FEM) 
strains around a given parameter set, an expression is obtained 
in which the difference between the current parameters and 
their new estimates is given (14), m is the total number of 
parameters: 
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When substituting this last expression into expression (13) 

and after rearranging some terms, the expression yielding the 
parameter updates is obtained (15): 
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in which the following elements are: 
 

p∆ : column vector of the parameter updates of σ , 

K, n, G, F and N 
y0

expε : column vector of the experimental strains 
Figure 3: Inverse modelling flow-chart )( knum pε : column vector of the finite element strains as a 

function of the different parameters at iteration 
step k B. Optimisation and sensitivity calculation 

kp : the three parameters at iteration step k Expression (12) shows the form of the least-squares cost 
function )(pC  that is minimized, with p  the vector of 

material parameters to be identified. The residuals in the 
function are formed by the differences between the 
experimental and the numerical strains at every considered 
load step. The index “t” in expression (12) stands for the total 
number of elements and the index “s” stands for the total 
number of considered load steps. 

S : Sensitivity matrix 
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The necessary condition for a cost function to attain its 

minimum is expressed by (13). The partial derivative of the 
function with respect to the different material parameters has 
to be zero: 

 
The sensitivity matrix groups the sensitivity coefficients of 

the strain components in every element of the FE mesh and 



for every considered load step with respect to the different 
material parameters.   

n

s
xyt

∂

ε∂
, in expression 16, is the partial derivative of the shear 

strain component of element number “t” at load step “s” with 
respect to parameter “n”. 

VI. IDENTIFICATION USING SIMULATED STRAIN FIELDS  

A. Finite element simulation 
In order to test the proposed routine, a virtual experiment is 

set up. The specimen geometry which is chosen is shown in 
figure 4 (lower part). It has a thickness of 1mm. The reason 
for the hole in the specimen is the following: the aim is to 
localise the plastic deformation in the central part of the 
specimen where a biaxial stress and strain state exists. For the 
identification of the parameters of the hardening law, this may 
not be really necessary. However, for the identification of  
anisotropic yield criteria, it is mandatory to obtain non-
uniaxial plastic deformation. 

 

 
Figure 4: Geometry (left) and FE-mesh (right) of the 

cruciform specimens 

 
The FE-simulation on the other hand is performed on a 

quarter of the piece, assuming symmetrical loading 
conditions. Figure 4 (upper part) shows an image of the FE-
mesh. The simulation is force driven, as in actual 
experimental settings forces will be measured as well. The 
boundary conditions are the following: The left-hand side of 
the specimen is rigidly fixed in the horizontal direction and 
freely supported in the vertical direction. The bottom of the 
specimen on the other hand is fixed in the vertical direction 
and freely supported in the perpendicular direction. The 
tensile forces are uniformly applied over the top and right-
hand side section of the specimen. The simulations are 
performed assuming plane stress conditions. This is an 
acceptable hypothesis given the thickness of the specimen. 

The FE-mesh is made up out of isoparametric quadrilateral 
Lagrange elements of the second order. 

The total force applied in the horizontal as well as in the 
vertical direction is equal to 1000N. This is an arbitrary value 
to permit the existence of plastic deformation on the one hand 
and to limit the CPU-time for a simulation on the other hand. 
The force is applied in twelve equal load steps. The numerical 
model assumes a linear isotropic elastic behaviour with a E-
modulus of 210 GPa and a Poisson’s ratio of 0.33. 

Figures 5 and 6 show the representation of the different 
stress states in the σ - - -space for the elements in 

which plastic deformation occurs first. These figures are 
analogous to the representation shown in figure 2. The 
difference is that in this case the different stress states are 
present in the same experimental set-up. 

x yσ xyσ

 
 

 
 

Figure 5: Stress states present in a biaxially loaded specimen 
and lying on the initial yield surface (perspective view) 

 

 
Figure 6: Stress states present in a biaxially loaded specimen 

and lying on the initial yield surface (top view)  

B. Identification Results 
The increments used for the forward difference calculation 

of the sensitivities of the different total strain values εx, εy 
and εxy for the respective parameters are the following: 
d y0σ =0.1; dK=1; dn=0.01; dF=dG=dN=0.01. Only the ten 



last load steps are used in the identification procedure. The 
load steps in which no plastic deformation occur are not 
considered as the sensitivities with respect to the different 
parameters in that case equal aero. The constraints used in the 
optimisation routine are the following: H+G=2; ≥0; K≥0; 

F≥0; G≥0; N≥0. 
y0σ

 

The virtual experimental strain values according to the last 
ten load steps are obtained based on a simulation run with the 
reference values in table1. The starting values of the 
identification procedure are shown in table 1 as well. 

Figures 7-10 represent the different parameter values 
corresponding to every iteration step in the optimisation 
routine. The optimisation has been stopped at the ninth 
iteration step. 

Figure 9: Parameter value of K in function of the iteration 
step  TABLE I 

REFERENCE AND STARTING VALUES FOR THE NUMERICAL 
VALIDATION 

 

 

 y0σ  

MPa 
K n F G N 

Reference 
val. 

100 1000 0.8 0.64 0.78 2.82 

Starting val. 90 1500 0.7 1 1 1 

 

Figure 10: Parameter value of n in function of the iteration 
step  

 
The results show that the values of σ , F, G and N are 

attained at an early stage. For the values of K and n however, 
more iterations are needed. The parameter “n” influences the 
hardening curve at the onset of plastic deformation, whereas 
the parameter “K” becomes more important for larger 
deformations. As the deformations achieved in the present 
simulations are not that important, the routine has difficulties 
finding the correct value of K. As both parameters are 
coupled by the same hardening law, the process has some 
difficulties finding the right value for n as well. 

y0

Figure 7: Parameter values of F, G and N in function of the 
iteration step  

 

It has also been found that the value of the starting 
parameters does not affect the final and optimal parameter 
values. 

VII. CONCLUSION  
A method has been proposed to determine the parameters 

( y0σ , K and n) of a Swift type of isotropic hardening law. 

The method is based on the inverse modeling of a perforated 
cruciform specimen under biaxial tension. A least-squares 
formulation of the difference between the experimental and 
the numerical strains is used along with a constrained 
Newton-type algorithm in the optimization process. A virtual 
experiment, in which the material parameters are known, is 

Figure 8: Parameter value of σ  in function of the iteration 

step  
y0



used to check the routine and to analyze the influence of the 
starting values on the obtained parameter estimates.  

It is shown that numerically the biaxial tensile test on the 
perforated cruciform specimen contains enough information 
for the different Hill48 yield surface to be identified. The 
parameters of the Swift type of isotropic hardening law can be 
identified as well, however the deformation should be more 
important to limit the number of iterations until convergence 
of those parameters. 

Future work consists in studying the sensitivity of the 
obtained parameter values to noise on the measured strain 
values. In the near future, real biaxial tensile tests will be 
performed on metal cruciform specimens, on which the 
measurements will be performed by digital image correlation. 
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