Customer Churn Management

Overview of Current State-of-the-Art

Ashwin Ittoo Prof. Information Systems HEC-ULg 26th April 2016

Recap Previous Discussion

- NRB/HEC-ULg to collaborate on *Churn Management*
- Specifically
 - Leveraging on customers' behavior to improve churn management (prediction)

Aims of this Presentation/Agenda

- Introduction: Customer Churn Management
- Extant techniques for Customer Churn Management; Weaknesses
- Proposed contribution/offer

Introduction: Customer Churn Management

Customer Churn Management

- 2 components to Customer Churn Management (CCM)
 - 1. Identification of customers intending to switch to competitor
 - 2. Proactively targeting them with incentives to induce them to stay
- Component 2 more challenging to implement
 - \circ $\:$ Ideally: incentives aligned with customers preferences
 - Preferences embedded within behavior
 - o Expressed via various means, incl. language/texts
 - Hard to acquire, unlike other customer information (e.g. demographics) → positioning our contribution/offer

CCM (cont)

- Customer Churn
 - Significant problem in many industries
 - \circ $\,$ Markets with certain degree of maturity/saturation $\,$
 - New customers acquired by cannibalizing from competitors
- Companies' focus, marketing efforts shifts
 - \circ <u>Customer acquisition</u> \rightarrow Customer retention
 - Customer acquisition cost >> Customer retention cost
 - o Estimates: acquisition 5-10 times costlier than retention
- Customer Churn most prevalent in
 - News, publishing
 - Financial, insurance services
 - Electric utilities, Internet, mobile providers
 - Automotive (vehicle warranty)
 - (Companies → staff turnover)

CCM Performance

- Not all customers worth retaining
 - Low CLV (Customer Lifetime Value)
 - Not all customers will churn
 - Limited resources
- CCM performance
 - Ability to identify churners among <u>top percentile of customers with</u> <u>highest churning ris</u>k
- Lift measure at threshold, 0<T<1
 - Ratio number of churners among T customers with highest risk to number of churners in random, size T, sample
 - E.g. lift of 3 at T=0.01
 - Taking 1% of customers with highest churning risk
 - 3 times more churners compared to
 - Equally sized random customer sample

Factors Affecting Churn

- 1. Customer Satisfaction
 - Customers' overall evaluation of performance
 - Backward-looking(performance to date)
- 2. Relationship Commitment
 - Desire to maintain relationship; loyal even if low satisfaction
 - 2 types: calculative vs. affective
 - Calculative: rational, economic-based dependence (due to lack of alternatives or switching cost)
 - Affective: developed through reciprocity, personal involvement
 - Forward-looking (future commitment)

3. Trigger

- Factors that change relationship basis
- 2 types: situational vs. reactional
- Situational: Changes in customers' life
- Reactional: Perceived service deterioration

Typology of Churn

- 3 main classes of churn of different value
- 1. Uncontrollable
 - Beyond company's control, e.g. address change, death
 - \circ Misleading brand loyalty metric \rightarrow defection not due to service quality

2. Involuntary

- Customers revoked/service withdrawn, e.g. defaulting on payment
- \circ $\,$ Not much value to company

3. Voluntary

- Customers conscious decision to churn
- Tech-based reasons (latest products/services from competitors)
- Economic-based reasons (better prices from competitors)
- Quality (poor coverage, bad call-center experience)
- Within company's control (vs. Uncontrollable)
- Most valuable to company

Extant Customer Churn Management Techniques & Weaknesses

Extant CCM Techniques

- Several CCM techniques exist
- Underlying assumption
 - \circ $\;$ Churners exhibit changes in , uncommon behavior $\;$
 - o E.g. changes in calling patterns
- Behavior formalized in terms of "structured data"
 - o Purchase amounts
 - Product categories
 - o Number, duration of calls
 - Demographics (age, sex, revenue)
 - Subscription renewal before expiry
 - Subscription duration
- CCM (prediction)
 - o Data mining (decision trees, neural networks, association rules)
 - Regression-based methods (logistic regression)

Extant CCM Techniques - Weaknesses

- Suffer from 2 main weaknesses
- 1. Models' predictions limited to "who", "when"
 - Customers' likelihood of churning, time of churning
 - Modeling information (e.g. demographics) partial reflection of behavior
 - Unable to infer <u>*churn reason/root-cause*</u> \rightarrow "why"
 - More valuable to companies
- 2. Exclusively focus on individual customers
 - o Ignore social networks within which customers operate
- Possible Reasons
 - No in-house expertise for more sophisticated data modeling, analysis
 - No ready-to use frameworks, applications

Proposed Contribution/Offer

Proposed Approach – Churn Root Cause

- Need for model to predict root-cause of churn ("why")
- Requires comprehensive understanding of customer behavior
 - Wishes, wants, needs, preferences
 - Sentiment (opinions, attitudes) towards products, services
- Expressed, conveyed via linguistic devices
 - I would like to also have CNN (wish)
 - *I want to have the German version, now!* (want)
 - I have to change my subscription plan (need)
 - *I like the old version better* (preference)
 - I <u>like</u> this show, I <u>love</u> this show (same emotional valence, but different intensity)

Proposed Approach – Churn Root Cause (cont)

- Automatic identification from language/text: Challenging
 - Wishes, wants, needs, preferences implicitly expressed
 - Quantifying emotions valence and intensity (love vs. like)
- Requires novel algorithms/techniques in
 - Natural Language Processing (NLP)
 - Machine Learning (ML)
- Information sources
 - Facebook comments, tweets, messages in forums, call center emails
- Other useful sources
 - Number of comments, likes, shares on Facebook
 - Number of replies, re-tweets, favorited on Twitter

Proposed Approach – Social Network Analysis

- Global view of customers, within ecosystem
 - Social contagion (viral spread) phenomenon in social networks
 - Churned customer could influence social connections to churn
- Social Network Analysis algorithms
 - 1. Model social networks of customers
 - Social network as weighted directed graph (Neo4J graphDB)
 - Members = nodes
 - Weighted edges = strength of member relationships
 - 2. Identify network leaders/most influential member
 - Centrality measures, e.g. eigenvector, PageRank
 - 3. Model information flow among members
 - Modeling the flow, decaying diffusion process
 - Processing, understanding flow contents, "why are you still with this company" vs. "How are you"

Proposed Approach - Personalized Recommendations

- Extracted information
 - Wishes, wants, needs, preferences
 - Likes, retweets, shares, replies,...
 - Social connections
- Incorporate in existing CCM models
 - Make personalized product recommendations
 - \circ Reduce churn

Proposed Framework

Clustering – Fundamental, Initial Step

- Important to cluster/segment customers prior to analysis
 - Avoid too general results
 - Difficult to target specific customer groups
 - Important for incentives, recommendations

- Traditional clustering dimensions
 - Descriptive statistics derived from demographic, usage data
 - o E.g. mean age, revenue, usage pattern
- More innovative clustering dimensions
 - RFM (Recency, Frequency, Monetary)
 - \circ Strength of social network connections \rightarrow cliques

THANK YOU

• Other notes:

Need to consider other events/information to enhance churn models:

- Competitors' offering
- Disruptions
- Sequence of events (e.g. someone getting married or having children → recommend services to partners or offsprings, e.g. telephone)

- Future steps and To do:
- Next meeting (in 2-3 weeks time) to evaluate different configurations/organization of a collaboration in the context of a chair
- Prepare "templates" with different chair collaboration configuration (Sandra)
- Doodle to plan next meeting (Ashwin)

