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Abstract

This note describes the solution of the Helmholtz equation inside a nanotorus with uniform

Dirichlet boundary conditions. The eigenfunction symmetry is discussed and the lower-order eigen-

values and eigenfunctions are shown. The similarity with the case of a long cylinder and with that

of the vibrations of a circular elastic membrane is discussed. This similarity is used to propose a

classification scheme of the eigenfunctions based on three indices.
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I. INTRODUCTION AND SYMMETRY CONSIDERATIONS

Over the past years, toroidal systems have drawn much interest in solid state physics, sur-

face physics, and photonics in relation with the development of high-Q optical resonators1,

optical nanoantenna2, and carbon nanotori3. The solutions of the Helmholtz equation in

nanotori can be of great help in understanding the physical properties of photons, electrons,

and phonons in systems with toroidal symmetry. For instance, the scalar Helmholtz equa-

tion gives the quantum states of electrons in semiconductor nanotori within the band-mass

approximation and describes the states of confined polar phonons in the same systems. De-

spite its importance, a discussion of the methods of solving the scalar Helmholtz equation

in toroidal systems, as well as a description of its solutions, cannot easily be found in the

scientific literature. A first aim of the present note is to remedy this situation. Also, the

authors of the present note have devoted a complete article4 to the study of free-electron

states and polar phonons in tori. A second aim of the present note is to give more details on

the numerical computations involved in this latter work, Ref. 4. A third goal is pedagogical.

The solutions of the Helmholtz equation in tori can be used as examples or illustrations

in courses of lectures in mathematical physics or on numerical methods of solving partial

differential equations.

We represent the torus in a system of axes with the origin at the torus center and the

Oz axis coinciding with the torus axis. The torus axial symmetry motivates writing the

Helmholtz equation in cylindrical coordinates r, z, ϕ. The symmetry also entails that the
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solution of the three-dimensional Helmholtz equation can be written as

ψn,ν,m(r, z, ϕ) = φn,ν,m(r, z)eimϕ, m = 0, ±1, ±2, ±3, . . . , (1)

leading to the following two-dimensional equation

∂2φn,ν,m(r, z)

∂r2
+

1

r

∂φn,ν,m(r, z)

∂r
+
∂2φn,ν,m(r, z)

∂z2
+

[
k2n,ν,m −

m2

r2

]
φn,ν,m(r, z) = 0. (2)

The boundary conditions determine what are the allowed eigenvalues k2n,ν,m and eigenfunc-

tions φn,ν,m(r, z) of this equation. In this note, we restrict ourselves to the case of uniform

Dirichlet boundary conditions, which impose that the eigenfunctions vanish on the toroid

surface. The meaning of the subscripts n and ν is discussed in more detail in Sec. III. As

for m, its relation with the magnetic quantum number in atomic physics is obvious. As in

atomic or molecular physics, the states corresponding to the different values of m could be

called s, p, d, . . . states in accordance with their symmetry; in fact, as the symmetry of

the torus is not spherical, but cylindrical only, the notation σ, π, δ, . . . would probably be

more appropriate. In the case of tori, there is nothing equivalent to the azimuthal quantum

number l.

The solutions of the Helmholtz equation depend on a single geometrical parameter α =

rM/rm, the ratio of the torus major radius to its minor one. We use the torus minor radius

rm as unit of length, so that all the quantities in the Helmholtz equation are dimensionless.

Accordingly, the unit of kn,ν,m is 1/rm = 1. Due to the existence of a symmetry plane

perpendicular to the torus axis, the eigenfunctions of Eq. (2) are either symmetric or anti-

symmetric with respect to a reflection onto this plane. By analogy with molecular physics,

we label the symmetric states with the superscript + and the antisymmetric ones with the

superscript −. It remains to decide on a further classification to differentiate the states

with the same value of m and the same reflection symmetry. This question of classification

of the solutions of the Helmholtz equation in toroidal systems does not seem to have been

previously considered. As this aspect is more easily discussed for particular examples, we

first specify which methods we use to solve the equation and describe the solutions obtained

with these methods.
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FIG. 1. Lower-order eigenvalues of Helmholtz equation, in units of 1/r2m, versus the ratio of the

torus major radius to its minor one, α = rM/rm. Left, eigenvalues k+2
n,ν,m of symmetric solutions;

right, eigenvalues k−2
n,ν,m of antisymmetric solutions.

II. SOLVING THE SCALAR HELMHOLTZ EQUATION INSIDE A TORUS

Solving the Helmholtz equation consists in finding its eigenvalues k2n,ν,m and the corre-

sponding eigenfunctions φn,ν,m(r, z). The Helmholtz equation does not separate in toroidal

coordinates. This prevents obtaining analytic solutions in a torus. Therefore, we must re-

sort to numerical methods of solving partial differential equations. We use either a spectral

method5 implemented in MATLAB or the finite-element method of MATLAB pdetool6. Of

course, both methods give the same results. The computer programs and many results are

posted on the web page of Ref. 7. Figure 1 shows the fifteen low-order eigenvalues k+2
n,ν,m

for symmetric solutions and k−2
n,ν,m for antisymmetric ones, versus the ratio α = rM/rm. The

reason for labeling the solutions with two indices n and ν, besides m, is discussed in the

next section. The allowed values of n and ν are n = 1, 2, 3, . . . and ν = 0, 1, 2, . . . , with

the exception that the value ν = 0 is not allowed in the case of antisymmetric solutions.

Notice that the eigenvalues with the same n and ν, but different values of m, tend toward
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identical limits for α→∞. These limits are the eigenvalues of the Helmholtz equation in a

circular right cylinder of infinite length. This is discussed in more detail in the next section,

Sec. III. Also notice the crossing of some curves representing the eigenvalues as functions

of α. For example, in the case of symmetric modes, the curve giving the eigenvalue with

n = 1, ν = 0, and m = 4 intersects that of n = 1, ν = 1, and m = 0 or m = 1 at values

of α in the range from 1.2 to 1.3, approximately. This could be the source of interesting

applications. For instance, in tori with appropriate dimensions, phonon-assisted transitions

between two electron states with close energies could be used to populate states not attain-

able by direct optical transitions. In Ref. 4, we discuss in more detail the possible role of

this near degeneracy in nanotori.

Figure 2 shows graphs of the first four symmetrical solutions with the lowest eigenvalues,

as functions of the cylindrical coordinates r and z in the circular section of the toroid by

the axial plane ϕ = 0. These solutions correspond to α = rM/rm = 1.1 and m = 0. Their

squares are normalized to unity on the circular section. Contour lines are represented on the

graphs, labeled with the corresponding values of the eigenfunction. In all the graphs of the

eigenfunctions drawn in the present note, the red curve indicates the circular torus section.

Recall that the torus axis of symmetry coincides with the Oz axis. Many other solutions

are shown on the web page of Ref. 7.

The solutions with ν = 0 show more or less concentric antinodes with a central one next

to the circle center. The distance of this central antinode to the section center depends on

the values of m and α. In general, the larger m or the smaller α, the larger the distance

between the antinode and the section center. In the case of ν = 0, the index n gives the

total number of antinodes. This is exemplified by the top left graph with n = 1, ν = 0 and

the bottom right graph with n = 2, ν = 0, in Fig. 2. In the eigenfunctions with ν = 0,

there is no nodal line intersecting the circular boundary, so that these eigenfunctions keep

the same sign in the whole region close to the circular boundary. This is in agreement with

the fact that the value ν = 0 is not allowed for antisymmetric solutions.

In the solutions with ν 6= 0, the antinodes are located on more or less circular rings.

The index n gives the number of rings and ν gives the number of antinodes with the same

phase, say the number of maxima, on each of these rings. As an example, the solutions in

the graphs b and c of Fig. 2 have a single antinodal ring implying that n = 1. The presence

of a single maximum in the solution of graph b means that in this case ν = 1 while ν = 2
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FIG. 2. Low-order symmetric eigenfunctions of the Helmholtz equation in a torus with α =

rM/rm = 1.1, m = 0, and, respectively, a) n = 1, ν = 0, b) n = 1, ν = 1, c) n = 1, ν = 2, and d)

n = 2, ν = 0, versus the position r, z in the circle section of the toroid by the axial plane ϕ = 0.

The eigenfunctions are squared normalized to 1. The black curves on the surfaces are contour lines

labeled with the corresponding eigenfunction values. Of course, the contour lines φ = 0 are nodal

lines separating antinodes. The red curves show the boundary of the circular torus section.

in the case of the solution in graph c.

All that precedes shows that n plays a role similar to that of the principal quantum

number in atomic physics while ν has some similarity with the magnetic quantum number.

However, in the case of ν, the similarity is only superficial since the center of the torus

circular section is not a center of symmetry. For tori, the actual magnetic quantum number
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FIG. 3. Comparison of two symmetrical eigenfunctions of the Helmholtz equation in tori with

n = 1, ν = 0, and different values of m. Here again, α = 1.1. Left, m = 0; right m = 5. The

displacement of the eigenfunction maximum away from the torus axis with increasing values of |m|
is clearly visible.

is the parameter m previously defined.

The shape of the eigenfunctions in the section of the toroid by the ϕ = 0 axial plane

depends noticeably on the value of m. The position of the antinodes moves away from the

torus axis with increasing absolute values of m, i.e., with increasing angular momentum.

This is shown in Fig. 3 which compares the eigenfunctions with n = 1, ν = 0, and either

m = 0 or m = 5. Again, the value chosen for the ratio of the torus major axis to its minor

one is α = 1.1. In classical mechanics of massive particles or solids, the displacement away

from the axis of rotation is due to the centrifugal force. As illustrated here, a similar effect

exists in wave mechanics. This correspondence between classical particle mechanics and

wave mechanics is a conceptual fact worth to be noticed.

The geometrical properties of the eigenfunctions of the Helmholtz equation in circular

tori discussed here are in direct relation with that in the case of very long circular cylinders.

Indeed, at the limit of a very large major radius to minor radius ratio, i.e., α→∞, tori tend

toward this type of cylinders. Therefore, the comparison with the case of cylinders should

help to understand the geometrical features of the eigenfunctions in tori and the meaning

of the n and ν labels introduced here. This justifies that we now turn to a description of

the solutions of the Helmholtz equation in long cylinders and to the comparison of these

solutions with those in the case of tori.
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III. COMPARISON WITH THE SOLUTIONS IN A CIRCULAR CYLINDER

For α→∞, the torus tends toward a right circular cylinder of length l = 2πrM . The torus

major circumference becomes the cylinder axis of revolution and the section of the toroid

by an axial plane tends to the section of the cylinder by a plane normal to the cylinder

axis. This leads to write the Helmholtz equation in a different set of cylindrical coordinates

ρ, ζ, θ such that Oζ coincides with the cylinder axis and ρ, θ are the polar coordinates in the

cylinder circular section. Contrary to the case of tori, the Helmholtz equation separates for

cylinders. This is a classic problem in mathematical physics; see, e.g., Ref. 8, Sec. 6.3.4. For

the sake of similarity with the case of tori, we impose periodic boundary conditions along

the cylinder axis. Then, the solution is

ψc = e2iπmζ/lηn,ν(ρ, θ) (3)

and the Helmholtz equation reduces to the following two-dimensional equation

∂2ηn,ν(ρ, θ)

∂ρ2
+

1

ρ

∂ηn,ν(ρ, θ)

∂ρ
+

1

ρ2
∂2ηn,ν(ρ, θ)

∂θ2
+

[
κ2n,ν −

(
2πm

l

)2
]
ηn,ν(ρ, θ) = 0. (4)

The meaning of the indices n and ν will become clear hereafter. For our purpose, we restrict

ourselves to the case l→∞ with m remaining finite. Then, the last term between the square

brackets in Eq. (4) is negligible and the problem reduces to finding the time-independent

part of the normal modes of vibration of an elastic circular membrane, which is a well-known

problem in mathematical physics. For a time-dependent visualization of these modes, see

Ref. 9. For more detail on the separation of variables in cylindrical coordinates, see the

case of Laplace equation, Ref. 10, Sec. 3.7. The eigenvalues of Eq. (4) are κ2n,ν = ω2
n,ν/c

2

where ωn,ν denotes the angular frequencies of the vibrating-membrane normal modes and c,

the velocity of transverse vibrations propagating in the membrane. In velocity units such

that c = 1, the eigenvalues of Eq. (4) are the squares of the angular frequencies of the

vibrating-membrane normal modes.

The separation of variables gives two types of solutions. The solutions of the first type

are

η+n,ν(ρ, θ) = Jν (κn,νρ) cos νθ. (5)

They are symmetric with respect to the reflection transformation θ → − θ. Those of the

second type are antisymmetric with respect to the same transformation. They are written
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as

η−n,ν(ρ, θ) = Jν (κn,νρ) sin νθ. (6)

The condition that the solution be single valued implies that ν = 0, 1, 2, . . . . However,

as shown by Eq. (6), the antisymmetric solutions with ν = 0 do not exist. The similarity

with the case of tori explains that these solutions do not exist in tori as well. Recall that

in the present note, we restrict ourselves to uniform Dirichlet conditions. As in the case

of tori, we use units such that the radius of the circular section be equal to 1. Then, the

Dirichlet boundary conditions, which require that the solutions vanish on the circle, give

κ2n,ν = x2ν,n, where xν,n denotes the nth zero of the Bessel function Jν , as allowed eigenvalues

of the Helmholtz equation. Those of the normal modes with n = 1, 2, or 3 and n = 1

or 2 are given on the last line of Table I. Contrary to the case of tori, the symmetric and

antisymmetric solutions with same n and ν have the same eigenvalues with, of course, the

exception of ν = 0 for which the antisymmetric solutions do not exist.

There does not seem to be an agreement on the notation to use for the indices of the

eigenvalues and eigenfunctions of the Helmholtz equation in cylinders. The first index gives

the number of radial antinodes and, therefore, plays a role similar to that of the principal
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FIG. 4. Comparison between the solutions in a torus and a cylinder. Left: torus symmetric

eigenfunction with n = 2, ν = 3, m = 0, and α = 1.01; right: long-cylinder symmetric eigenfunction

with n = 2 and ν = 3. In the case of the cylinder, the coordinates are x = ρ cos θ and y = ρ sin θ.

The red curves are the contour lines φ = 0 or η = 0. As before, the functions squared are normalized

to 1 on the circular sections. The similarity in the number and position of the antinodes in the

two graphs is apparent.
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quantum number in atomic physics. For this reason we call it n, as we did in the torus case.

The second index specifies the symmetry of the eigenfunction with respect to rotations

around the cylinder axis, so that the notation m would be appropriate. However, our

purpose here is the comparison with the case of tori which have a different axis of rotation

and for which we have accordingly used the notation m earlier. This leads us to somewhat

arbitrarily choose the same notation ν for cylinders as for tori.

Let us compare the results for long cylinders with that of tori on an example. Con-

sider, e.g., the symmetric solution of Eq. (5) with ν = 3 and n = 2, namely η+2,3(ρ, θ) =

J3(x3,2 ρ) cos 3θ. Compare it with the 11th symmetric eigenfunction for a torus with m = 0

and a ratio α = 1.01. In this case, the torus wall almost touches the torus axis. The left

graph of Fig. 4 shows this eigenfunction in the circle intersection of the torus with an axial

plane, while the graph on the right shows the solution for the cylinder in the intersection

TABLE I. Comparison of Helmholtz-equation eigenvalues in a torus and in an infinitely long right

cylinder. In this latter case, the eigenvalues are the squared eigenfrequencies of a vibrating elastic

circular membrane. The notations α and m are defined in Sec. I.

n = 1, ν = 0 n = 1, ν = 1 n = 1, ν = 2 n = 2, ν = 0 n = 2, ν = 1 n = 2, ν = 2

α = 3, m = 1

k+2
n,ν,1 5.8697 14.773 26.466 30.561 49.315 70.950

k−2
n,ν,1 - 14.768 26.465 - 49.309 70.950

α = 3, m = 0

k+2
n,ν,0 5.7544 14.652 26.346 30.444 49.194 70.831

k−2
n,ν,0 - 14.654 26.346 - 49.195 70.831

α = 10, m = 1

k+2
n,ν,1 5.7908 14.690 26.384 30.481 49.231 70.867

k−2
n,ν,1 - 14.690 26.384 - 49.231 70.868

α = 10, m = 0

k+2
n,ν,0 5.7808 14.680 26.374 30.471 49.221 70.857

k−2
n,ν,0 - 14.680 26.374 - 49.221 70,858

long cylinder

κ2n,ν 5.7832 14.682 26.375 30.471 49.219 70.850

10



with a plane normal to the cylinder axis. In spite of the extremely small value of the torus

α ratio, there is a surprisingly high similarity between the two functions, at least from the

quantitative point of view. This justifies that we use the same indices to identify the eigen-

functions of the Helmholtz equation in tori as well as in cylinders. We previously observed

that the eigenvalues of the Helmholtz equation in tori should tend to those in long cylinders

for α→∞. This is illustrated in Table I, which gives the symmetric eigenvalues k+2
n,ν,m and

the antisymmetric ones k−2
n,ν,m for ν = 0, 1, and 2, n = 1 and 2, and m = 0 or 1, for α = 3

and α = 10 and compare them with the corresponding eigenvalues κ2n,ν for long cylinders.

IV. CONCLUSIONS

As stated in the introduction, the goal of this note is to provide the researchers interested

in the Helmholtz equation in toroidal systems with a description of its solutions and an

information on their basic properties. This should enable them to use the computer programs

available on the associated web page, Ref. 7, to obtain eigenvalues and eigenfunctions of the

Helmholtz equation in accordance with their specific needs. Another goal is to provide

teachers in charge of a course of lectures in mathematical physics or in numerical methods

of solving partial differential equations with examples and illustrations. Our expectation is

that we have reached these goals.
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