# Accepted Manuscript

Barley (*Hordeum distichon* L.) roots synthesise volatile aldehydes with a strong age-dependent pattern and release (*E*)-non-2-enal and (*E*,*Z*)-nona-2,6-dienal after mechanical injury

Benjamin M. Delory, Pierre Delaplace, Patrick du Jardin, Marie-Laure Fauconnier

PII: S0981-9428(16)30095-X

DOI: 10.1016/j.plaphy.2016.03.028

Reference: PLAPHY 4467

To appear in: Plant Physiology and Biochemistry

Received Date: 26 November 2015

Revised Date: 18 February 2016

Accepted Date: 22 March 2016

Please cite this article as: B.M. Delory, P. Delaplace, P. du Jardin, M.-L. Fauconnier, Barley (*Hordeum distichon* L.) roots synthesise volatile aldehydes with a strong age-dependent pattern and release (*E*)-non-2-enal and (*E*,*Z*)-nona-2,6-dienal after mechanical injury, *Plant Physiology et Biochemistry* (2016), doi: 10.1016/j.plaphy.2016.03.028.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.



| 1  | Barley (Hordeum distichon L.) roots synthesise volatile aldehydes                                                  |
|----|--------------------------------------------------------------------------------------------------------------------|
| 2  | with a strong age-dependent pattern and release (E)-non-2-enal and                                                 |
| 3  | (E,Z)-nona-2,6-dienal after mechanical injury                                                                      |
| 4  |                                                                                                                    |
| 5  | Benjamin M. Delory <sup>a,1</sup> , Pierre Delaplace <sup>a</sup> , Patrick du Jardin <sup>a</sup> and Marie-Laure |
| 6  | Fauconnier <sup>b,c,*</sup>                                                                                        |
| 7  |                                                                                                                    |
| 8  | <sup>a</sup> Plant Biology, Gembloux Agro-Bio Tech, University of Liège, 5030, Gembloux,                           |
| 9  | Belgium.                                                                                                           |
| 10 | <sup>b</sup> General and Organic Chemistry, Gembloux Agro-Bio Tech, University of Liège,                           |
| 11 | 5030, Gembloux, Belgium.                                                                                           |
| 12 | <sup>c</sup> Volatolomics Laboratory, Gembloux Agro-Bio Tech, University of Liège, 5030,                           |
| 13 | Gembloux, Belgium.                                                                                                 |
| 14 |                                                                                                                    |
| 15 | <sup>1</sup> Present address: Ecosystem Functioning and Services, Institute of Ecology,                            |
| 16 | Leuphana University Lüneburg, 21335, Lüneburg, Germany                                                             |
| 17 |                                                                                                                    |
| 18 | *Corresponding author                                                                                              |
| 19 | Email: Marie-Laure.Fauconnier@ulg.ac.be                                                                            |
| 20 |                                                                                                                    |
|    | Author Email address                                                                                               |

| Author                 | Email address                    |
|------------------------|----------------------------------|
| Benjamin M. Delory     | Benjamin.Delory@leuphana.de      |
| Pierre Delaplace       | Pierre.Delaplace@ulg.ac.be       |
| Patrick du Jardin      | Patrick.duJardin@ulg.ac.be       |
| Marie-Laure Fauconnier | Marie-Laure.Fauconnier@ulg.ac.be |

\_

21

#### 22 Abstract

23 In the context of chemical ecology, the analysis of the temporal production 24 pattern of volatile organic compounds (VOCs) in root tissues and the emission rate 25 measurement of root-emitted VOCs are of major importance for setting up 26 experiments to study the implication of these compounds in biotic interactions. Such 27 analyses, however, remain challenging because of the belowground location of plant 28 root systems. In this context, this study describes the evolution of the root VOC 29 production pattern of barley (Hordeum distichon L.) at five developmental stages 30 from germination to the end of tillering and evaluates the emission of the identified 31 VOCs in an artificial soil. VOCs produced by crushed root tissues and released by 32 unexcavated root systems were analysed using dynamic sampling devices coupled to 33 a gas chromatography-mass spectrometry methodology (synchronous SCAN/SIM). 34 The results showed that, at each analysed developmental stage, crushed barley roots 35 produced mainly four volatile aldehydes: hexanal; (*E*)-hex-2-enal; (*E*)-non-2-enal; 36 and (E,Z)-nona-2,6-dienal. Higher total and individual VOC concentrations were 37 measured in 3-day-old seminal roots compared with older phenological stages. For 38 each developmental stage, the lipoxygenase (LOX) activity was greater for linoleic 39 acid than  $\alpha$ -linolenic acid and the greatest LOX activities using linoleic and  $\alpha$ -40 linolenic acids as substrates were measured in 7- and 3-day-old roots, respectively. 41 The analysis of VOCs released by barley roots into the soil showed that (E)-non-2-42 enal and (E,Z)-nona-2,6-dienal were the only VOCs emitted in quantifiable amounts 43 by mechanically injured roots.

44

45 Keywords: (*E*)-hex-2-enal; (*E*)-non-2-enal; (*E*,*Z*)-nona-2,6-dienal; barley; hexanal;
46 plant age; root VOC profiling.

47

– 2 –

#### 48 **1. Introduction**

49 Volatile organic compounds (VOCs) are low molecular weight molecules with 50 a high vapour pressure at ambient temperatures (Dudareva et al., 2013). Most VOCs 51 emitted by plants can be classified into four chemical families, each related to specific 52 biosynthetic pathways: terpenoids (mevalonic acid [MVA] and methylerythritol 53 phosphate [MEP] pathways); fatty acid derivatives (lipoxygenase [LOX] pathway); 54 benzenoid and phenylpropanoid compounds (shikimic acid pathway); and amino acid 55 derivatives (Dudareva et al., 2013). These compounds can be emitted by various plant 56 organs (flowers, fruits, leaves and roots) either locally or systemically in response to 57 biotic and abiotic stresses and are known to play important roles in plant interactions 58 with their surrounding environment (Dudareva et al., 2006; Gouinguené and Turlings, 59 2002; Hiltpold et al., 2013, 2011; Holopainen and Gershenzon, 2010; Loreto and 60 Schnitzler, 2010). Many studies have provided clear evidence that VOC-mediated 61 interactions also occur belowground between plant roots and soil organisms (for 62 reviews, see Delory et al., 2016; Peñuelas et al., 2014; Turlings et al., 2012; Wenke et 63 al., 2010). Root-emitted VOCs have been shown to attract insect herbivores (Guerin 64 and Ryan, 1984; Palma et al., 2012; Robert et al., 2012; Sutherland and Hillier, 1974; 65 Weissteiner et al., 2012) and plant parasitic nematodes (Ali et al., 2011; Farnier et al., 66 2012). Because insect-damaged roots release volatile cues attracting organisms of the 67 third trophic level like entomopathogenic nematodes (Ali et al., 2011; Boff et al., 68 2002; Rasmann et al., 2005; van Tol et al., 2001) and insect predators (Ferry et al., 69 2007; Neveu et al., 2002), they are also implicated in indirect plant defences against 70 pests.

Compared with aboveground plant organs, the quantitative analysis of VOCs
emitted by root tissues remains challenging, mainly because of the belowground

- 3 -

| 73 | location of plant root systems (Delory et al., 2016). Using static headspace sampling                  |
|----|--------------------------------------------------------------------------------------------------------|
| 74 | methods like solid phase microextraction (SPME), the volatile production capacity of                   |
| 75 | belowground plant organs has been evaluated destructively on parts of isolated root                    |
| 76 | systems (Fiers et al., 2013; Gfeller et al., 2013; Palma et al., 2012; Weissteiner et al.,             |
| 77 | 2012) or on root samples that were flash-frozen and crushed in liquid nitrogen prior to                |
| 78 | volatile analysis (Erb et al., 2011; Hiltpold et al., 2011; Lawo et al., 2011; Laznik et               |
| 79 | al., 2011; Rasmann et al., 2005; Robert et al., 2012). Although easy to set up, such                   |
| 80 | analyses do not allow the emission rate calculation of VOCs that are emitted in the                    |
| 81 | soil by living and undamaged plant roots (Delory et al., 2016). Despite the significant                |
| 82 | volatile background existing due to the soil ecosystem surrounding the roots, both                     |
| 83 | proton transfer reaction-mass spectrometry (PTR-MS) analyses (Crespo et al., 2012;                     |
| 84 | Danner et al., 2015; van Dam et al., 2012) and gas chromatography-mass                                 |
| 85 | spectrometry (GC-MS) analyses performed after soil VOC collection on packed                            |
| 86 | adsorbents (Ali et al., 2011, 2010; Hiltpold et al., 2011) have been successfully                      |
| 87 | applied to the in situ analysis of root-emitted VOCs.                                                  |
| 88 | Previous experiments showed that fatty acid derivatives were the main VOCs                             |
| 89 | emitted by isolated barley roots (Fiers et al., 2013; Gfeller et al., 2013). In higher                 |
| 90 | plants, volatile fatty acid derivatives are produced mainly via the LOX pathway. Plant                 |
| 91 | LOXs (EC 1.13.11.12) are classified as non-heme iron-containing enzymes that                           |
| 92 | catalyse the stereospecific addition of molecular oxygen to either the $9^{th}$ (9-LOX) or             |
| 93 | 13 <sup>th</sup> (13-LOX) carbon atom of polyunsaturated fatty acids containing a ( $Z$ , $Z$ )-penta- |
| 94 | 1,4-diene system (Dudareva et al., 2013; Gigot et al., 2010; Siedow, 1991). In plants,                 |
| 95 | 9- and 13-LOXs use mainly linoleic acid and $\alpha$ -linolenic acid as substrates in order to         |
| 96 | produce 9- and 13-hydroperoxides, respectively (Maffei, 2010; Siedow, 1991). These                     |
| 97 | LOX-derived products can subsequently be used by cytochrome P450 enzymes, such                         |
|    |                                                                                                        |

-4-

| 98  | as allene oxide synthases and hydroperoxide lyases (HPL), to produce jasmonates and      |
|-----|------------------------------------------------------------------------------------------|
| 99  | $C_6/C_9$ volatile aldehydes, respectively (Dudareva et al., 2013; Grechkin and Hamberg, |
| 100 | 2004; Maffei, 2010). HPL-derived aldehydes can be further converted to $C_6/C_9$         |
| 101 | alcohols by alcohol dehydrogenases, and subsequently converted into their                |
| 102 | corresponding esters by alcohol acyltransferases (Dudareva et al., 2013; Gigot et al.,   |
| 103 | 2010).                                                                                   |
| 104 | Because the LOX activity (Holtman et al., 1996) and the VOC production                   |
| 105 | capacity of plant roots have been reported to change with plant ontogeny (Köllner et     |
| 106 | al., 2004; Palma et al., 2012; Tapia et al., 2007), characterising the temporal VOC      |
| 107 | production pattern of barley roots is needed for setting up experiments aimed at         |
| 108 | investigating the ecological roles of root-emitted VOCs, particularly in relation to     |
| 109 | plant defence. Currently, two main ecological theories offering conflicting predictions  |
| 110 | are used to explain patterns in costly defensive secondary metabolite production         |
| 111 | according to plant age: the optimal defence theory (ODT) and the growth-                 |
| 112 | differentiation balance hypothesis (GDBH) (Barton and Koricheva, 2010; Quintero et       |
| 113 | al., 2013). Briefly, the ODT predicts that plants would invest more in the production    |
| 114 | of defensive secondary metabolites in young tissues and reproductive plant parts. In     |
| 115 | contrast, the GDBH predicts that plant organs at a given phenological stage will invest  |
| 116 | more in secondary metabolite production with increasing plant age (Barton and            |
| 117 | Koricheva, 2010; Boege and Marquis, 2005; Elger et al., 2009; Quintero et al., 2013;     |
| 118 | Radhika et al., 2008; Rostás and Eggert, 2008). Although the production of VOCs can      |
| 119 | be affected by plant age, such a temporal production pattern in barley roots has not yet |
| 120 | been described and requires further investigations.                                      |
| 121 | In this context, this paper reports on the evolution of the VOC production               |
| 122 | pattern of barley roots at five selected developmental stages from germination to the    |

– 5 –

| end of tillering. In addition, we also estimated the emission rate of the main VOCs                   |
|-------------------------------------------------------------------------------------------------------|
| released by barley roots into the soil environment using an in situ trapping device and               |
| a GC-MS methodology allowing the identification and the quantification of VOCs                        |
| without extracting the roots from the soil. The significance of the results presented in              |
| this work is further discussed in the context of plant ontogeny and belowground                       |
| chemical ecology.                                                                                     |
| 2. Methods                                                                                            |
| 2.1.Chemicals                                                                                         |
| Methanol (CAS 67-56-1, Grade gradient HiPerSolv CHROMANORM) was                                       |
| bought from VWR BDH Prolabo® (Leuven, Belgium). Hexanal (98%, CAS 66-25-1),                           |
| 3,5,5-trimethylhexanal (≥ 95%, CAS 5435-64-3), ( <i>E</i> )-hex-2-enal (98%, CAS 6728-                |
| 26-3), (E)-non-2-enal (97%, CAS 18829-56-6), (E,Z)-nona-2,6-dienal (95%, CAS                          |
| 557-48-2), 3-methyl-but-3-en-1-ol ( $\geq$ 97%, CAS 763-32-6), ( <i>E</i> )-hept-2-enal ( $\geq$ 95%, |
| CAS 18829-55-5), hexan-1-ol (≥ 98%, CAS 111-27-3) and ( <i>E</i> )-oct-2-enal (≥ 97%,                 |
| CAS 2548-87-0) were bought from Sigma-Aldrich (St. Louis, MO, USA). Pent-1-en-                        |
| 3-ol (98%, CAS 616-25-1) and acetic acid (100%, CAS 64-19-7) were bought from                         |
| Avocado Research Chemicals Ltd and Merck Chemicals, respectively.                                     |
| 2.2.Analysis of VOCs produced by barley roots at five developmental stages                            |
| 2.2.1. Plant material                                                                                 |
| Barley ( <i>Hordeum distichon</i> L. 'Quench') caryopses with a mass of 40.6 mg $\pm$                 |
| 5% were selected for the experiments and allowed to germinate for 24 h on a double                    |
| layer of wet filter paper in the dark at a temperature of $21.9 \pm 0.7^{\circ}$ C. On the following  |
| day, homogeneous 1-day-old seedlings were transplanted into polyvinyl chloride                        |
|                                                                                                       |

146 (PVC) tubes that had been filled with a mixture (= substrate) of 2 mm-sieved sand

147 (80%, v/v) and 5 mm-sieved potting soil (20%, v/v). Plants to be analysed after 3 and

- 6 -

| 148 | 7 days were grown in 201 cm <sup>3</sup> ( $h = 16$ cm) and 295 cm <sup>3</sup> ( $h = 15$ cm) tubes containing  |
|-----|------------------------------------------------------------------------------------------------------------------|
| 149 | 225 g and 275 g of substrate, respectively, and were watered every 2 days with 10 mL                             |
| 150 | of tap water. Plants to be analysed at later developmental stages (17, 28 and 38 days)                           |
| 151 | were grown in 1,909 cm <sup>3</sup> tubes ( $h = 30$ cm) filled with 2,140 g of substrate and                    |
| 152 | watered every 2 days alternatively with 50 mL of tap water and 50 mL of standard                                 |
| 153 | Hoagland solution. Watering with Hoagland solution started 6 days after                                          |
| 154 | transplantation. Sowing depth and density were set at 3 cm and 1 seedling/tube. Plants                           |
| 155 | were grown under controlled environmental conditions throughout the experiments                                  |
| 156 | $(21.9 \pm 0.7^{\circ}C, 65.9 \pm 1.7\%$ RH, 16 h/8 h - L/D, PAR light intensity: $82.3 - 91.6$                  |
| 157 | $\mu$ mol·m <sup>-2</sup> ·s <sup>-1</sup> , LED lighting). Plant age was expressed in growing degree days (GDD) |
| 158 | according to Equation 1 where $T_i$ is the daily average temperature (°C), $T_t$ is the                          |
| 159 | growing threshold temperature for barley (set at 5°C [Stewart and Dwyer 1987]) and                               |
| 160 | n is the plant age expressed in days. Table 1 provides a summary of the main                                     |
| 161 | characteristics of the plants at the five selected developmental stages. The growth                              |
| 162 | stages of barley were codified according to Zadoks et al. 1974. Each developmental                               |
| 163 | stage was replicated four times.                                                                                 |
| 164 |                                                                                                                  |

$$GDD_n = \sum_{i=1}^n (T_i - T_i) \tag{1}$$

165

## 5 2.2.2. Sample preparation

When plants reached selected developmental stages (Table 1), the roots were extracted from the soil by carefully washing them with tap water, excising the shoots and rapidly freezing the roots in liquid nitrogen. The plant organs were then stored at -80°C. For each developmental stage, the roots were crushed in liquid nitrogen and 500 mg of root powder was placed in a 20 mL glass vial supplied with a silicone/PTFE septum (FilterService, Eupen, Belgium). Because of the low root

-7-

172 biomass at the young developmental stages, 10 and 2 barley root systems were pooled 173 for the 3- and 7-day-old barley seedlings, respectively. Before sealing, the atmosphere 174 in the vials was replaced by gaseous nitrogen. The sealed vials were then stored at -175 80°C prior to VOC analysis and at -24°C on the day of the analysis. After the GC-MS 176 analyses, the samples were dried at 70°C until constant mass was reached. After drying, the samples were allowed to cool at room temperature in a desiccator before 177 the dry weight was measured. 178 179 2.2.3. Dynamic headspace sampling (DHS)-GC-MS 180 Root VOC analyses were performed using a fully automated analytical 181 methodology comprising three main steps: VOC trapping using a DHS system 182 (Gerstel, Mülheim an der Ruhr, Germany), VOC separation using GC (7890A; Agilent Technologies, Palo Alto, CA, USA) and VOC detection using a quadrupole-183 184 type MS (5975C; Agilent Technologies, Palo Alto, CA, USA). Using a multipurpose 185 sampler (Gerstel, Mülheim an der Ruhr, Germany) and a 10 µL Hamilton gastight 186 syringe, 1  $\mu$ L of a methanolic solution of 3,5,5-trimethylhexanal (300 ng/ $\mu$ L) was 187 added to the crushed roots as an internal standard (IS). The root samples were then 188 incubated at 25°C for 15 min under constant agitation (500 rpm). At the end of the 189 incubation process, VOCs were trapped in a cartridge containing 60 mg of Tenax TA 190 adsorbent (Gerstel, Mülheim an der Ruhr, Germany) for 10 min at 25°C with a helium 191 flow rate of 20 mL/min. Excess water was removed from the Tenax TA cartridges by 192 a dry purge performed for 3 min at 60°C with a helium flow rate of 20 mL/min. The 193 trapped VOCs were then thermally desorbed from Tenax TA traps using a thermal 194 desorption unit (TDU) (Gerstel, Mülheim an der Ruhr, Germany) running in splitless 195 mode for 10 min at 280°C. During thermal desorption, VOCs were cryofocused in a 196 CIS/PTV inlet (Gerstel, Mülheim an der Ruhr, Germany) cooled at -150°C with liquid

- 8 -

| 197 | nitrogen. At the end of the desorption process, root VOCs were injected for 1.5 min in      |
|-----|---------------------------------------------------------------------------------------------|
| 198 | solvent vent mode inside a polar GC column (VF-WAXms, 30 m length, 0.25 mm                  |
| 199 | i.d., 0.25 $\mu$ m film thickness; Agilent Technologies, Palo Alto, CA, USA) by heating     |
| 200 | the CIS/PTV inlet to 260°C for 5 min at a rate of 12°C/s. The vent flow was set at 50       |
| 201 | mL/min. The GC oven had the following temperature program: 35°C for 2 min, ramp             |
| 202 | 5°C/min to 155°C, and ramp 20°C/min to 250°C held for 10 min. High purity helium            |
| 203 | (99.999%, Air Liquide, Liège, Belgium) was used as carrier gas at a constant flow           |
| 204 | rate of 1.5 mL/min. The MS was used in electron ionization mode (70 eV) with a gain         |
| 205 | factor of 1 and operated synchronously in SCAN and SIM modes. In SCAN mode, the             |
| 206 | MS scanned $m/z$ ratios from 35 to 300 amu with a threshold value and a sampling rate       |
| 207 | set at 500 and 2^1 (3,125 amu/s), respectively. Hexanal ( $m/z$ 56), (E)-hex-2-enal ( $m/z$ |
| 208 | 69), (E)-non-2-enal ( $m/z$ 70) and (E,Z)-nona-2,6-dienal ( $m/z$ 70) were quantified in    |
| 209 | SIM mode based on the internal standard ( $m/z$ 69 and 109) response. For each ion, the     |
| 210 | dwell time was set at 100 ms. The source and the quadrupole temperature were set at         |
| 211 | 230°C and 150°C, respectively. Background VOCs were identified by analysing the             |
| 212 | headspace of empty vials using the same methodology (blank measurements). GC-MS             |
| 213 | data were analysed with the Agilent MSD ChemStation E.02.00.493 (Agilent                    |
| 214 | Technologies, Palo Alto, CA, USA).                                                          |
| 215 | 2.2.4. VOC identification and quantification                                                |

VOCs produced by the barley roots were first identified by comparing recorded massspectra with those contained in the Wiley 275 mass spectral database. These

218 identifications were confirmed by comparing calculated non-isothermal retention

219 indices (RI) and MS data with those of authentic standards injected under the same

220 chromatographic conditions as described earlier. VOC identification was also

assessed by comparing calculated retention indices with those reported in the

-9-

| 222 | literature (Ferreira et al., 2001; Jennings and Shibamoto, 1980). The RI were                                               |
|-----|-----------------------------------------------------------------------------------------------------------------------------|
| 223 | experimentally determined using a saturated <i>n</i> -alkanes (C7 - C30) standard solution                                  |
| 224 | (Sigma-Aldrich, St. Louis, MO, USA). Major VOCs in the root tissues were                                                    |
| 225 | quantified using 3,5,5-trimethylhexanal as an internal standard (IS). This molecule                                         |
| 226 | was selected because (1) it is not produced by barley roots, and (2) it belongs to the                                      |
| 227 | same chemical family (aldehydes) and has a molecular weight close to that of the                                            |
| 228 | analytes that had to be quantified. VOC concentrations in the root tissues were                                             |
| 229 | calculated based on linear calibration curves linking the ratio of the analyte peak area                                    |
| 230 | to the IS peak area and the ratio of the injected mass of analyte to the injected mass of                                   |
| 231 | IS. GC-MS analyses were performed using the same parameters as described earlier,                                           |
| 232 | except that 1 $\mu$ L of a methanolic solution containing each chemical standard at a                                       |
| 233 | defined concentration and a fixed amount of IS (90.6 ng) was directly injected into                                         |
| 234 | Tenax TA cartridges using a multipurpose sampler and a 10 $\mu$ L Hamilton gastight                                         |
| 235 | syringe. VOCs were then thermally desorbed in a TDU running in solvent vent mode                                            |
| 236 | in order to avoid methanol injection into the GC column. Solvent venting was                                                |
| 237 | performed at 40°C for 3 min. For each VOC, a calibration curve was constructed with                                         |
| 238 | five equidistant points replicated four times [hexanal: $0 - 452$ ng, $R^2 = 0.998$ ; (E)-hex-                              |
| 239 | 2-enal: $0 - 359.3$ ng, $R^2 = 0.9906$ ; ( <i>E</i> )-non-2-enal: $0 - 405.8$ ng, $R^2 = 0.9894$ ; ( <i>E</i> , <i>Z</i> )- |
| 240 | nona-2,6-dienal: $0 - 267.8$ ng, $R^2 = 0.9875$ ] (Fig. S1). Linear models were fitted with                                 |
| 241 | the <i>lm</i> function of R 3.1.2 (R Core Team, 2015).                                                                      |
| 242 | 2.3.LOX activity measurement                                                                                                |

The evolution of the LOX activity in barley roots during plant ontogeny was
studied using a spectrophotometric assay based on the absorbance at 234 nm of
conjugated dienes (fatty acid hydroperoxides, HPOs) produced by the LOX activity
from linoleic and α-linolenic acids (Surrey, 1964). Barley roots were crushed in liquid

– 10 –

| 247 | nitrogen and 500 mg of root powder was homogenized for 1 h in 2.5 mL of 0.1 M                            |
|-----|----------------------------------------------------------------------------------------------------------|
| 248 | sodium phosphate buffer (pH 7.5) at 7°C. After centrifugation at $21,000 \times g$ for 30                |
| 249 | min, the supernatant (= crude extract) was collected and stored on ice. For LOX                          |
| 250 | activity measurement, the reaction mixture consisted of 100 $\mu$ L of crude extract, 50                 |
| 251 | $\mu L$ of a 10 mM linoleic or $\alpha$ -linolenic acid emulsion and 2,850 $\mu L$ of oxygenated 0.1     |
| 252 | M sodium phosphate buffer (pH 7.5). The absorbance at 234 nm was recorded every 1                        |
| 253 | s for 120 s with an UV-visible spectrophotometer (UV-1650PC, Shimadzu                                    |
| 254 | Corporation, Kyoto, Japan). Using a molar extinction coefficient of 25,000 cm <sup>-1</sup> · $M^{-1}$ , |
| 255 | one LOX activity unit corresponds to 1 $\mu$ mol of HPOs formed per minute. The protein                  |
| 256 | concentration in the crude extracts was determined using the Bio-Rad Protein Assay                       |
| 257 | (Bio-Rad Laboratories, Hercules, CA, USA) based on the colorimetric method of                            |
| 258 | Bradford (Bradford, 1976). The reaction mixture consisted of 780 $\mu$ L of distilled                    |
| 259 | water, 200 $\mu$ L of the acidic dye reagent and 20 $\mu$ L of crude extract. After 15 min, the          |
| 260 | absorbance of the reaction mixture at 595 nm was recorded. The protein concentration                     |
| 261 | in the crude extracts was determined based on a calibration curve constructed using                      |
| 262 | bovine serum albumin (Sigma-Aldrich, St. Louis, MO, USA) concentrations in the                           |
| 263 | reaction mixture ranging from 0 to 12.8 mg/L. For each developmental stage, four                         |
| 264 | independent extracts were used for LOX activity and protein concentration                                |
| 265 | measurements.                                                                                            |

266

### 2.4.Analysis of VOCs emitted by barley roots in the soil

Because the volatile production pattern of crushed plant tissues does not accurately portray the volatile emission profile of intact plant organs (Rasmann et al., 2012), we designed an experimental protocol allowing the in situ collection and the quantitative analysis of VOCs emitted by barley roots without extracting the plant organs from the soil (Fig. 1). When studying root-emitted VOCs, this is of major

- 11 -

272 importance as some detected VOCs like C6 and C9 molecules produced via the LOX 273 pathway have been reported to be rapidly emitted after tissue disruption (Matsui, 274 2006) and could therefore originate from the damages inflicted to the roots during the 275 excavation process and would not have been emitted by undamaged roots (Delory et al., 2016; Jassbi et al., 2010). Briefly, caryopses were selected and allowed to 276 germinate as described earlier. Then, 10 1-day-old homogeneous plantlets were 277 transplanted into a glass container (internal volume: 500 mL) filled with 750 g of 278 279 artificial soil and closed with a polypropylene cap perforated with one central 5 mm-280 hole used for plant watering and 10 1 cm-holes through which plants have grown for 281 15-16 days. The solid phase of the artificial soil consisted of 82.8% (m/m) of 2 mm-282 sieved clean sand previously heated at 200°C for 4 h and 17.2% (m/m) of 3 to 5 mm-283 glass beads. The glass beads were added to the soil in order to increase the soil's 284 macroporosity. The humidity level of the sand fraction was adjusted to 10% (m/m) 285 with a sterile standard Hoagland solution (1.6 g/L, pH 6.5; Hoagland's No. 2 Basal 286 Salt Mixture, Sigma-Aldrich, St. Louis, MO, USA). The mass of each reactor was registered at the beginning of the experiment and was kept constant for the duration of 287 288 the experiment by adding daily the required volume of standard Hoagland solution 289 (0.8 g/L, pH 6.5).

The collection of VOCs emitted by the artificial soil alone and undamaged or mechanically damaged roots of 16 to 17-day-old seedlings was performed by pulling charcoal-filtered air out of the reactors at a rate of 80 mL/min through a glass tube containing 60 mg of Tenax TA using a Gilian GilAir® Plus air sampling pump (Sensidyne, LP, St. Petersburg, FL, USA). All connections were made via PTFE tubing and the reactors were sealed using a nonporous synthetic rubber paste (Terostat VII; Henkel AG & Co. KGaA, Düsseldorf, Germany) before the start of the VOC

– 12 –

| 297 | collection period. In this work, we tested the ability of our analytical method to                                         |
|-----|----------------------------------------------------------------------------------------------------------------------------|
| 298 | measure the emission rates of VOCs released by roots that were mechanically                                                |
| 299 | damaged prior to VOC collection using four nylon threads that were positioned along                                        |
| 300 | the internal face of the reactors when they were filled with artificial soil. Undamaged                                    |
| 301 | roots growing in an artificial soil and the artificial soil alone were used as controls.                                   |
| 302 | After pumping for 4 h, Tenax TA cartridges were dried at 40°C for 3 min in the TDU.                                        |
| 303 | Trapped VOCs were then thermally desorbed and analysed by GC-MS using the                                                  |
| 304 | parameters described earlier except that the MS operated with a threshold value of                                         |
| 305 | 150 and a gain factor of 1.5. In SIM mode, we defined 3 groups of $m/z$ values in order                                    |
| 306 | to detect and quantify target root-emitted VOCs (group 1 [hexanal]: $m/z$ 44 and 56;                                       |
| 307 | group 2 [( <i>E</i> )-hex-2-enal]: $m/z$ 39 and 42; group 3 [( <i>E</i> )-non-2-enal and ( <i>E</i> , <i>Z</i> )-nona-2,6- |
| 308 | dienal]: $m/z$ 70). These $m/z$ values were selected because of their high specificity for                                 |
| 309 | the target root-emitted VOCs and their low specificity for the soil volatile                                               |
| 310 | background. The analyses were replicated at least three times for each experimental                                        |
| 311 | treatment. Soon after the volatile collection period, the roots were extracted from the                                    |
| 312 | glass containers and were dried at 70°C until constant mass was reached. After                                             |
| 313 | drying, the samples were allowed to cool at room temperature in a desiccator before                                        |
| 314 | the dry weight was measured.                                                                                               |
| 315 | The quantification of each root-emitted VOC was performed using a linear                                                   |
| 316 | calibration curve linking the target SIM peak area to the mass of injected standard.                                       |
| 317 | For each VOC, a calibration curve was constructed with five equidistant points                                             |

318 replicated three times [(*E*)-non-2-enal: 0 - 101.8 ng,  $R^2 = 0.9887$ ; (*E*,*Z*)-nona-2,6-

dienal: 0 - 42.5 ng,  $R^2 = 0.9833$ ] (Fig. S2). The linear models were fitted with the *lm* 

320 function of R 3.1.2 (R Core Team, 2015).

321

| 322 | 2.5.Recovery of VOC standards injected into the soil                                           |
|-----|------------------------------------------------------------------------------------------------|
| 323 | Because the concentration reached in the soil atmosphere by a VOC depends on its               |
| 324 | vapour pressure, its chemical stability, its emission rate by plant roots, and its             |
| 325 | interactions with the various components of the soil ecosystem (Delory et al., 2016),          |
| 326 | all VOCs will not be recovered with the same efficiency if a dynamic system is used            |
| 327 | to sample VOCs emitted by roots. In order to test the sensitivity and the selectivity of       |
| 328 | the method used in this study for the in situ analysis of root-emitted VOCs, we                |
| 329 | injected 1 $\mu$ L of a synthetic mixture of VOCs (each compound had a final                   |
| 330 | concentration of 300 ng/ $\mu$ L) into 4 glass containers filled with 750 g of artificial soil |
| 331 | and closed with a polypropylene cap. A container that contained only artificial soil           |
| 332 | was used as a control to confirm that the injected VOCs were not present in the soil           |
| 333 | atmosphere. The composition of the solid phase of the soil was the same as previously          |
| 334 | described (see 2.4). The humidity level of the sand fraction was adjusted to 10%               |
| 335 | (m/m) with distilled water. Five VOCs were selected for this experiment: a                     |
| 336 | sesquiterpene known to possess good diffusion properties in sand and soil ([ $E$ ]- $\beta$ -  |
| 337 | farnesene) (Hiltpold and Turlings, 2008), three fatty acid derivatives produced by             |
| 338 | crushed barley roots (hexanal, $[E]$ -non-2-enal and $[E,Z]$ -nona-2,6-dienal), and one        |
| 339 | VOC detected in the headspace of isolated barley roots (2-pentylfuran) (Gfeller et al.,        |
| 340 | 2013). VOCs were injected 5 cm below the soil surface with a 1 $\mu$ L Hamilton gastight       |
| 341 | syringe. Immediately after the injection, the glass containers were sealed using a             |
| 342 | nonporous synthetic rubber paste (Terostat VII; Henkel AG & Co. KGaA, Düsseldorf,              |
| 343 | Germany). VOCs were trapped using the same protocol as previously described (see               |
| 344 | 2.4). During the sampling of VOCs, the glass containers were placed inside a growth            |
| 345 | chamber (22.0 $\pm$ 0.1°C, 26.8 $\pm$ 0.5% RH). After pumping for 4 h, VOCs trapped on         |
| 346 | Tenax TA cartridges were thermally desorbed in a TDU, cryofocused in a CIS/PTV                 |

– 14 –

| 347 | inlet, separated by GC, and detected by MS. The MS operated in synchronous                                                 |
|-----|----------------------------------------------------------------------------------------------------------------------------|
| 348 | SCAN/SIM mode as described earlier (see 2.4). In order to detect the target VOCs,                                          |
| 349 | the following $m/z$ ratios were followed by the MS operating in SIM mode: $m/z$ 44 and                                     |
| 350 | 56 (hexanal), <i>m/z</i> 138 (2-pentylfuran), <i>m/z</i> 70 ([ <i>E</i> ]-non-2-enal and [ <i>E</i> , <i>Z</i> ]-nona-2,6- |
| 351 | dienal) and $m/z$ 204 ([ <i>E</i> ]- $\beta$ -farnesene). The recovery rate (R) of each VOC was                            |
| 352 | calculated according to Equation 2 where A is the SIM peak area obtained after the                                         |
| 353 | analysis of VOCs located in the soil atmosphere, and $\bar{A}_{300}$ is the mean SIM peak area                             |
| 354 | (n = 3) obtained when a Tenax TA cartridge containing 300 ng of the compound is                                            |
| 355 | analysed using our GC-MS method (Eilers et al., 2015).                                                                     |

$$R = \frac{A}{\bar{A}_{300}} \times 100 \tag{2}$$

356

# 357 **2.6.Statistical analyses**

| 358 | Mean individual and total VOC concentrations, mean relative proportions of             |
|-----|----------------------------------------------------------------------------------------|
| 359 | each major VOC identified in the chemical profiles, mean $C_6/C_9$ volatile aldehyde   |
| 360 | ratios (i.e., the ratio between the concentration of VOCs consisting of 6 carbon atoms |
| 361 | [originating from a 13-LOX activity] and the concentration of VOCs consisting of 9     |
| 362 | carbon atoms [originating from a 9-LOX activity]), and mean LOX activity               |
| 363 | measurements performed at five developmental stages were compared using one-way        |
| 364 | ANOVA followed by a Newman and Keuls test with plant age as a fixed factor.            |
| 365 | Similarly, the recovery rates of five VOCs were compared using one-way ANOVA           |
| 366 | followed by a Newman and Keuls test. All statistical analyses were performed using     |
| 367 | R 3.1.2/3.2.2 (R Core Team, 2015) with an alpha value of 5%.                           |

| 368 | 3. Results                                                                                                     |
|-----|----------------------------------------------------------------------------------------------------------------|
| 369 | <b>3.1.Identification of VOCs produced by barley roots at five phenological</b>                                |
| 370 | stages                                                                                                         |
| 371 | For each developmental stage, GC-MS analyses showed that the barley roots                                      |
| 372 | produced mainly four volatile aldehydes: hexanal; (E)-hex-2-enal; (E)-non-2-enal;                              |
| 373 | and ( <i>E</i> , <i>Z</i> )-nona-2,6-dienal (Fig. 2, Table 2). In addition, pent-1-en-3-ol (CAS 616-25-        |
| 374 | 1, $RI_C = 1178$ , $RI_{Std} = 1163$ ), 3-methyl-but-3-en-1-ol (CAS 763-32-6, $RI_C = 1259$ ,                  |
| 375 | $RI_{Std} = 1251$ ), ( <i>E</i> )-hept-2-enal (CAS 18829-55-5, $RI_{C} = 1326$ , $RI_{Std} = 1321$ ), hexan-1- |
| 376 | ol (CAS 111-27-3, $RI_C = 1357$ , $RI_{Std} = 1355$ ), ( <i>E</i> )-oct-2-enal (CAS 2548-87-0, $RI_C = 1357$ ) |
| 377 | 1426, $RI_{Std} = 1426$ ) and acetic acid (CAS 64-19-7, $RI_{C} = 1457$ , $RI_{Std} = 1478$ ) were             |
| 378 | detected as minor compounds.                                                                                   |
| 379 | 3.2.Quantification of VOCs produced by barley roots at five phenological                                       |
| 380 | stages                                                                                                         |
| 381 | The total volatile aldehyde concentration was highest in 3-day-old barley                                      |
| 382 | seedlings and decreased markedly according to plant age (Fig. 3A). Compared with                               |
| 383 | the youngest developmental stage, plant roots analysed at 470 and 640 GDD produced                             |
| 384 | 36.9% and 85.3% fewer VOCs, respectively, which is highly significant statistically                            |
| 385 | ( $P < 0.001$ ). In addition, the ratio between concentrations of C <sub>6</sub> and C <sub>9</sub> volatile   |
| 386 | aldehydes in root tissues changed during plant development with a maximum value                                |
| 387 | reached at 118 GDD (Fig. 3B). This result was linked to the predominance of both                               |
| 388 | hexanal and $(E)$ -hex-2-enal in the chemical profiles of 7-day-old barley roots (Fig. 4).                     |
| 389 | The lowest values of this ratio were observed for roots analysed at 640 GDD. At this                           |
| 390 | age, plant roots were characterised by a $C_6/C_9$ ratio that was less than one. This result                   |
| 391 | can be explained by both an increase in the relative proportions of $(E)$ -non-2-enal and                      |
| 392 | (E,Z)-nona-2,6-dienal in the chemical profiles and a decrease in hexanal and $(E)$ -hex-                       |

| 393 | 2-enal synthesis in 38-day-old barley roots compared with other developmental stages                 |
|-----|------------------------------------------------------------------------------------------------------|
| 394 | (Fig. 4). In contrast, the mean $C_6/C_9$ volatile aldehyde ratios were always greater than          |
| 395 | one for plants younger than 640 GDD. Although the $C_6/C_9$ ratios measured at 51, 285               |
| 396 | and 470 GDD did not differ statistically (Fig. 3B), the analysis illustrated in the Fig. 4           |
| 397 | shows that the mean relative proportions of hexanal, $(E)$ -hex-2-enal and $(E,Z)$ -nona-            |
| 398 | 2,6-dienal differed significantly in the chemical profiles analysed at these                         |
| 399 | developmental stages. After 51, 118 and 470 GDD, hexanal was the major VOC                           |
| 400 | found in barley roots and represented between $36.9 \pm 2.9\%$ and $41.2 \pm 2.5\%$ of the           |
| 401 | total VOC concentration. For other developmental stages, the hexanal proportions in                  |
| 402 | the VOC profiles were significantly lower than that mentioned earlier ( $P < 0.001$ ), but           |
| 403 | were statistically similar to each other. The mean relative proportions of $(E)$ -hex-2-             |
| 404 | enal in the chemical profiles all differed statistically according to plant age ( $P <$              |
| 405 | 0.001), ranging from 8.3 $\pm$ 1.7% for the oldest developmental stage to 35.3 $\pm$ 1.7% for        |
| 406 | plants analysed at 118 GDD. Like $C_6$ molecules, the mean relative proportions of ( <i>E</i> )-     |
| 407 | non-2-enal and $(E,Z)$ -nona-2,6-dienal differed at the five selected developmental                  |
| 408 | stages in a very highly significant way ( $P < 0.001$ ). After 640 GDD, (E)-non-2-enal               |
| 409 | was the major VOC found in barley roots and represented $50.1 \pm 3.6\%$ of the total                |
| 410 | VOC concentration. Roots analysed after 51, 285 and 470 GDD were characterised by                    |
| 411 | intermediate ( <i>E</i> )-non-2-enal levels ranging from $26.9 \pm 2.4\%$ to $30.2 \pm 2.5\%$ of the |
| 412 | total volatile aldehyde concentration. With a mean value of $16.4 \pm 1.7\%$ , the lowest            |
| 413 | relative proportion of $(E)$ -non-2-enal was found in barley roots harvested at 118                  |
| 414 | GDD. With regard to $(E,Z)$ -nona-2,6-dienal, its contribution to the total VOC                      |
| 415 | concentration ranged from 7.3 $\pm$ 0.6% to 17.9 $\pm$ 1.0% for plants analysed at 118 and           |
| 416 | 640 GDD, respectively. The mean relative proportions of $(E,Z)$ -nona-2,6-dienal in the              |
| 417 | barley roots did not differ significantly at 285 and 470 GDD.                                        |

– 17 –

| 418 | Like the total root VOC concentration, the hexanal (Fig. 3C), (E)-hex-2-enal                                                  |
|-----|-------------------------------------------------------------------------------------------------------------------------------|
| 419 | (Fig. 3D), (E)-non-2-enal (Fig. 3E) and (E,Z)-nona-2,6-dienal (Fig. 3F) concentrations                                        |
| 420 | showed a strong age-dependent pattern. For each individual volatile, mean VOC                                                 |
| 421 | concentrations measured from germination to the end of tillering differed in a very                                           |
| 422 | highly significant way statistically ( $P < 0.001$ ). The mean hexanal concentration in                                       |
| 423 | the root tissues showed a strong decrease of 90.7% from the youngest to the oldest                                            |
| 424 | developmental stage. The highest hexanal concentration was found in 51 GDD-old                                                |
| 425 | barley seedlings with a mean concentration of $43.3 \pm 2.3 \mu\text{g/g}$ dry wt, which was not                              |
| 426 | significantly different from that measured at 118 GDD. Intermediate hexanal                                                   |
| 427 | concentrations ranging from 25.7 $\pm$ 4.3 to 31.9 $\pm$ 5.2 $\mu\text{g/g}$ dry wt occurred between                          |
| 428 | 118 and 470 GDD (Fig. 3C). Mean (E)-hex-2-enal concentrations calculated between                                              |
| 429 | 51 and 470 GDD did not differ significantly from each other and ranged from 17.0 $\pm$                                        |
| 430 | 3.0 to 27.6 $\pm$ 5.1 $\mu g/g$ dry wt for roots analysed at 470 and 118 GDD, respectively.                                   |
| 431 | The lowest (E)-hex-2-enal concentration was observed in 640 GDD-old barley roots                                              |
| 432 | (Fig. 3D). With regard to the $C_9$ volatiles, they showed a very similar evolution                                           |
| 433 | pattern in relation to plant age (Fig. 3E and 3F). Barley roots were characterised by a                                       |
| 434 | low production of ( <i>E</i> )-non-2-enal and ( <i>E</i> , <i>Z</i> )-nona-2,6-dienal at 118 GDD. At this age,                |
| 435 | no C <sub>9</sub> molecule concentrations differed statistically from the lowest concentration                                |
| 436 | measured at 640 GDD or from ( <i>E</i> )-non-2-enal and ( <i>E</i> , <i>Z</i> )-nona-2,6-dienal                               |
| 437 | concentrations measured in 470 GDD-old barley roots. In addition, the $(E,Z)$ -nona-                                          |
| 438 | 2,6-dienal concentration observed at 285 GDD was similar to that measured in 118                                              |
| 439 | GDD-old barley seedlings. Like $C_6$ volatiles, the highest $C_9$ volatile concentrations                                     |
| 440 | were measured at the youngest developmental stage and were 30.1 $\pm$ 4.8 and 15.7 $\pm$                                      |
| 441 | 2.1 $\mu$ g/g dry wt for ( <i>E</i> )-non-2-enal and ( <i>E</i> , <i>Z</i> )-nona-2,6-dienal, respectively. For ( <i>E</i> )- |
| 442 | non-2-enal, this value did not differ statistically from that observed at 285 GDD.                                            |

443 Similarly, the (*E*)-non-2-enal concentrations in 285 and 470 GDD-old barley roots did 444 not differ significantly from each other (P > 0.05).

445

#### **3.3.LOX activity measurement in barley roots**

446 Because hexanal, (E)-hex-2-enal, (E)-non-2-enal and (E,Z)-nona-2,6-dienal 447 are documented to originate from the enzymatic oxidation of linoleic and  $\alpha$ -linolenic acids via the LOX pathway in plant tissues (Dudareva et al., 2013; Maffei, 2010), we 448 449 measured the LOX activity in barley roots at the same developmental stages as those 450 used for VOC analyses. The results showed that the specificity of LOX extracted from the roots of barley is greater for linoleic acid than for  $\alpha$ -linolenic acid (Fig. 5). When 451 452 linoleic acid was used as a substrate in the enzymatic assay, 125 GDD-old roots 453 showed a significantly greater LOX activity  $(2.11 \pm 0.26 \text{ units/mg protein})$  than that measured at the other developmental stages (P = 0.012). In contrast, the greatest LOX 454 455 activity using α-linolenic acid as a substrate was measured in the roots of 53 GDD-old plants (P < 0.001) and reached a mean value of  $0.97 \pm 0.05$  units/mg protein. 456 Developmental stages older than 299 GDD did not show any statistical difference 457 regarding LOX activity measurements. 458

459

#### 3.4. Analysis of VOCs emitted by barley roots in the soil

460 The results showed that undamaged roots of barley plants growing in an 461 artificial soil did not release additional VOCs compared with the odour profile obtained for the artificial soil alone (Fig. 6A and 6B). In contrast, 16 to 17-day-old 462 463 barley roots released (E)-non-2-enal and (E,Z)-nona-2,6-dienal in the soil after 464 mechanical injury (Fig. 6C). The identity of these molecules was confirmed by comparing SCAN mass spectral data and calculated RI with those of authentic 465 466 standards. By external calibration, their emission rate in the soil was estimated to 13.8  $\pm$  4.9 ng/g dry wt/h for (E)-non-2-enal and 4.7  $\pm$  1.8 ng/g dry wt/h for (E,Z)-nona-2,6-467

- 19 -

468 dienal (mean  $\pm$  s.e., n = 6). Using SCAN MS data, traces amounts (not quantifiable) 469 of hexanal were detected in some odour profiles associated with mechanically 470 damaged roots.

#### 471 **3.5.Recovery of VOC standards injected into the soil**

472 Because (1) both  $C_6$  and  $C_9$  volatile aldehydes were produced by crushed barley roots and (2) only C<sub>9</sub> volatile aldehydes were detected in quantifiable amounts when VOCs 473 474 emitted by mechanically damaged roots were trapped in situ, we designed an 475 experiment in order to test the sensitivity and the selectivity of our analytical method. 476 To do so, we successively injected a synthetic VOC mixture into the soil, trapped 477 VOCs using our dynamic sampling system, and calculated the recovery of each 478 compound using a method similar to the one used by Eilers and co-workers (2015). 479 We found that the five VOCs used in this experiment had significantly different 480 recovery rates (P < 0.001) and can be divided into three groups (Fig. 7). The first 481 group contained VOCs that were easily recovered from the soil. It contained the 482 terpenoid (*E*)- $\beta$ -farnesene (63.0 ± 4.9%) and the C<sub>6</sub> volatile hexanal (59.5 ± 3.6%). 483 The two C<sub>9</sub> volatile aldehydes were contained in two different groups and were 484 characterized by lower recovery rate values compared with the VOCs of the first 485 group ([*E*]-non-2-enal:  $32.2 \pm 4.4\%$ ; [*E*,*Z*]-nona-2,6-dienal:  $13.7 \pm 5.9\%$ ). With regard 486 to 2-pentylfuran (19.7  $\pm$  4.9%), its recovery rate was not statistically different from that of (E)-non-2-enal and (E,Z)-nona-2,6-dienal. 487

488

## 4. Discussion

489 Crushed barley roots analysed at five developmental stages from germination
490 to the end of tillering produced mainly four aldehydes as major VOCs: hexanal; (*E*)491 hex-2-enal; (*E*)-non-2-enal; and (*E*,*Z*)-nona-2,6-dienal. Two previous studies

492 mentioned the emission of these molecules by 7- to 21-day-old excised barley roots

– 20 –

| 493 | using SPME (Fiers et al., 2013; Gfeller et al., 2013). There are major differences in           |
|-----|-------------------------------------------------------------------------------------------------|
| 494 | the number of identified VOCs when comparing the present results with those                     |
| 495 | obtained by SPME. In addition to the four volatile aldehydes discussed in this study,           |
| 496 | Gfeller and co-workers (2013) identified 30 and 25 additional VOCs emitted in                   |
| 497 | significant amounts by isolated 7- and 21-day-old barley roots produced in                      |
| 498 | vermiculite, respectively. When testing the effect of barley root infection with one or         |
| 499 | two pathogenic fungi (Cochliobolus sativus and Fusarium culmorum) on VOC                        |
| 500 | emission, only ( $E$ )-non-2-enal and ( $E$ , $Z$ )-nona-2,6-dienal were detected in uninfected |
| 501 | 9-day-old roots. ( $E$ )-hex-2-enal was reported to be emitted only by roots infected           |
| 502 | simultaneously by C. sativus and F. culmorum. Hexanal was not reported to be                    |
| 503 | emitted by barley roots whatever the conditions tested (Fiers et al., 2013). Taken              |
| 504 | together, these differences could be explained both by the preparation of biological            |
| 505 | samples (crushed or excised roots) and by the analytical procedure used to sample               |
| 506 | volatile compounds. The simpler VOC profile obtained under our experimental                     |
| 507 | conditions could result from the shorter sampling time limiting the sample                      |
| 508 | degradation process, as well as from the lower oxygen concentration in the headspace            |
| 509 | of sealed vials, leading to lower oxidation of the biogenic VOCs in barley roots. In            |
| 510 | addition, as the exposition of roots to light can rapidly induce the production of              |
| 511 | reactive oxygen species (ROS) (Yokawa et al., 2011) and generates a stress to the               |
| 512 | roots (Silva-Navas et al., 2015), one can hypothesise that the in vitro cultivation of          |
| 513 | plants performed by Gfeller et al. (2013) and Fiers et al. (2013) and the SPME                  |
| 514 | collection of VOCs emitted by isolated and illuminated roots can lead to the                    |
| 515 | production of VOCs that would not have been emitted by unstressed roots. These                  |
| 516 | latter hypotheses are supported by the fact that we did not detect 2-pentylfuran in our         |
| 517 | chemical profiles when crushed or potted roots were analysed, although it was one of            |

- 21 -

| 518 | the major VOCs identified in the SPME analyses of sterile and non-sterile barley                   |
|-----|----------------------------------------------------------------------------------------------------|
| 519 | roots (Fiers et al., 2013; Gfeller et al., 2013). Because 2-pentylfuran is a volatile              |
| 520 | compound that can be produced via a non-enzymatic peroxidation of linoleic acid by                 |
| 521 | singlet oxygen (Min et al., 2003), it could possibly be an artefact produced during the            |
| 522 | sampling of VOCs located in the headspace of isolated barley roots. With regard to                 |
| 523 | volatile fatty acid derivative emission, hexanal has been shown to be emitted in                   |
| 524 | significant amounts by isolated roots of the grass hybrid Festuca pratensis × Lolium               |
| 525 | perenne, of which the aerial parts were colonized or not by the endophytic fungus                  |
| 526 | Neotyphodium uncinatum (Rostás et al., 2015). Volatile aldehydes have also been                    |
| 527 | detected in the roots of some dicotyledonous plant species. Hexanal has been                       |
| 528 | identified in the main root of Agrimonia eupatoria (Feng et al., 2013) and red clover              |
| 529 | (Trifolium pratense) roots have been reported to produce hexanal and (E)-hex-2-enal                |
| 530 | (Palma et al., 2012; Tapia et al., 2007). Hexanal, (E)-hex-2-enal and (E)-non-2-enal               |
| 531 | have also been identified in crushed grapevine roots (Vitis berlandieri × Vitis riparia)           |
| 532 | that were infested or not with phylloxera (Daktulosphaira vitifoliae) (Lawo et al.,                |
| 533 | 2011). In contrast, GC-MS and PTR-MS profiling of VOCs produced by Arabidopsis                     |
| 534 | thaliana hairy root cultures did not show any induction of $C_6$ aldehyde production               |
| 535 | when the roots were submitted to mechanical wounding, Pseudomonas syringae                         |
| 536 | DC3000 infection or <i>Diuraphis noxia</i> infestation (Steeghs et al., 2004). These results       |
| 537 | could possibly be explained by a mutation carried by the Columbia-0 ecotype of A.                  |
| 538 | <i>thaliana</i> affecting HPL activity and $C_6$ volatile synthesis (Erb et al., 2008). Similarly, |
| 539 | PTR-MS analyses did not reveal any $C_6$ volatile aldehyde production by <i>Brassica</i>           |
| 540 | nigra roots infested by Delia radicum (Crespo et al., 2012).                                       |
| 541 | In our study, VOC production by barley roots was characterised by a strong                         |
| 542 | age-dependent pattern. In comparison with plants analysed soon after germination or                |

- 22 -

543 at the seedling stage, barley roots analysed at the tillering stage synthesised fewer 544 VOCs. Such quantitative variations in VOC concentrations have been documented for several plant species. In maize (Zea mays), the roots produced fewer sesquiterpenes 545 546 from mature plants than from seedlings (Köllner et al., 2004). In plant-plant 547 interaction studies, it has also been reported that young sagebrush (Artemisia *tridentata*) plants are better emitters and respond more efficiently than older 548 549 individuals to volatile cues produced by conspecific damaged neighbours (Shiojiri and 550 Karban, 2006; Shiojiri et al., 2011). Higher VOC production in young developmental 551 stages has also been reported in lima bean (Phaseolus lunatus) (Radhika et al., 2008), 552 soybean (Glycine max) (Rostás and Eggert, 2008) and Citrus spp. (Azam et al., 2013), 553 as well as in the undomesticated species Datura wrightii (Hare and Sun, 2011; Hare, 2010). In contrast, some plant species such as sage (Salvia officinalis) and peppermint 554 555 (Mentha × piperita) showed a higher monoterpene content in leaves with increasing leaf age (Croteau et al., 1981; Gershenzon et al., 2000). With regard to  $C_6$  volatile 556 557 aldehydes, their production in soybean leaves fell significantly until full size was reached; the total C<sub>6</sub> VOC production then markedly increased in older leaves and 558 reached similar levels to that produced by the youngest analysed leaves (Zhuang et 559 560 al., 1992). In a study of the general pattern of VOC production by plants as indirect 561 defences, a meta-analysis showed that VOC production declined significantly with increasing plant age, thus supporting the ODT (Quintero et al., 2013). Although our 562 563 study did not investigate VOC production by barley roots after the tillering stage, our 564 results support the findings of the meta-analysis performed by Quintero and coworkers (2013). 565

566 In addition to an overall decrease in VOC concentrations, our study suggested 567 that the composition of VOC blends produced by barley roots varied with plant age as

– 23 –

| 568 | a result of quantitative changes in individual VOC concentrations. The composition of      |
|-----|--------------------------------------------------------------------------------------------|
| 569 | the VOC chemical profiles of various plant organs has also been reported to change         |
| 570 | across plant ontogeny in maize (Köllner et al., 2004), wheat (Triticum aestivum)           |
| 571 | (Batten et al., 1995), soybean (Boué et al., 2003; Zhu and Park, 2005; Zhuang et al.,      |
| 572 | 1992), tomato (Lycopersicon esculentum) (Zhang et al., 2008), Citrus spp. (Azam et         |
| 573 | al., 2013), peppermint (Gershenzon et al., 2000), D. wrightii (Hare, 2010) and             |
| 574 | Hymenaea courbaril (Kuhn et al., 2004), as well as in the roots of variously aged red      |
| 575 | clover (Palma et al., 2012; Tapia et al., 2007). In this last example, hexanal and $(E)$ - |
| 576 | hex-2-enal were detected only in roots of the youngest developmental stages analysed       |
| 577 | (Palma et al., 2012).                                                                      |
| 578 | The LOX extracted from barley roots was characterized by a higher specificity              |
| 579 | for linoleic acid. The LOX activity measurements were in line with the VOC                 |
| 580 | production pattern produced by barley roots as the volatiles documented to derive          |
| 581 | from linoleic acid (hexanal and $[E]$ -non-2-enal) represented between 57.4 and 73.5%      |
| 582 | of the VOC profiles. The LOX activity pattern seems to be developmentally regulated        |
| 583 | with 7- and 3-day-old barley roots possessing the greatest enzymatic activities for        |
| 584 | linoleic acid and $\alpha$ -linolenic acid, respectively. An influence of plant age on LOX |
| 585 | activity has been previously demonstrated in developing barley roots younger than 9        |
| 586 | days (Holtman et al., 1996). Using linoleic acid as a substrate, Holtman and co-           |
| 587 | workers (1996) showed that the LOX activity reached a maximum between 4 and 7              |
| 588 | days after the start of germination. In our study, as the LOX activity measurements        |
| 589 | did not differ between plants older than 7 days, the temporal variation of the LOX         |
| 590 | activity is unlikely to be the only explanation for the decreasing VOC production          |
| 591 | pattern observed in older plants. Therefore, the influence of plant ontogeny on other      |

- 24 -

| 592 | factors, such as substrate availability, substrate specificity and biosynthetic enzyme                          |
|-----|-----------------------------------------------------------------------------------------------------------------|
| 593 | expression (LOX and HPL) and activities (HPL) require further investigations.                                   |
| 594 | In this study, we set up an experimental device and a GC-MS methodology                                         |
| 595 | allowing both the identification (using SCAN MS data) and the quantification (using                             |
| 596 | SIM MS data) of VOCs emitted by cereal roots without extracting belowground plant                               |
| 597 | organs from the soil prior to VOC sampling. Using this technique, we were able to                               |
| 598 | show that undamaged barley roots did not release detectable amounts of VOCs, but                                |
| 599 | emitted ( $E$ )-non-2-enal and ( $E$ , $Z$ )-nona-2,6-dienal after mechanical injury. Even if                   |
| 600 | hexanal and $(E)$ -hex-2-enal represented 58.8% of the VOCs found in the headspace of                           |
| 601 | crushed 17-day-old roots, these molecules were not detected in quantifiable amounts                             |
| 602 | after mechanical injury. Because (1) only traces amounts of hexanal were detected                               |
| 603 | and (2) the recovery rates of ( <i>E</i> )-non-2-enal and ( <i>E</i> , <i>Z</i> )-nona-2,6-dienal in our system |
| 604 | were 46.0% and 77.0% lower than that of hexanal, it is likely that barley roots                                 |
| 605 | released mainly C <sub>9</sub> volatile aldehydes after mechanical injury. Our findings contrast                |
| 606 | with VOC analyses performed on aboveground barley tissues because they have been                                |
| 607 | reported to emit mainly $C_6$ aldehydes, alcohols and their corresponding esters when                           |
| 608 | the leaves were mechanically damaged or subjected to insect predation (Oulema spp.)                             |
| 609 | or fungal infection (Fusarium spp.) (Piesik et al., 2011, 2010). Although volatile                              |
| 610 | terpenes have been detected in the headspace of undamaged, mechanically damaged                                 |
| 611 | and Fusarium-infected barley shoots (Kegge et al., 2015; Piesik et al., 2011), we were                          |
| 612 | not able to detect any terpene in the emission profiles of undamaged or mechanically                            |
| 613 | damaged barley roots, even if our in situ trapping system was able to recover more                              |
| 614 | than 60% of the ( <i>E</i> )- $\beta$ -farnesene injected into the soil as part of a synthetic mixture.         |
| 615 | Given that LOX/HPL-derived volatiles (1) are rapidly formed after tissue                                        |
| 616 | disruption (Matsui, 2006), (2) play important roles in plant chemical defences                                  |

| 617                                                                                                                                          | (Dudareva et al., 2006; Matsui et al., 2006), (3) have low diffusion capacities in sand                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 618                                                                                                                                          | and soil (Hiltpold and Turlings, 2008), and (4) are emitted in the rhizosphere of                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 619                                                                                                                                          | mechanically damaged barley roots, it would be of great interest to study the                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 620                                                                                                                                          | involvement of the VOCs identified in this work in plant direct defences in terms of                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 621                                                                                                                                          | both the physiological and ecological implications. In addition, because VOCs                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 622                                                                                                                                          | released by barley roots into the soil can attract insect predators (Gfeller et al., 2013),                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 623                                                                                                                                          | this work paves the way for designing additional experiments aimed at investigating                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 624                                                                                                                                          | how the observed qualitative and quantitative variations in VOC production can                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 625                                                                                                                                          | benefit plants of different ages and influence the behaviour (attraction/repulsion) of                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 626                                                                                                                                          | phytophagous pests and insect predators.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 627                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 628                                                                                                                                          | Contributions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 628<br>629                                                                                                                                   | Contributions Conceived and designed the experiments: BMD, PD, PdJ, MLF; performed the                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 628<br>629<br>630                                                                                                                            | Contributions<br>Conceived and designed the experiments: BMD, PD, PdJ, MLF; performed the<br>experiments: BMD; analysed the data: BMD, PD, MLF; contributed                                                                                                                                                                                                                                                                                                                                                                         |
| 628<br>629<br>630<br>631                                                                                                                     | Contributions<br>Conceived and designed the experiments: BMD, PD, PdJ, MLF; performed the<br>experiments: BMD; analysed the data: BMD, PD, MLF; contributed<br>reagents/materials/analysis tools: PD, PdJ, MLF; contributed to the writing of the                                                                                                                                                                                                                                                                                   |
| <ul> <li>628</li> <li>629</li> <li>630</li> <li>631</li> <li>632</li> </ul>                                                                  | Contributions<br>Conceived and designed the experiments: BMD, PD, PdJ, MLF; performed the<br>experiments: BMD; analysed the data: BMD, PD, MLF; contributed<br>reagents/materials/analysis tools: PD, PdJ, MLF; contributed to the writing of the<br>manuscript: BMD, PD, PdJ, MLF.                                                                                                                                                                                                                                                 |
| <ul> <li>628</li> <li>629</li> <li>630</li> <li>631</li> <li>632</li> <li>633</li> </ul>                                                     | Contributions<br>Conceived and designed the experiments: BMD, PD, PdJ, MLF; performed the<br>experiments: BMD; analysed the data: BMD, PD, MLF; contributed<br>reagents/materials/analysis tools: PD, PdJ, MLF; contributed to the writing of the<br>manuscript: BMD, PD, PdJ, MLF.                                                                                                                                                                                                                                                 |
| <ul> <li>628</li> <li>629</li> <li>630</li> <li>631</li> <li>632</li> <li>633</li> <li>634</li> </ul>                                        | Contributions Conceived and designed the experiments: BMD, PD, PdJ, MLF; performed the experiments: BMD; analysed the data: BMD, PD, MLF; contributed reagents/materials/analysis tools: PD, PdJ, MLF; contributed to the writing of the manuscript: BMD, PD, PdJ, MLF. Acknowledgements                                                                                                                                                                                                                                            |
| <ul> <li>628</li> <li>629</li> <li>630</li> <li>631</li> <li>632</li> <li>633</li> <li>634</li> <li>635</li> </ul>                           | Contributions Conceived and designed the experiments: BMD, PD, PdJ, MLF; performed the experiments: BMD; analysed the data: BMD, PD, MLF; contributed reagents/materials/analysis tools: PD, PdJ, MLF; contributed to the writing of the manuscript: BMD, PD, PdJ, MLF. Acknowledgements Delory BM was the recipient of a PhD Fellowship from the Belgian National                                                                                                                                                                  |
| <ul> <li>628</li> <li>629</li> <li>630</li> <li>631</li> <li>632</li> <li>633</li> <li>634</li> <li>635</li> <li>636</li> </ul>              | Contributions Conceived and designed the experiments: BMD, PD, PdJ, MLF; performed the experiments: BMD; analysed the data: BMD, PD, MLF; contributed reagents/materials/analysis tools: PD, PdJ, MLF; contributed to the writing of the manuscript: BMD, PD, PdJ, MLF. Acknowledgements Delory BM was the recipient of a PhD Fellowship from the Belgian National Fund for Scientific Research (FRS-FNRS Research Fellow). The statistical analyses                                                                                |
| <ul> <li>628</li> <li>629</li> <li>630</li> <li>631</li> <li>632</li> <li>633</li> <li>634</li> <li>635</li> <li>636</li> <li>637</li> </ul> | Contributions Conceived and designed the experiments: BMD, PD, PdJ, MLF; performed the experiments: BMD; analysed the data: BMD, PD, MLF; contributed reagents/materials/analysis tools: PD, PdJ, MLF; contributed to the writing of the manuscript: BMD, PD, PdJ, MLF. Acknowledgements Delory BM was the recipient of a PhD Fellowship from the Belgian National Fund for Scientific Research (FRS-FNRS Research Fellow). The statistical analyses benefited from advice provided by Prof. Yves Brostaux (Gembloux Agro-Bio Tech, |

- 639 Michels and Anthony Digrado from Gembloux Agro-Bio Tech (Gembloux, Belgium),
- 640 as well as Dr Bart Tienpont and Dr Christophe Devos from the Research Institute for
- 641 Chromatography (RIC, Kortrijk, Belgium) for their excellent technical support.

#### 642 **References**

- Ali, J.G., Alborn, H.T., Stelinski, L.L., 2011. Constitutive and induced subterranean
  plant volatiles attract both entomopathogenic and plant parasitic nematodes. J.
  Ecol. 99, 26–35. doi:10.1111/j.1365-2745.2010.01758.x
- Ali, J.G., Alborn, H.T., Stelinski, L.L., 2010. Subterranean herbivore-induced
  volatiles released by *Citrus* roots upon feeding by *Diaprepes abbreviatus* recruit
  entomopathogenic nematodes. J. Chem. Ecol. 36, 361–368. doi:10.1007/s10886010-9773-7
- Azam, M., Jiang, Q., Zhang, B., Xu, C., Chen, K., 2013. *Citrus* leaf volatiles as
  affected by developmental stage and genetic type. Int. J. Mol. Sci. 14, 17744–
  17766. doi:10.3390/ijms140917744
- Barton, K.E., Koricheva, J., 2010. The ontogeny of plant defense and herbivory:
  characterizing general patterns using meta-analysis. Am. Nat. 175, 481–493.
  doi:10.1086/650722
- Batten, J.H., Stutte, G.W., Wheeler, R.M., 1995. Effect of crop development on
  biogenic emissions from plant populations grown in closed plant growth
  chambers. Phytochemistry 39, 1351–1357.
- Boege, K., Marquis, R.J., 2005. Facing herbivory as you grow up: the ontogeny of
  resistance in plants. Trends Ecol. Evol. 20, 441–448.
  doi:10.1016/j.tree.2005.05.001
- Boff, M.I.C., van Tol, R., Smits, P.H., 2002. Behavioural response of *Heterorhabditis megidis* towards plant roots and insect larvae. Biocontrol 47, 67–83.
- Boué, S.M., Shih, B.Y., Carter-Wientjes, C.H., Cleveland, T.E., 2003. Identification
  of volatile compounds in soybean at various developmental stages using solid
  phase microextraction. J. Agric. Food Chem. 51, 4873–4876.
  doi:10.1021/jf030051q
- Bradford, M.M., 1976. A rapid and sensitive method for the quantitation of
  microgram quantities of protein utilizing the principle of protein-dye binding.
  Anal. Biochem. 72, 248–254. doi:10.1016/0003-2697(76)90527-3
- 671 Crespo, E., Hordijk, C.A., de Graaf, R.M., Samudrala, D., Cristescu, S.M., Harren,
  672 F.J.M., van Dam, N.M., 2012. On-line detection of root-induced volatiles in
  673 *Brassica nigra* plants infested with *Delia radicum* L. root fly larvae.
  674 Phytochemistry 84, 68–77. doi:10.1016/j.phytochem.2012.08.013
- 675 Croteau, R., Felton, M., Karp, F., Kjonaas, R., 1981. Relationship of camphor
  676 biosynthesis to leaf development in sage (*Salvia officinalis*). Plant Physiol. 67,
  677 820–824.
- Danner, H., Brown, P., Cator, E.A., Harren, F.J.M., van Dam, N.M., Cristescu, S.M.,
  2015. Aboveground and belowground herbivores synergistically induce volatile
  organic sulfur compound emissions from shoots but not from roots. J. Chem.
  Ecol. doi:10.1007/s10886-015-0601-y
- Delory, B.M., Delaplace, P., Fauconnier, M.-L., du Jardin, P., 2016. Root-emitted
  volatile organic compounds: can they mediate belowground plant-plant
  interactions? Plant Soil. doi:10.1007/s11104-016-2823-3

| 685               | Dudareva, N., Klempien, A., Muhlemann, K., Kaplan, I., 2013. Biosynthesis, function                                                                                                          |
|-------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 686               | and metabolic engineering of plant volatile organic compounds. New Phytol.                                                                                                                   |
| 687               | 198, 16–32.                                                                                                                                                                                  |
| 688               | Dudareva, N., Negre, F., Nagegowda, D.A., Orlova, I., 2006. Plant volatiles: recent                                                                                                          |
| 689               | advances and future perspectives. CRC. Crit. Rev. Plant Sci. 25, 417–440.                                                                                                                    |
| 690               | doi:10.1080/07352680600899973                                                                                                                                                                |
| 691               | Eilers, E.J., Pauls, G., Rillig, M.C., Hansson, B.S., Hilker, M., Reinecke, A., 2015.                                                                                                        |
| 692               | Novel set-up for low-disturbance sampling of volatile and non-volatile                                                                                                                       |
| 693               | compounds from plant roots. J. Chem. Ecol. 41, 253–266. doi:10.1007/s10886-                                                                                                                  |
| 694               | 015-0559-9                                                                                                                                                                                   |
| 695<br>696<br>697 | Elger, A., Lemoine, D.G., Fenner, M., Hanley, M.E., 2009. Plant ontogeny and chemical defence: older seedlings are better defended. Oikos 118, 767–773. doi:10.1111/j.1600-0706.2009.17206.x |
| 698               | Erb, M., Balmer, D., De Lange, E.S., Von Merey, G., Planchamp, C., Robert, C.A.M.,                                                                                                           |
| 699               | Röder, G., Sobhy, I., Zwahlen, C., Mauch-Mani, B., Turlings, T.C.J., 2011.                                                                                                                   |
| 700               | Synergies and trade-offs between insect and pathogen resistance in maize leaves                                                                                                              |
| 701               | and roots. Plant. Cell Environ. 34, 1088–1103. doi:10.1111/j.1365-                                                                                                                           |
| 702               | 3040.2011.02307.x                                                                                                                                                                            |
| 703               | Erb, M., Ton, J., Degenhardt, J., Turlings, T.C., 2008. Interactions between                                                                                                                 |
| 704               | arthropod-induced aboveground and belowground defenses in plants. Plant                                                                                                                      |
| 705               | Physiol. 146, 867–874. doi:10.1104/pp.107.112169                                                                                                                                             |
| 706               | Farnier, K., Bengtsson, M., Becher, P.G., Witzell, J., Witzgall, P., Manduríc, S., 2012.                                                                                                     |
| 707               | Novel bioassay demonstrates attraction of the white potato cyst nematode                                                                                                                     |
| 708               | <i>Globodera pallida</i> (Stone) to non-volatile and volatile host plant cues. J. Chem.                                                                                                      |
| 709               | Ecol. 38, 795–801. doi:10.1007/s10886-012-0105-y                                                                                                                                             |
| 710               | Feng, XL., He, Y., Liang, YZ., Wang, YL., Huang, LF., Xie, JW., 2013.                                                                                                                        |
| 711               | Comparative analysis of the volatile components of <i>Agrimonia eupatoria</i> from                                                                                                           |
| 712               | leaves and roots by gas chromatography-mass spectrometry and multivariate                                                                                                                    |
| 713               | curve resolution. J. Anal. Methods Chem. 2013, Article ID 246986.                                                                                                                            |
| 714               | doi:10.1155/2013/246986                                                                                                                                                                      |
| 715               | Ferreira, V., Aznar, M., López, R., Cacho, J., 2001. Quantitative gas chromatography-                                                                                                        |
| 716               | olfactometry carried out at different dilutions of an extract. Key differences in                                                                                                            |
| 717               | the odor profiles of four high-quality spanish aged red wines. J. Agric. Food                                                                                                                |
| 718               | Chem. 49, 4818–4824.                                                                                                                                                                         |
| 719               | Ferry, A., Dugravot, S., Delattre, T., Christides, JP., Auger, J., Bagnères, AG.,                                                                                                            |
| 720               | Poinsot, D., Cortesero, AM., 2007. Identification of a widespread                                                                                                                            |
| 721               | monomolecular odor differentially attractive to several <i>Delia radicum</i> ground-                                                                                                         |
| 722               | dwelling predators in the field. J. Chem. Ecol. 33, 2064–2077.                                                                                                                               |
| 723               | doi:10.1007/s10886-007-9373-3                                                                                                                                                                |
| 724               | Fiers, M., Lognay, G., Fauconnier, ML., Jijakli, M.H., 2013. Volatile compound-                                                                                                              |
| 725               | mediated interactions between barley and pathogenic fungi in the soil. PLoS One                                                                                                              |
| 726               | 8, e66805. doi:10.1371/journal.pone.0066805                                                                                                                                                  |
| 727<br>728        | Gershenzon, J., McConkey, M.E., Croteau, R.B., 2000. Regulation of monoterpene accumulation in leaves of peppermint. Plant Physiol. 122, 205–213.                                            |

| 729<br>730<br>731<br>732<br>733 | <ul> <li>Gfeller, A., Laloux, M., Barsics, F., Kati, D.E., Haubruge, E., du Jardin, P.,<br/>Verheggen, F.J., Lognay, G., Wathelet, JP., Fauconnier, ML., 2013.<br/>Characterization of volatile organic compounds emitted by barley (<i>Hordeum vulgare</i> L.) roots and their attractiveness to wireworms. J. Chem. Ecol. 39, 1129–1139. doi:10.1007/s10886-013-0302-3</li> </ul> |
|---------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 734                             | Gigot, C., Ongena, M., Fauconnier, ML., Wathelet, JP., du Jardin, P., Thonart, P.,                                                                                                                                                                                                                                                                                                  |
| 735                             | 2010. The lipoxygenase metabolic pathway in plants : potential for industrial                                                                                                                                                                                                                                                                                                       |
| 736                             | production of natural green leaf volatiles. Biotechnol. Agron. Société Environ.                                                                                                                                                                                                                                                                                                     |
| 737                             | 14, 451–460.                                                                                                                                                                                                                                                                                                                                                                        |
| 738<br>739<br>740               | Gouinguené, S.P., Turlings, T.C.J., 2002. The effects of abiotic factors on induced volatile emissions in corn plants. Plant Physiol. 129, 1296–1307. doi:10.1104/pp.001941.1296                                                                                                                                                                                                    |
| 741<br>742<br>743               | Grechkin, A.N., Hamberg, M., 2004. The "heterolytic hydroperoxide lyase" is an isomerase producing a short-lived fatty acid hemiacetal. Biochim. Biophys. Acta 1636, 47–58. doi:10.1016/j.bbalip.2003.12.003                                                                                                                                                                        |
| 744                             | Guerin, P.M., Ryan, M.F., 1984. Relationship between root volatiles of some carrot                                                                                                                                                                                                                                                                                                  |
| 745                             | cultivars and their resistance to the carrot fly, <i>Psila rosae</i> . Entomol. Exp. Appl.                                                                                                                                                                                                                                                                                          |
| 746                             | 36, 217–224.                                                                                                                                                                                                                                                                                                                                                                        |
| 747                             | Hare, J.D., 2010. Ontogeny and season constrain the production of herbivore-                                                                                                                                                                                                                                                                                                        |
| 748                             | inducible plant volatiles in the field. J. Chem. Ecol. 36, 1363–1374.                                                                                                                                                                                                                                                                                                               |
| 749                             | doi:10.1007/s10886-010-9878-z                                                                                                                                                                                                                                                                                                                                                       |
| 750                             | Hare, J.D., Sun, J.J., 2011. Production of herbivore-induced plant volatiles is                                                                                                                                                                                                                                                                                                     |
| 751                             | constrained seasonally in the field but predation on herbivores is not. J. Chem.                                                                                                                                                                                                                                                                                                    |
| 752                             | Ecol. 37, 430–442. doi:10.1007/s10886-011-9944-1                                                                                                                                                                                                                                                                                                                                    |
| 753                             | Hiltpold, I., Bernklau, E., Bjostad, L.B., Alvarez, N., Miller-Struttmann, N.E.,                                                                                                                                                                                                                                                                                                    |
| 754                             | Lundgren, J.G., Hibbard, B.E., 2013. Nature, evolution and characterisation of                                                                                                                                                                                                                                                                                                      |
| 755                             | rhizospheric chemical exudates affecting root herbivores, Advances in Insect                                                                                                                                                                                                                                                                                                        |
| 756                             | Physiology. doi:10.1016/B978-0-12-417165-7.00003-9                                                                                                                                                                                                                                                                                                                                  |
| 757                             | Hiltpold, I., Erb, M., Robert, C.A.M., Turlings, T.C.J., 2011. Systemic root signalling                                                                                                                                                                                                                                                                                             |
| 758                             | in a belowground, volatile-mediated tritrophic interaction. Plant, Cell Environ.                                                                                                                                                                                                                                                                                                    |
| 759                             | 34, 1267–1275.                                                                                                                                                                                                                                                                                                                                                                      |
| 760                             | Hiltpold, I., Turlings, T.C.J., 2008. Belowground chemical signaling in maize: when                                                                                                                                                                                                                                                                                                 |
| 761                             | simplicity rhymes with efficiency. J. Chem. Ecol. 34, 628–635.                                                                                                                                                                                                                                                                                                                      |
| 762                             | doi:10.1007/s10886-008-9467-6                                                                                                                                                                                                                                                                                                                                                       |
| 763<br>764                      | Holopainen, J.K., Gershenzon, J., 2010. Multiple stress factors and the emission of plant VOCs. Trends Plant Sci. 15, 176–184. doi:10.1016/j.tplants.2010.01.006                                                                                                                                                                                                                    |
| 765                             | Holtman, W.L., van Duijn, G., Sedee, N.J.A., Douma, A.C., 1996. Differential                                                                                                                                                                                                                                                                                                        |
| 766                             | expression of lipoxygenase isoenzymes in embryos of germinating barley. Plant                                                                                                                                                                                                                                                                                                       |
| 767                             | Physiol. 111, 569–576.                                                                                                                                                                                                                                                                                                                                                              |
| 768<br>769<br>770<br>771        | Jassbi, A.R., Zamanizadehnajari, S., Baldwin, I.T., 2010. Phytotoxic volatiles in the roots and shoots of <i>Artemisia tridentata</i> as detected by headspace solid-phase microextraction and gas chromatographic-mass spectrometry analysis. J. Chem. Ecol. 36, 1398–1407. doi:10.1007/s10886-010-9885-0                                                                          |

| 772<br>773<br>774                      | Jennings, W., Shibamoto, T., 1980. Qualitative analysis of flavor and fragrance volatiles by glass capillary gas chromatography. Academic Press, Inc., New-York.                                                                                                                                                                                                                                                                                                        |
|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 775                                    | Kegge, W., Ninkovic, V., Glinwood, R., Welschen, R.A.M., Voesenek, L.A.C.J.,                                                                                                                                                                                                                                                                                                                                                                                            |
| 776                                    | Pierik, R., 2015. Red:far-red light conditions affect the emission of volatile                                                                                                                                                                                                                                                                                                                                                                                          |
| 777                                    | organic compounds from barley ( <i>Hordeum vulgare</i> ), leading to altered biomass                                                                                                                                                                                                                                                                                                                                                                                    |
| 778                                    | allocation in neighbouring plants. Ann. Bot. doi:10.1093/aob/mcv036                                                                                                                                                                                                                                                                                                                                                                                                     |
| 779                                    | Köllner, T.G., Schnee, C., Gershenzon, J., Degenhardt, J., 2004. The sesquiterpene                                                                                                                                                                                                                                                                                                                                                                                      |
| 780                                    | hydrocarbons of maize ( <i>Zea mays</i> ) form five groups with distinct developmental                                                                                                                                                                                                                                                                                                                                                                                  |
| 781                                    | and organ-specific distributions. Phytochemistry 65, 1895–1902.                                                                                                                                                                                                                                                                                                                                                                                                         |
| 782                                    | doi:10.1016/j.phytochem.2004.05.021                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 783<br>784<br>785<br>786<br>787<br>788 | <ul> <li>Kuhn, U., Rottenberger, S., Biesenthal, T., Wolf, A., Schebeske, G., Ciccioli, P., Kesselmeier, J., 2004. Strong correlation between isoprene emission and gross photosynthetic capacity during leaf phenology of the tropical tree species <i>Hymenaea courbaril</i> with fundamental changes in volatile organic compounds emission composition during early leaf devel. Plant, Cell Environ. 27, 1469–1485. doi:10.1111/j.1365-3040.2004.01252.x</li> </ul> |
| 789                                    | Lawo, N.C., Weingart, G.J.F., Schuhmacher, R., Forneck, A., 2011. The volatile                                                                                                                                                                                                                                                                                                                                                                                          |
| 790                                    | metabolome of grapevine roots: first insights into the metabolic response upon                                                                                                                                                                                                                                                                                                                                                                                          |
| 791                                    | phylloxera attack. Plant Physiol. Biochem. 49, 1059–1063.                                                                                                                                                                                                                                                                                                                                                                                                               |
| 792                                    | doi:10.1016/j.plaphy.2011.06.008                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 793<br>794<br>795                      | Laznik, Ž., Košir, I.J., Rozman, L., Kač, M., Trdan, S., 2011. Preliminary results of variability in mechanical-induced volatile root-emissions of different maize cultivars. Maydica 56, 343–350.                                                                                                                                                                                                                                                                      |
| 796                                    | Loreto, F., Schnitzler, JP., 2010. Abiotic stresses and induced BVOCs. Trends Plant                                                                                                                                                                                                                                                                                                                                                                                     |
| 797                                    | Sci. 15, 154–166. doi:10.1016/j.tplants.2009.12.006                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 798<br>799                             | Maffei, M.E., 2010. Sites of synthesis, biochemistry and functional role of plant volatiles. South African J. Bot. 76, 612–631. doi:10.1016/j.sajb.2010.03.003                                                                                                                                                                                                                                                                                                          |
| 800<br>801                             | Matsui, K., 2006. Green leaf volatiles: hydroperoxide lyase pathway of oxylipin metabolism. Curr. Opin. Plant Biol. 9, 274–280.                                                                                                                                                                                                                                                                                                                                         |
| 802<br>803<br>804<br>805<br>806        | Matsui, K., Minami, A., Hornung, E., Shibata, H., Kishimoto, K., Ahnert, V., Kindl, H., Kajiwara, T., Feussner, I., 2006. Biosynthesis of fatty acid derived aldehydes is induced upon mechanical wounding and its products show fungicidal activities in cucumber. Phytochemistry 67, 649–657. doi:10.1016/j.phytochem.2006.01.006                                                                                                                                     |
| 807                                    | Min, D.B., Callison, A.L., Lee, H.O., 2003. Singlet oxygen oxidation for 2-                                                                                                                                                                                                                                                                                                                                                                                             |
| 808                                    | pentylfuran and 2-pentenylfuran formation in soybean oil. J. Food Sci. 68, 1175–                                                                                                                                                                                                                                                                                                                                                                                        |
| 809                                    | 1178.                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 810                                    | Neveu, N., Grandgirard, J., Nenon, J.P., Cortesero, A.M., 2002. Systemic release of                                                                                                                                                                                                                                                                                                                                                                                     |
| 811                                    | herbivore-induced plant volatiles by turnips infested by concealed root-feeding                                                                                                                                                                                                                                                                                                                                                                                         |
| 812                                    | larvae <i>Delia radicum</i> L. J. Chem. Ecol. 28, 1717–1732.                                                                                                                                                                                                                                                                                                                                                                                                            |
| 813                                    | Palma, R., Mutis, A., Manosalva, L., Ceballos, R., Quiroz, A., 2012. Behavioral and                                                                                                                                                                                                                                                                                                                                                                                     |
| 814                                    | electrophysiological responses of <i>Hylastinus obscurus</i> to volatiles released from                                                                                                                                                                                                                                                                                                                                                                                 |
| 815                                    | the roots of <i>Trifolium pratense</i> L. J. Soil Sci. Plant Nutr. 12, 183–193.                                                                                                                                                                                                                                                                                                                                                                                         |

| 816                      | Peñuelas, J., Asensio, D., Tholl, D., Wenke, K., Rosenkranz, M., Piechulla, B.,                                                                                                                                                                                              |
|--------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 817                      | Schnitzler, J.P., 2014. Biogenic volatile emissions from the soil. Plant. Cell                                                                                                                                                                                               |
| 818                      | Environ. 37, 1866–1891. doi:10.1111/pce.12340                                                                                                                                                                                                                                |
| 819                      | Piesik, D., Lyszczarz, A., Tabaka, P., Lamparski, R., Bocianowski, J., Delaney, K.J.,                                                                                                                                                                                        |
| 820                      | 2010. Volatile induction of three cereals: influence of mechanical injury and                                                                                                                                                                                                |
| 821                      | insect herbivory on injured plants and neighbouring uninjured plants. Ann. Appl.                                                                                                                                                                                             |
| 822                      | Biol. 157, 425–434. doi:10.1111/j.1744-7348.2010.00432.x                                                                                                                                                                                                                     |
| 823                      | Piesik, D., Panka, D., Delaney, K.J., Skoczek, A., Lamparski, R., Weaver, D.K.,                                                                                                                                                                                              |
| 824                      | 2011. Cereal crop volatile organic compound induction after mechanical injury,                                                                                                                                                                                               |
| 825                      | beetle herbivory ( <i>Oulema</i> spp.), or fungal infection ( <i>Fusarium</i> spp.). J. Plant                                                                                                                                                                                |
| 826                      | Physiol. 168, 878–886.                                                                                                                                                                                                                                                       |
| 827                      | Quintero, C., Barton, K.E., Boege, K., 2013. The ontogeny of plant indirect defenses.                                                                                                                                                                                        |
| 828                      | Perspect. Plant Ecol. Evol. Syst. 15, 245–254. doi:10.1016/j.ppees.2013.08.003                                                                                                                                                                                               |
| 829<br>830<br>831        | R Core Team, 2015. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.r-project.org/.                                                                                                          |
| 832<br>833<br>834        | Radhika, V., Kost, C., Bartram, S., Heil, M., Boland, W., 2008. Testing the optimal defence hypothesis for two indirect defences: extrafloral nectar and volatile organic compounds. Planta 228, 449–457. doi:10.1007/s00425-008-0749-6                                      |
| 835<br>836<br>837<br>838 | <ul> <li>Rasmann, S., Hiltpold, I., Ali, J., 2012. The role of root-produced volatile secondary metabolites in mediating soil interactions, in: Montanaro, G., Bartolomeo, D. (Eds.), Advances in Selected Plant Physiology Aspects. InTech, Rijeka, pp. 269–290.</li> </ul> |
| 839                      | Rasmann, S., Köllner, T.G., Degenhardt, J., Hiltpold, I., Toepfer, S., Kuhlmann, U.,                                                                                                                                                                                         |
| 840                      | Gershenzon, J., Turlings, T.C.J., 2005. Recruitment of entomopathogenic                                                                                                                                                                                                      |
| 841                      | nematodes by insect-damaged maize roots. Nature 434, 732–737.                                                                                                                                                                                                                |
| 842                      | doi:10.1038/nature03451                                                                                                                                                                                                                                                      |
| 843                      | Robert, C.A.M., Erb, M., Duployer, M., Zwahlen, C., Doyen, G.R., Turlings, T.C.J.,                                                                                                                                                                                           |
| 844                      | 2012. Herbivore-induced plant volatiles mediate host selection by a root                                                                                                                                                                                                     |
| 845                      | herbivore. New Phytol. 194, 1061–1069. doi:10.1111/j.1469-8137.2012.04127.x                                                                                                                                                                                                  |
| 846<br>847<br>848        | Rostás, M., Cripps, M.G., Silcock, P., 2015. Aboveground endophyte affects root volatile emission and host plant selection of a belowground insect. Oecologia 177, 487–497. doi:10.1007/s00442-014-3104-6                                                                    |
| 849<br>850<br>851        | Rostás, M., Eggert, K., 2008. Ontogenetic and spatio-temporal patterns of induced volatiles in <i>Glycine max</i> in the light of the optimal defence hypothesis. Chemoecology 18, 29–38. doi:10.1007/s00049-007-0390-z                                                      |
| 852<br>853<br>854        | Shiojiri, K., Karban, R., 2006. Plant age, communication, and resistance to herbivores: young sagebrush plants are better emitters and receivers. Oecologia 149, 214–220. doi:10.1007/s00442-006-0441-0                                                                      |
| 855                      | Shiojiri, K., Karban, R., Ishizaki, S., 2011. Plant age, seasonality, and plant                                                                                                                                                                                              |
| 856                      | communication in sagebrush. J. Plant Interact. 6, 85–88.                                                                                                                                                                                                                     |
| 857                      | doi:10.1080/17429145.2010.545959                                                                                                                                                                                                                                             |
| 858                      | Siedow, J.N., 1991. Plant lipoxygenase: structure and function. Annu. Rev. Plant                                                                                                                                                                                             |

| ACCEPTED | MANUSCRIPT |
|----------|------------|
|----------|------------|

859 Physiol. Plant Mol. Biol. 42, 145-188. 860 Silva-Navas, J., Moreno-Risueno, M.A., Manzano, C., Pallero-Baena, M., Navarro-Neila, S., Téllez-Robledo, B., Garcia-Mina, J.M., Baigorri, R., Gallego, F.J., del 861 862 Pozo, J.C., 2015. D-Root: a system for cultivating plants with the roots in darkness or under different light conditions. Plant J. 84, 244-255. 863 864 doi:10.1111/tpj.12998 Steeghs, M., Bais, H.P., de Gouw, J., Goldan, P., Kuster, W., Northway, M., Fall, R., 865 866 Vivanco, J.M., 2004. Proton-transfer-reaction mass spectrometry as a new tool 867 for real time analysis of root-secreted volatile organic compounds in Arabidopsis. Plant Physiol. 135, 47–58. doi:10.1104/pp.104.038703 868 869 Stewart, D.W., Dwyer, L.M., 1987. Analysis of phenological observations on barley 870 (Hordeum vulgare) using the feekes scale. Agric. For. Meteorol. 39, 37–48. 871 Surrey, K., 1964. Spectrophotometric method for determination of lipoxidase activity. 872 Plant Physiol. 39, 65-70. 873 Sutherland, O.R., Hillier, J., 1974. Olfactory response of *Costelytra zealandica* 874 (Coleoptera: Melolonthinae) to the roots of several pasture plants. New Zeal. J. 875 Zool. 1, 365–369. 876 Tapia, T., Perich, F., Pardo, F., Palma, G., Quiroz, A., 2007. Identification of volatiles 877 from differently aged red clover (Trifolium pratense) root extracts and 878 behavioural responses of clover root borer (*Hylastinus obscurus*) (Marsham) 879 (Coleoptera : Scolytidae) to them. Biochem. Syst. Ecol. 35, 61-67. doi:10.1016/j.bse.2006.05.020 880 881 Turlings, T.C.J., Hiltpold, I., Rasmann, S., 2012. The importance of root-produced 882 volatiles as foraging cues for entomopathogenic nematodes. Plant Soil 358, 51-883 60. doi:10.1007/s11104-012-1295-3 884 van Dam, N.M., Samudrala, D., Harren, F.J.M., Cristescu, S.M., 2012. Real-time 885 analysis of sulfur-containing volatiles in Brassica plants infested with root-886 feeding *Delia radicum* larvae using proton-transfer reaction mass spectrometry. AoB Plants 2012, pls021. doi:10.1093/aobpla/pls021 887 888 van Tol, R., van der Sommen, A.T.C., Boff, M.I.C., van Bezooijen, J., Sabelis, M.W., 889 Smits, P.H., 2001. Plants protect their roots by alerting the enemies of grubs. Ecol. Lett. 4, 292-294. 890 891 Weissteiner, S., Huetteroth, W., Kollmann, M., Weißbecker, B., Romani, R., 892 Schachtner, J., Schütz, S., 2012. Cockchafer larvae smell host root scents in soil. 893 PLoS One 7, e45827. doi:10.1371/journal.pone.0045827 894 Wenke, K., Kai, M., Piechulla, B., 2010. Belowground volatiles facilitate interactions 895 between plant roots and soil organisms. Planta 231, 499-506. doi:10.1007/s00425-009-1076-2 896 897 Yokawa, K., Kagenishi, T., Kawano, T., Mancuso, S., Baluška, F., 2011. Illumination 898 of Arabidopsis roots induces immediate burst of ROS production. Plant Signal. 899 Behav. 6, 1460-1464. doi:10.4161/psb.6.10.18165 900 Zadoks, J.C., Chang, T.T., Konzak, C.F., 1974. A decimal code for the growth stages 901 of cereals. Weed Res. 14, 415-421.

- Zhang, P.-Y., Chen, K.-S., He, P.-Q., Liu, S.-H., Jiang, W.-F., 2008. Effects of crop
  development on the emission of volatiles in leaves of *Lycopersicon esculentum*and its inhibitory activity to *Botrytis cinerea* and *Fusarium oxysporum*. J. Integr.
  Plant Biol. 50, 84–91. doi:10.1111/j.1744-7909.2007.00597.x
- 2hu, J., Park, K.-C., 2005. Methyl salicylate, a soybean aphid-induced plant volatile
  attractive to the predator *Coccinella septempunctata*. J. Chem. Ecol. 31, 1733–
  1746. doi:10.1007/s10886-005-5923-8
- 209 Zhuang, H., Hamilton-Kemp, T.R., Andersen, R.A., Hildebrand, D.F., 1992.
  210 Developmental change in C6-aldehyde formation by soybean leaves. Plant
- 911 Physiol. 100, 80–87.

912

913 **Table 1.** Selected developmental stages for the analysis of VOCs produced by barley

914 roots.

| Developmental s | stages  | Age (days) | Age (GDD)      | Description                        |
|-----------------|---------|------------|----------------|------------------------------------|
|                 |         |            |                | Coleoptile emerged from caryopsis; |
| Germination     | 07 - 10 | ) 3        | $51.1 \pm 1.2$ | first leaf sometimes through the   |
|                 |         |            |                | coleoptile                         |
| Sadling growth  | 11      | 7          | $117.8\pm2.7$  | First leaf unfolded                |
| Seeding growin  | 13      | 17         | $284.9\pm2.1$  | Three leaves unfolded              |
| Tilloning       | 21 - 22 | 28         | $470.3\pm2.4$  | Main shoot and one or two tillers  |
| Thiering        | 22 - 24 | 38         | $639.8\pm2.2$  | Main shoot and two to four tillers |
|                 |         |            |                |                                    |

Plant age data expressed in GDD are shown as mean  $\pm$  s.d. Developmental stages are

916 codified according to Zadoks et al. 1974.

917

918 **Table 2.** VOCs produced by crushed barley roots.

| CAS<br>number | IUPAC name                              | RI <sub>C</sub> | <b>RI</b> Std | <b>RI</b> <sub>Ref</sub> | Main <i>m/z</i> ratios in mass spectra                                   |
|---------------|-----------------------------------------|-----------------|---------------|--------------------------|--------------------------------------------------------------------------|
| 66-25-1       | Hexanal                                 | 1092            | 1090          | 1084 <sup>a</sup>        | 57 (70.5%), 56 (100%), 44 (98.5%),<br>43 (67.7%), 41 (95.4%)             |
| 6728-26-3     | (E)-hex-2-enal                          | 1230            | 1228          | 1207 <sup>a</sup>        | 83 (72.8%), 69 (78.7%), 55 (88.1%),<br>42 (54.3%), 41 (100%), 39 (72.9%) |
| 18829-56-6    | (E)-non-2-enal                          | 1529            | 1525          | 1540 <sup>a</sup>        | 83 (78.7%), 70 (95.1%), 55 (97.0%),<br>43 (82.3%), 41 (100%)             |
| 557-48-2      | ( <i>E</i> , <i>Z</i> )-nona-2,6-dienal | 1579            | 1574          | 1597 <sup>b</sup>        | 70 (85.8%), 69 (78.4%), 67 (22.4%),<br>41 (100%), 39 (33.3%)             |

919 In addition to the comparison of mass spectral data and calculated retention indices

920 (RI<sub>C</sub>) with those of authentic standards (RI<sub>Std</sub>), VOC identification was assessed by

921 comparing calculated retention indices with those reported in the literature ( $RI_{Ref}$ ). For

922 each identified molecule, the relative abundance of the main m/z ratios in mass spectra

923 corresponding to the chromatogram presented in Fig. 2A is shown in parentheses.

924 <sup>a</sup> RI<sub>Ref</sub> was taken from (Jennings and Shibamoto, 1980)

925 <sup>b</sup> RI<sub>Ref</sub> was taken from (Ferreira et al. 2001).

| 926 | <b>Fig. 1.</b> Experimental device used for the sampling of VOCs emitted by 17-day-old |
|-----|----------------------------------------------------------------------------------------|
| 927 | barley roots in an artificial soil.                                                    |

928

| <b>116. 1</b> Splear enrolladogranis obtained for the GC first analysis of VOCs produced | v OCs produced |
|------------------------------------------------------------------------------------------|----------------|
|------------------------------------------------------------------------------------------|----------------|

- 930 by crushed 3-day-old barley roots. The mass spectrometer operated in synchronous
- 931 SCAN (A) and SIM (B) modes. IS, internal standard (3,5,5-trimethylhexanal); 1,

932 hexanal; 2, (*E*)-hex-2-enal; 3, (*E*)-non-2-enal; 4, (*E*,*Z*)-nona-2,6-dienal; a, pent-1-en-

933 3-ol; b, 3-methyl-but-3-en-1-ol; c, (*E*)-hept-2-enal; d, hexan-1-ol; e, (*E*)-oct-2-enal; f,

934 acetic acid.

935

**Fig. 3.** Evolution of the total volatile aldehyde concentration (A),  $C_6/C_9$  volatile

aldehyde ratio (B) and the hexanal (C), (E)-hex-2-enal (D), (E)-non-2-enal (E) and

938 (E,Z)-nona-2,6-dienal (F) concentrations in barley roots according to plant age. Data

are shown as mean  $\pm$  s.e. (n = 7 for plants analysed at 285 GDD, n = 8 for other

940 developmental stages). For each variable, a one-way ANOVA followed by a Newman

and Keuls test was performed using plant age as a fixed factor. Mean values sharing

942 the same letter did not statistically differ according to plant age (P > 0.05).

943

```
944 Fig. 4. Hexanal, (E)-hex-2-enal, (E)-non-2-enal and (E,Z)-nona-2,6-dienal relative
```

945 proportions in VOC profiles produced by barley roots according to plant age. Data are

```
shown as mean \pm s.e. (n = 7 for plants analysed at 285 GDD, n = 8 for other
```

947 developmental stages). For each VOC, a one-way ANOVA followed by a Newman

and Keuls test was performed using plant age as a fixed factor. Mean values sharing

949 the same letter did not statistically differ according to plant age (P > 0.05).

950

| 951 | Fig. 5. Evolution of the LOX activity measured in barley roots according to plant age.    |
|-----|-------------------------------------------------------------------------------------------|
| 952 | Data are shown as mean $\pm$ s.e. (n = 4). For each fatty acid used as a LOX substrate, a |
| 953 | one-way ANOVA followed by a Newman and Keuls test was performed using plant               |
| 954 | age as a fixed factor. Mean values sharing the same letter did not statistically differ   |
| 955 | according to plant age ( $P > 0.05$ ).                                                    |
| 956 |                                                                                           |
| 957 | Fig. 6. Typical SIM chromatograms obtained for the GC-MS analysis of VOCs                 |
| 958 | emitted by the artificial soil alone (A) and undamaged (B) or mechanically damaged        |
| 959 | (C) 17-day-old barley roots produced in an artificial soil. The mass spectrometer         |
| 960 | operated in synchronous SCAN and SIM modes. 3, (E)-non-2-enal; 4, (E,Z)-nona-2,6-         |
| 961 | dienal.                                                                                   |
| 962 |                                                                                           |
| 963 | Fig. 7. Recovery rates of five VOC standards injected into the soil. Data are shown as    |
| 964 | mean $\pm$ s.e. (n = 4). Mean values were compared using one-way ANOVA followed by        |
| 965 | a Newman and Keuls test. Mean values sharing the same letter were not statistically       |
| 966 | different ( $P > 0.05$ ).                                                                 |
| 967 |                                                                                           |

968 Fig. S1. Calibration curves used for the quantification of VOCs produced by crushed969 barley roots.

970

971 Fig. S2. Calibration curves used for the quantification of VOCs emitted in situ by972 mechanically damaged barley roots.















- VOCs produced by barley roots were analysed at 5 phenological stages.
- Hexanal, (*E*)-hex-2-enal, (*E*)-non-2-enal and (*E*,*Z*)-nona-2,6-dienal were the main identified VOCs.
- VOC production and LOX activity quantitatively varied with plant ontogeny.
- VOCs emitted by barley roots were trapped in situ and quantified by GC-MS.
- (*E*)-non-2-enal and (*E*,*Z*)-nona-2,6-dienal were emitted by mechanically damaged roots.

Barley (*Hordeum distichon* L.) roots synthesise volatile aldehydes with a strong age-dependent pattern and release (*E*)-non-2-enal and (*E*,*Z*)-nona-2,6-dienal after mechanical injury

Benjamin M. Delory, Pierre Delaplace, Patrick du Jardin and Marie-Laure Fauconnier

#### Contributions

Conceived and designed the experiments: BMD, PD, PdJ, MLF.

Performed the experiments: BMD.

Analysed the data: BMD, PD, MLF.

Contributed reagents/materials/analysis tools: PD, PdJ, MLF.

Contributed to the writing of the manuscript: BMD, PD, PdJ, MLF.