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Abstract

This chapter falls within the context of the optimization of the levelized energy cost (LEC)
of microgrids featuring photovoltaic panels (PV) associated with both long-term (hydrogen) and
short-term (batteries) storage devices. First, we propose a novel formalization of the problem of
building and operating microgrids interacting with their surrounding environment. Then we show
how to optimally operate a microgrid using linear programming techniques in the context where the
consumption and the production are known. It appears that this optimization technique can also
be used to address the problem of optimal sizing of the microgrid, for which we propose a robust
approach. These contributions are illustrated in two different settings corresponding to Belgian and
Spanish data.

1 Introduction
Economies of scale of conventional power plants have progressively led to the development of the very
large and complex electrical networks that we know today. These networks transmit and distribute the
power generated by these power plants to the consumers. Over recent years, a new trend opposing
this centralization of power facilities has been observed, resulting from the drop in price of distributed
generation, mainly solar photovoltaic (PV) panels [1]. Due to this effect, it is expected that in the future,
small scale industries and residential consumers of electricity will rely more and more on local renewable
energy production capacities for covering, at least partially, their need for electrical power. This leads to
the creation of the so-called microgrids that are electrical systems which include loads and distributed
energy resources that can be operated in parallel with the broader utility grid or as an electrical island.
State-of-the-art issues and feasible solutions associated with the deployment of microgrids are discussed
in [2].

Due to the fluctuating nature of renewable energy sources (RES) (mainly solar and wind energy),
small businesses and residential consumers of electricity may also be tempted to combine their local power
plants with storage capacities. In principle, this would, at least partially, allow themselves freedom from
using the network, enabling balancing their own electricity generation with their own consumption. This
would result in paying less in transmission and distribution fees which typically make up around 50%
of their electricity bill. Many different technologies are available for energy storage as discussed in the
literature (see e.g. [3]). On the one hand, hydrogen is often considered as a storage solution to be
combined with RES [4, 5], mainly due to its high capacity potential that makes it suitable for long-term
storage [6, 7]. On the other hand, batteries are often used to ensure sufficient peak power storage and
peak power generation [8]. In this chapter we focus on the specific case of microgrids that are powered
by PV panels combined with both hydrogen-based storage technologies (electrolysis combined with fuel
cells) and batteries (such as, for instance, LiFePO4 batteries). These two types of storage aim at fulfilling,
at best, the demand by addressing the seasonal and daily fluctuations of solar irradiance.

One of the main problems to be addressed in the field of microgrids is how to perform optimal
sizing. The main challenge when sizing microgrids comes from the need to determine and simulate their
operation, i.e. the dispatch strategy, using historical data of the loads and of the RES. Broadly speaking,
the research presented in this paper relates to the research that has been done for solving planning and
scheduling problems in the field of electrical power systems. In this context, various methods have been
investigated, for instance model predictive control (MPC) [9] or learning-based approaches [10, 11]. One
can also mention commercial solutions such as the well-known energy modeling software HOMER [12],
dedicated to hybrid renewable energy systems.
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In this chapter, we first propose a novel and detailed formalization of the problem of sizing and
operating microgrids. Then, we show how to optimally operate a microgrid so that it minimizes a
levelized energy cost (LEC) criterion in the context where the energy production and demand are known.
We show that this optimization step can be achieved efficiently using linear programming. We then show
that this optimization step can also be used to address the problem of optimal sizing of the microgrid,
for which we propose a robust approach by considering several energy production and consumption
scenarios. We run experiments using real data corresponding to the case of typical residential consumers
of electricity located in Spain and in Belgium. Experimental results show that there is an important
benefit in combining batteries and hydrogen-based storage, in particular when the cost for interruption
(value of loss load) in the supply is high. Note that this chapter focuses on the production planning and
optimal sizing of the microgrid, and that the real-time control aspects of the microgrid to maintain both
angle stability and voltage quality are left out of the scope of the chapter (see e.g. [13] for more details
on that subject).

Subsequently, the chapter is organized as follows. A detailed formalization of the microgrid framework
is proposed in Section (2) and several optimization schemes for minimizing the LEC are introduced in
Section (3). The simulation results for Belgium and Spain are finally reported in Section (4) while
Section (5) provides the conclusion.

2 Formalization and problem statement
In this section we provide a generic model of a microgrid powered by PV panels combined with batteries
and hydrogen-based storage technologies. We formalize its constitutive elements as well as its dynamics
within the surrounding environment. For the sake of clarity, we first define the space of exogenous
variables and then gradually build the state and action spaces of the system. The components of these
two latter spaces will be related to either the notion of infrastructure or the notion of operation of the
microgrid. We then characterize the problem of sizing and control that we want to address using an
optimality criterion, which leads to the formalization of an optimal sequential decision-making problem.
The evolution of the system is described as a discrete-time process over a finite time-horizon of length
T . We denote by T the set {1, ..., T} of time periods and by ∆t the duration of a time step. We use
subscript t to reference exogenous variables, state and actions at time step t. Finally we introduce the
notion of LEC and discuss how it can be used as an optimality criterion.

2.1 Exogenous variables
We start with a definition of the microgrid’s environment, i.e. the space of exogenous variables that affect
the microgrid but on which the latter has no control. Assuming that there exists, respectively, J , L,
and M different photovoltaic, battery, and hydrogen storage technologies, and denoting the environment
space by E , we can define the time-varying environment vector Et as:

Et = (ct, it, e
PV
1,t , ..., e

PV
J,t , e

B
1,t, ..., e

B
L,t, e

H2
1,t , ..., e

H2

M,t,µt) ∈ E , ∀t ∈ T (1)

and with E = R+2 ×
J∏
j=1

EPVj ×
L∏
l=1

EBl ×
M∏
m=1

EH2
m × I , (2)

where:

• ct [W] ∈ R+ is the electricity demand within the microgrid;

• it [W/m2 or W/Wp] ∈ R+ denotes the solar irradiance incident to the PV panels;

• ePVj,t ∈ EPVj , ∀j ∈ {1, ..., J}, models a photovoltaic technology in terms of cost cPVj,t [e/m2], lifetime
LPVj,t [s] and efficiency ηPVj,t to convert solar irradiance to electrical power:

ePVj,t = (cPVj,t , L
PV
j,t , η

PV
j,t ) ∈ EPVj , ∀j ∈ {1, ..., J} and with EPVj = R+2× ]0, 1] ; (3)

• eBl,t ∈ EBl , ∀l ∈ {1, ..., L}, represents a battery technology in terms of cost cBl,t [e/Wh], lifetime LBl
[s], cycle durability DB

l,t , power limit for charge and discharge PBl,t [W], discharge efficiency ζBl,t ,
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and charge retention rate rBl,t [s
−1]:

eBl,t = (cBl,t, L
B
l,t, P

B
l,t, η

B
l,t, ζ

B
l,t, r

B
l,t) ∈ EBl , ∀l ∈ {1, ..., L} (4)

and with EBl = R+3× ]0, 1]3 ; (5)

• eH2
m,t ∈ EH2

m , ∀m ∈ {1, ...,M}, denotes a hydrogen storage technology in terms of cost cH2
m,t [e/Wp],

lifetime LH2
m,t [s], maximum capacity RH2

m,t [W], electrolysis efficiency ηH2
m,t (i.e. when storing energy),

fuel cells efficiency ζH2
m,t (i.e. when delivering energy), and charge retention rate rH2

m,t [s−1]:

eH2
m,t = (cH2

m,t, L
H2
m,t, R

H2
m,t, η

H2
m,t, ζ

H2
m,t, r

H2
m,t) ∈ EH2

m , ∀m ∈ {1, ...,M} (6)

and with EH2
m = R+3× ]0, 1]3 . (7)

Finally, the components denoted by µt ∈ I represent the model of interaction. By model of interaction
we mean all the information that is required to manage and evaluate the costs (or benefits) related to
electricity exchanges between the microgrid and the rest of the system. We assume that µt is composed
of two components k and β:

µt = (k, β) ∈ I, ∀ t ∈ T and with I = R+2
. (8)

The variable β characterizes the price per kWh at which it is possible to sell energy to the grid (it is
set to 0 in the case of an off-grid microgrid). The variable k refers to the cost endured per kWh that
is not supplied within the microgrid. In a connected microgrid, k corresponds to the price at which
electricity can be bought from outside the microgrid. In the case of an off-grid microgrid, the variable k
characterizes the penalty associated with a failure of the microgrid to fulfill the demand. This penalty
is known as the value of loss load and corresponds to the amount that consumers of electricity would be
willing to pay to avoid a disruption to their electricity supply.

2.2 State space
Let st ∈ S denote a time varying vector characterizing the microgrid’s state at time t ∈ T :

st = (s
(s)
t , s

(o)
t ) ∈ S, ∀t ∈ T and with S = S(s) × S(o) , (9)

where s(s)
t ∈ S(s) and s

(o)
t ∈ S(o) respectively represent the state information related to the infrastructure

and to the operation of the microgrid.

2.2.1 Infrastructure state

The infrastructure state vector s(s)
t ∈ S(s) gathers all the information about the physical and electrical

properties of the devices that constitute the microgrid. Its components can only change because of
investment decisions or due to aging of the devices. In particular, we define this vector as:

s
(s)
t = (xPVt , xBt , x

H2
t , LPVt , LBt , L

H2
t , PBt , R

H2
t , ηPVt , ηBt , η

H2
t , ζBt , ζ

H2
t , rBt , r

H2
t ) ∈ S(s) , (10)

∀t ∈ T and with S(s) = R+8× ]0, 1]7 , (11)

where xPVt [m2], xBt [Wh], and xH2
t [Wp] denote, respectively, the sizing of the PV panels, battery and

hydrogen storage. The other components have the same meaning than the exogenous variables using a
similar symbol, with the difference here that they are specific to the devices that are present at time
t ∈ T in the microgrid. Note that by using such a representation, we consider that, for each device type,
a single device can operate in the microgrid. In other words, an investment decision for a device type
substitutes any prior investment.

2.2.2 Operation state

For the devices with storage capacities, i.e. battery and hydrogen storage, the information provided
by the environment vector Et and by the infrastructure state vector s

(s)
t is not sufficient to determine

the set of their feasible power injections or demands. Additional information that corresponds to the
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amount of energy stored in these devices for each time period is required. For this reason we introduce
the operation state vector s(o)

t :

s
(o)
t = (sBt , s

H2
t ) ∈ S(o), ∀t ∈ T and with S(o) = R+2

, (12)

where sBt [Wh] is the level of charge of the battery and with sBt [Wh] the level of charge of the hydrogen
storage.

2.3 Action space
As for the state space, each component of the action vector at ∈ A can be related to either sizing or
control, the former affecting the infrastructure of the microgrid while the latter affects its operation. We
define the action vector as:

at = (a
(s)
t ,a

(o)
t ) ∈ At, ∀t ∈ T and with A = A(s) ×A(o)

t , (13)

where a
(s)
t ∈ A(s) relates to sizing actions and a

(o)
t ∈ A

(o)
t to control actions.

2.3.1 Sizing actions

The sizing actions correspond to investment decisions. For each device type, it defines the sizing of the
device to install in the microgrid and its technology:

a
(s)
t = (aPVt , aBt , a

H2
t , jt, lt,mt) ∈ A(s), ∀t ∈ T (14)

and with A(s) = R+3 × {1, ..., J} × {1, ..., L} × {1, ...,M} , (15)

where aPVt [m2], aBt [Wh], and aH2
t [Wp] denote, respectively, the new sizing at time t + 1 ∈ T of

the PV panels, battery and hydrogen storage. Discrete variables jt, lt, and mt correspond to indices
that indicate the selected technology from the environment vector for PV panels, battery, and hydrogen
storage, respectively. When a sizing variable (i.e. aPVt , aBt , or a

H2
t ) is equal to zero, it means that there

is no new installation for the corresponding device type and that the present device, if it exists, remains
in operation.

2.3.2 Operational planning

A microgrid featuring PV, battery and storage using H2 has two control variables that correspond to
the power exchanges between the battery, the hydrogen storage, and the rest of the system:

a
(o)
t = (pBt , p

H2
t ) ∈ A(o)

t ,∀t ∈ T , (16)

where pBt [W] is the power provided to the battery and where pH2
t [W] is the power provided to the

hydrogen storage device. These variables are positive when the power flows from the system to the
devices and negative if it flows in the other direction. Note that the set A(o)

t of control actions is time
dependent. This comes from the fact that the feasible power exchanges with these devices depend on
their capacity and level of charge. We have, ∀t ∈ T :

A(o)
t =

(
[−ζBt sBt ,

xBt − sBt
ηBt

] ∩ [−PBt , PBt ]

)
×

(
[−ζH2

t sH2
t ,

RH2
t − s

H2
t

ηH2
t

] ∩ [−xH2
t , xH2

t ]

)
, (17)

which expresses that the bounds on the power flows of the storing devices are, at each time step t ∈ T ,
the most constraining among the ones induced by the charge levels and the power limits.

2.4 Dynamics
Using the formalism proposed above, the dynamics of the microgrid follows the following discrete-time
equation:

st+1 = f(st,at),∀t ∈ T and with (st,at, st+1) ∈ S ×At × S . (18)
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The dynamics specific to the infrastructure state s
(s)
t ∈ S(s) are straightforward and can be written,

∀t ∈ T :

(xPVt+1, L
PV
t+1, η

PV
t+1) =


(aPVt , LPVjt,t , η

PV
jt,t

) if aPVt > 0,

(0, 0, ηPVt ) if LPVt ≤ 1,

(xPVt , LPVt − 1, ηPVt ) otherwise,
(19)

(xBt+1, L
B
t+1, P

B
t+1, η

B
t+1, ζ

B
t+1, r

B
t+1) =


(aBt , L

B
lt,t
, PBlt,t, η

B
lt,t
, ζBlt,t, r

B
lt,t

) if aBt > 0,

(0, 0, 0, ηBt , ζ
B
t , r

B
t ) if LBt ≤ 1,

(xBt , L
B
t − 1, PBt , η

B
t , ζ

B
t , r

B
t ) otherwise,

(20)

(xH2
t+1, L

H2
t+1, R

H2
t+1, η

H2
t+1, ζ

H2
t+1, r

H2
t+1) =


(aH2
t , LH2

mt,t, R
H2
mt,t, η

H2
mt,t, ζ

H2
mt,t, r

H2
mt,t) if aH2

t > 0,

(0, 0, 0, ηH2
t , ζH2

t , rH2
t ) if LH2

t ≤ 1,

(xH2
t , LH2

t − 1, RH2
t , ηH2

t , ζH2
t , rH2

t ) otherwise,
(21)

which describes that a device is either replaced because of a new investment or because of aging. At
the end of the device’s lifetime, it is discarded from the microgrid. Note that a more advanced model
could include aging rules for the other physical properties of the devices (i.e. efficiency, energy retention,
capacity and power limit) but this is outside the scope of the present work.

Concerning the dynamics of the operation state s
(o)
t ∈ S(o), we have to ensure that the charge level

of a storage device is reset to zero when it is replaced by a new investment. In addition, the correct
efficiency factor differs depending on the direction of the power flow:

sBt+1 =


0 if aBt > 0,

rBt s
B
t + ηBt p

B
t ∆t if pBt ≥ 0,

rBt s
B
t +

pBt ∆t

ζBt
otherwise,

(22)

sH2
t+1 =


0 if aH2

t > 0,

rH2
t sH2

t + ηH2
t pH2

t ∆t if pH2
t ≥ 0,

rH2
t sH2

t +
p
H2
t ∆t

ζ
H2
t

otherwise.
(23)

2.5 Problem statement formalization
We now rely on the introduced formalism to define three optimization problems of increasing complexity.
The first one focuses on the optimal operation of a microgrid, while the two others respectively include
the optimal and robust sizing of the microgrid.

2.5.1 Optimal operation

Let GT be the set of all positive scalar functions defined over the set of T -uplets of (state, action,
environment) triplets:

GT =
{
GT : (S ×At × E)T → R+

}
. (24)

Problem 1 Given a function GT ∈ GT and a trajectory (E1, . . . , ET ) of T environment vectors, we
formalize the problem of optimal operation of a microgrid in the following way:

min
at∈At,∀t∈T

st∈S,∀t∈T \{1}

GT ((s1, a1, E1), . . . , (sT , aT , ET ))

s.t. st = f(st−1,at−1), ∀t ∈ T \{1} ,
(aPVt , aBt , a

H2
t ) = (0, 0, 0), ∀t ∈ T .

This problem determines the sequence of control variables that leads to the minimization of GT when the
sizing decisions are made once for all at a prior stage t = 0. The initial state s1 of the system contains
the sizing information of the microgrid and stands as a parameter of this problem.
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2.5.2 Optimal sizing under optimal operation

Let G0 be the set of all positive scalar functions defined over the set of (action, environment, T -long
environment trajectory) triplets:

G0 =
{
G0 : (At × E × ET )→ R+

}
. (25)

Problem 2 Given a function G0 ∈ G0, a function GT ∈ GT , a trajectory (E1, . . . , ET ) of T en-
vironment vectors, and an initial environment E0 that describes the available technologies at the
sizing step, we formalize the problem of optimal sizing of a microgrid under optimal operation in the
following way:

min
at∈At,st∈S,
∀t∈{0}∪T

G0(a0, E0, E1, . . . , ET ) +GT ((s1, a1, E1), . . . , (sT , aT , ET ))

s.t. st = f(st−1,at−1), ∀t ∈ T ,
s0 = 0 ,

(aPVt , aBt , a
H2
t ) = (0, 0, 0), ∀t ∈ T ,

with s0 being the null vector to model that we start from an empty microgrid.

This problem determines an initial sizing decision a0 such that, together with the sequence of control
variables over {1, . . . , T}, it leads to the minimization of G0 +GT .

2.5.3 Robust sizing under optimal operation

Let E be a set of environment trajectories:

E = {(E1
t )t=1...T , ..., (E

N
t )t=1...T } , (26)

with Eit ∈ E , ∀(t, i) ∈ T × {1, . . . , N} .

Problem 3 Given a function G0 ∈ G0, a function GT ∈ GT , an initial environment E0, and a set
E of trajectories of T environment vectors that describes the potential scenarios of operation that
the microgrid could face, we formalize the problem of robust sizing of a microgrid under optimal
operation in the following way:

min
a0∈A0

max
i∈{1,...,N}

min
ai,t∈Ai,t,si,t∈S,

∀t∈T

G0(a0, E0, E
i
1, . . . , E

i
T ) +GT ((si,1, ai,1, E

i
1), . . . , (si,T , ai,T , E

i
T ))

s.t. si,t = f(si,t−1,ai,t−1) , ∀t ∈ T \{1} ,
si,1 = f(s0,a0) ,

s0 = 0 ,

(aPVi,t , a
B
i,t, a

H2
i,t ) = (0, 0, 0), ∀t ∈ T .

This robust optimization considers a microgrid under optimal operation and determines the sizing so
that, in the worst case scenario, it minimizes the objective function. The innermost min is for the optimal
operation, the max is for the worst environment trajectory and the outermost min is the minimization
over the investment decisions. The outermost min-max succession is classic in robust optimizations (see
e.g. [14]).

2.6 The specific case of the Levelized Energy Cost
In this section, we introduce the r−discounted levelized energy cost (LEC), denoted LECr, which is
an economic assessment of the cost that covers all the expenses over the lifetime of the microgrid (i.e.
initial investment, operation, maintenance and cost of capital). We then show how to choose functions
G0 ∈ G0 and GT ∈ GT such that Problems (1), (2), and (3) result in the optimization of this economic
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assessment. Focusing on the decision processes that consist only with an initial investment (i.e. a single
sizing decision taking place at t = 1) for the microgrid, followed by the control of its operation, we can
write the expression for LECr as

LECr =
I0 +

∑n
y=1

My

(1+r)y∑n
y=1

εy
(1+r)y

, (27)

where

• n denotes the lifetime of the system in years;

• I0 corresponds to the initial investment expenditures;

• My represents the operational expenses in the year y;

• εy is electricity consumption in the year y;

• r denotes the discount rate which may refer to the interest rate or to the discounted cash flow.

Note that, in the more common context of an electrical generation facility, the LECr can be interpreted
as the price at which the electricity generated must be sold to break even over the lifetime of the project.
For this reason, it is often used to compare the costs of different electrical generation technologies. When
applied to the microgrid case, it can also be interpreted as the retail price at which the electricity from
the grid must be bought in order to face the same costs when supplying a sequence (ε1, . . . , εn) of yearly
consumptions.

The initial investment expenditures I0 and the yearly consumptions εy are simple to express as a
function of the initial sizing decision a0 and environment vector E0 for the former, and of the environment
trajectory (E1, . . . , ET ) for the latter. Let τy ⊂ T denotes, ∀y ∈ {1, . . . , n}, the set of time steps t
belonging to year y, we have:

I0 = aPV0 cPV0 + aB0 c
B
0 + aH2

0 cH2
0 (28)

εy =
∑
t∈τy

ct ∆t, ∀y ∈ {1, . . . , n} . (29)

From these two quantities, we can define the function G0 ∈ G0 that implements the LEC case as:

G0(a0, E0, E1, . . . , ET ) =
I0∑n

y=1
εy

(1+r)y
=
aPV0 cPV0 + aB0 c

B
0 + aH2

0 cH2
0∑n

y=1

∑
t∈τy ct∆t

(1+r)y

, (30)

while the remaining term of LECr defines GT ∈ GT :

GT ((s1, a1, E1), . . . , (sT , aT , ET )) =

∑n
y=1

My

(1+r)y∑n
y=1

εy
(1+r)y

. (31)

The last quantities to specify are the yearly operational expenses My, which correspond to the opposite
of the sum over the year y ∈ Y of the revenues ρt observed at each time step t ∈ τy when operating the
microgrid:

My = −
∑
t∈τy

ρt . (32)

These revenues are more complex to determine than the investment expenditures and depend, among
other elements, on the model of interaction µt at the time of the operation.

2.6.1 Operational revenues

The instantaneous operational revenues ρt at time step t ∈ T correspond to the reward function of
the system. This is a function of the electricity demand ct, of the solar irradiance it, of the model of
interaction µt = (k, β), and of the control actions a(o)

t :

ρt : (ct, it,µt,a
(o)
t )→ R .

We now introduce three quantities that are prerequisites to the definition of the reward function:
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• φt [kW] ∈ R+ is the electricity generated locally by the photovoltaic installation, we have:

φt = ηPVt xPVt it ; (33)

• dt [kW] ∈ R denotes the net electricity demand, which is the difference between the local consump-
tion and the local production of electricity:

dt = ct − φt ; (34)

• δt [kW] ∈ R represents the power balance within the microgrid, taking into account the contribu-
tions of the demand and of the storage devices:

δt = −pBt − p
H2
t − dt . (35)

These quantities are illustrated in a diagram of the system in Figure (1), which allows for a more intuitive
understanding of the power flows within the microgrid.

PV

Load

+ δt = −pBt −p
H2
t −dt

H2 Storage

Battery

φt

ct

dt

pH2
t

pBt

Figure 1: Schema of the microgrid featuring PV panels associated with a battery and a hydrogen storage
device.

At each time step t ∈ T , a positive power balance δt reflects a surplus of production within the
microgrid, while it is negative when the power demand is not met. As the law of conservation of energy
requires that the net power within the microgrid must be null, compensation measures are required when
δt differs from zero. In the case of a connected microgrid, this corresponds to a power exchange with
the grid. In the case of an off-grid system, a production curtailment or a load shedding is required. The
instantaneous operational revenues we consider correspond to the financial impact of a surplus or lack
of production. The reward function ρt is a linear function of the power balance δt and, because the
price β at which the energy surplus can be sold to the grid usually differs from the retail price k to buy
electricity from the grid, the definition of the reward function at time step t ∈ T depends of the sign of
δt:

ρt =

{
β δt∆t if δt ≥ 0 ,

k δt∆t otherwise.
(36)

Using Equations (33), (34), and (35), the reward function can be expressed as a function of the system
variables:

ρt =

{
β (−pBt − p

H2
t − ct + ηPVt xPVt it) ∆t if − pBt − p

H2
t − ct + ηPVt xPVt it ≥ 0 ,

k (−pBt − p
H2
t − ct + ηPVt xPVt it) ∆t otherwise.

(37)

3 Optimisation
In this section, we detail how to implement the LEC version of Problems (1), (2), and (3), to obtain
an optimal solution using mathematical programming techniques. Even though the formalization of the
problem includes non-linear relations (e.g. Equations (22), (23), and (37)), we show how to obtain a linear
program by using auxiliary variables. The presented approach assumes that the following conditions are
met:
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• a single candidate technology is considered for each device type (i.e. J = L = M = 1);

• the lifetime of the devices is at least as long as the considered time-horizon (i.e. LPV , LB , LH2 ≥ T )
and the aging of the devices can thus be ignored;

• the whole trajectory E1, . . . , ET of environment vectors is known at the time of operation (i.e.
when minimizing GT ).

3.1 Optimal operation over a known trajectory of the exogenous variables
We first consider the implementation as a linear program of Problem (1) with GT defined by Equa-
tion (31). The output of this program is the optimal sequence of control actions a(o)

t = (pH2
t , pBt ) and the

corresponding minimal value of GT over the considered time-horizon T . Before writing the optimization
model, we introduce, ∀t ∈ T , the following auxiliary variables:

pB,+t , pB,−t , pH2,+
t , pH2,−

t , δ+
t , δ

−
t ∈ R+, such that


pBt = pB,+t − pB,−t

pH2
t = pB,+t − pB,−t

δt = δ+
t − δ−t

,

which allow the use of the adequate efficiency factor (i.e. η or ξ) and price (i.e. k or β) depending on the
direction of the power flows. The overall linear programMop, having as parameters the time-horizon T ,
the time step ∆t, the number of years n spanned by the time-horizon, the sets τ1, . . . , τn mapping years
to time steps, the discount rate r, a trajectory E1, . . . ,ET of the exogenous variables, and the time-
invariant sizing state s(s) = (xPV ,xB ,xH2 ,PB ,RH2 ,ηPV ,ηB ,ηH2 ,ζB ,ζH2 ,rB ,rH2) of the devices, can be written
as:

Mop(T,∆t,n,τ1,...,τn,r,E1,...,ET ,s
(s)) = min

∑n
y=1

My

(1+r)y∑n
y=1

∑
t∈τy ct∆t

(1+r)y

(38a)

s.t. ∀y ∈ {1, . . . , n} : (38b)

My =
∑
t∈τy

(
k δ−t − β δ+

t

)
∆t , (38c)

∀t ∈ {1, . . . , T} : (38d)

0 ≤ sBt ≤ xB , (38e)

0 ≤ sH2
t ≤ RH2 , (38f)

− PB ≤ pBt ≤ PB , (38g)

− xH2 ≤ pH2
t ≤ xH2 , (38h)

δt = −pBt − p
H2
t − ct + ηPV xPV it , (38i)

pBt = pB,+t − pB,−t , (38j)

pH2
t = pB,+t − pB,−t , (38k)

δt = δ+
t − δ−t , (38l)

pB,+t , pB,−t , pH2,+
t , pH2,−

t , δ+
t , δ

−
t ≥ 0 , (38m)

∀t ∈ {2, . . . , T} : (38n)

sBt = rBsBt−1 + ηBpB,+t−1 −
pB,−t−1

ζB
, (38o)

sH2
t = rH2sH2

t−1 + ηBpH2,+
t−1 −

p
H2,−
t−1

ζH2
, (38p)

− ζBsBT ≤ pBT ≤
xB−sBT
ηB

, (38q)

− ζH2sH2

T ≤ p
H2

T ≤
RH2−sH2

T

ηH2
. (38r)

The physical limits of the storage devices are modeled by Constraints (38e)-(38h), while the transition
laws of their state correspond to Constraints (38o) and (38p). Because of the absence of time step T + 1,
there is no guarantee that the charge levels that immediately follow the time-horizon are positive, which
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is why Constraints (38q) and (38r) ensure that the last action a
(o)
T is compatible with the last charge

level of the devices. Finally, Constraints (38i) and (38c) respectively denote the power balance within
the microgrid and the cost it induces on a yearly scale.

3.2 Optimal sizing under optimal operation
In Problem (2), the initial sizing of the microgrid becomes an output of the optimization model and
the function G0, here defined by Equation (30), integrates the objective function. We denote this new
problem byMsize, which is still a linear program:

Msize(T,∆t,n,τ1,...,τn,r,E0,E1,...,ET ) = min
I0 +

∑n
y=1

My

(1+r)y∑n
y=1

∑
t∈τy ct∆t

(1+r)y

(39a)

s.t. I0 = aPV0 cPV0 + aB0 c
B
0 + aH2

0 cH2
0 , (39b)

(xB , xH2 , xPV ) = (aB0 , a
H2
0 , aPV0 ) , (39c)

(38b)− (38r) . (39d)

This new model includes all the constraints fromMop, as well as the definition of the sizing of the devices
from the initial sizing decisions, i.e. Constraint (39c), and the expression of the initial investment as a
function of these sizing decisions, i.e. Constraint (39b). Note that the value of physical properties of the
devices other then variables xB , xH2 , xPV is provided by the initial environment vector E0, which also
provides the cost of the available technology for every device type.

3.3 Robust optimization of the sizing under optimal operation
The extension of linear program Msize to an optimization model that integrates a set
E = {(E1

t )t=1...T , ..., (E
N
t )t=1...T } of candidate trajectories of the environment vectors, i.e. to the imple-

mentation of Problem (3), is straightforward and requires two additional levels of optimization:

Mrob(T,∆t,n,τ1,...,τn,r,E0,E) = min
aB0 ,a

H2
0 ,aPV0

max
i∈1,...,N

Msize(T,∆t,n,τ1,...,τn,r,E0,E
(i)
1 ,...,E

(i)
T ) . (40)

This mathematical program cannot be solved using only linear programming techniques. In particular,
the numerical results reported further in this chapter relied on an exhaustive search approach to address
the outer min max, considering a discretized version of sizing variables.

4 Simulations
This section presents case studies of the proposed operation and sizing problems of a microgrid. We first
detail the considered technologies, specify the corresponding parameter values, and showcase the optimal
operation of a fixed-size microgrid. The optimal sizing approaches are then run using realistic price
assumptions and using historical measures of residential demand and of solar irradiance with ∆t = 1h.
By comparing the solutions for irradiance data of both Belgium and Spain, we observe that they depend
heavily on this exogenous variable. Finally, we compare the obtained LEC values with the current retail
price of electricity and stress the precautions to be taken when interpreting the results.

4.1 Technologies
In this subsection, we describe the parameters that we consider for the PV panels, the battery and
the hydrogen storage device. The physical parameters are selected to fit, at best, the state-of-the-art
manufacturing technologies, and the costs that we specify are for self-sufficient devices, i.e. including the
required converters or inverters to enable their correct operation.

PV panels. The electricity is generated by converting sunlight into direct current (DC) electricity using
materials that exhibit the photovoltaic effect. Driven by advances in technology as well as economies of
manufacturing scale, the cost of PV panels has steadily declined and is about to reach a price of 1e/Wp

with inverters and balance of systems included [15]. The parameters that are taken into account in the
simulations can be found in Table (1).
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Parameter Value
cPV 1e/Wp

ηPV 18%
LPV 20 years

Table 1: Characteristics used for the PV panels.

Battery The purpose of the battery is to act as a short-term storage device; it must therefore have
good charging and discharging efficiencies as well as enough specific power to handle all the short-term
fluctuations. The charge retention rate and the energy density are not major concerns for this device. A
battery’s characteristics may vary due to many factors, including internal chemistry, current drain and
temperature, resulting in a wide range of available performance characteristics. Compared to lead-acid
batteries, LiFePO4 batteries are more expensive but offer a better capacity, a longer lifetime and a better
power density [16]. We consider this latter technology and Table (2) summarizes the parameters that
we deem to be representative. LiFePO4 batteries are assumed to have a power density that is sufficient
to accommodate the instantaneous power supply of the microgrid. It is also assumed to have a charging
efficiency (ηc) and discharging efficiency (ζB0 ) of 90% for a round trip efficiency of 81%. Finally, we
consider a cost of 500 eper usable kWh of storage capacity (cB).

Parameter Value
cB 500 e/kWh
ηB0 90%
ζB0 90%
PB > 10kW
rB 99%/month
LB 20 years

Table 2: Data used for the LiFePO4battery.

Hydrogen storage device The long-term storage device must store a large quantity of energy at a
low cost while its specific power is less critical than that for the battery. In this chapter we will consider
a hydrogen-based storage technology composed of three main parts: (i) an electrolyzer that transforms
water into hydrogen using electricity (ii) a tank where the hydrogen is stored (iii) a fuel cell where the
hydrogen is transformed into electricity (note that a (combined heat and) power engine could be used
instead). This hydrogen storage device is such that the maximum input power of the fuel cell before
losses is equal to the maximum output power of the electrolyzer after losses. The considered parameters
are presented in Table (3).

Parameter Value
cH2 14 e/Wp

ηH2
0 65%
ζH2
0 65%
rH2 99%/month
LH2 20 years
RH2 ∞

Table 3: Data used for the Hydrogen storage device.

4.2 Optimal operation
An example of output of the optimal operation program Mop in Figure (2(b)) illustrates well the role
of each storage device. The figure sketches the evolution of the charge levels of the battery and of
the hydrogen storage device when facing the net demand defined in Figure (2(a)). In this example,
the battery has a capacity of 3kWh and the hydrogen storage device has a power limit of 1kW. The
role of each storage device is clear as we observe that the battery handles the short fluctuations, while
the hydrogen device accumulates the excesses of production on a longer time-scale. Overall, since the
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production is higher than the consumption by a significant margin, the optimization problem is not
constrained and hydrogen is left in the tank at the end of the simulation.

(a) Net demand (negative demand represents a produc-
tion higher than the consumption)

(b) Optimal operation of the storage devices

Figure 2: Left graphic shows the evolution of the charge levels within a microgrid that faces the given
net demand of right graphic.

4.3 Production and consumption profiles
In this subsection, we describe the PV production profiles and the consumption profiles that will be used
in the remaining simulations.

4.3.1 PV production

Solar irradiance varies throughout the year depending on the seasons, and it also varies throughout the
day depending on the weather and the position of the sun in the sky relative to the PV panels. Therefore,
the production profile varies strongly as a function of the geographical area, mainly as a function of the
latitude of the location. The two cases considered in this chapter are a residential consumer of electricity
in the south of Spain and in Belgium. The main distinction between these profiles is the difference
between summer and winter PV production. In particular, production in the south of Spain varies with
a factor 1:2 between winter and summer (see Figure (3)) and changes to a factor of about 1:5 in Belgium
or in the Netherlands (see Figure (4)).

(a) Total energy produced per month (b) Example of production in winter (c) Example of production in summer

Figure 3: Simulated production of PV panels in the South of Spain (Data from Solargis [17] for the solar
platform of Almeria in Spain).

4.3.2 Consumption

A simple residential consumption profile is considered with a daily consumption of 18kWh. The profile
can be seen on Figure (5). This profile is a good substitute of any residential consumption profile with
the same average consumption per day. Additional precautions should be taken in the case of high
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(a) Total energy produced per month (b) Example of production in winter (c) Example of production in summer

Figure 4: Measurements of PV panels production for a residential customer located in Belgium.

consumption peaks to ensure that the battery will be able to handle large power outputs. Note that in a
more realistic case, we may have higher consumption during winter, which may substantially affect the
sizing and operation solutions.

Figure 5: Representative residential consumption profile.

4.4 Optimal sizing and robust sizing
For the optimal sizing under optimal operation of the microgrid, as defined by Problem (2), we use
a unique scenario built from the data described in Section (4.3) for the consumption and production
profiles. Since the available data are shorter than the time-horizon, we repeat them so as to obtain a
twenty-year-long time-horizon. In the following we make the hypothesis that β = 0 e/kWh.

For the robust optimization of the sizing, we refer to the Problem (3). This approach requires the
selection of a set of different environment trajectories and, for computational purposes, to discretize the
sizing states. The three different scenarios considered are the following:

• The production is 10% lower and the consumption is 10% higher than the representative residential
production/consumption profile.

• The production and the consumption are conform to the representative residential production/consumption
profile (scenario used in the non-robust optimisation)

• The production is 10% higher and the consumption is 10% lower than the representative residential
production/consumption profile.

To build the discretized sizing states we start by solving Problem (2) on the mean scenario. For our
simulations we then select all possible variations compared to the sizing of each variable xB , xH2 and xPV
by +0%, +10% and +20%. This leaves us with 27 possible sizings that are used to build the discretized
sizing space. Equation (40) is solved by performing an exhaustive search over this set of potential sizings
so as to obtain the robust LEC.
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4.4.1 The Spanish case

We first considered a residential consumer of electricity located in Spain. For different values of costs k
endured per kWh not supplied within the microgrid, we performed the optimal sizing and the robust-type
optimization schemes described above. We reported the obtained LEC in Figure (6). We observed the
following : (i) for a retail price of 0.2e/kWh, the residential consumer of electricity benefits from a LEC
of slightly more than 0.10e/kWh; (ii) in the fully off-grid case, the microgrid is still more profitable
than buying electricity at all times from the utility grid for all configurations as long as k is lower than
approximately 3e/kWh (i.e. with a value of loss load smaller than 3 e/kWh, it is always preferable to
go fully off-grid than buying all the electricity from the grid); (iii) due to the relatively low inter-seasonal
fluctuations (compared to Belgium for instance (see later)) investing in a hydrogen storage system is not
actually profitable for low values of k.

Figure 6: LEC (r = 2%) in Spain over 20 years for different investment strategy as a function of the cost
endured per kWh not supplied within the microgrid.

4.4.2 The Belgian case

We then considered a residential consumer of electricity located in Belgium and we reported the obtained
LEC for different values of k. As can be seen from Figure (7), a residential consumer of electricity in
Belgium has incentives to invest in his own microgrid system (at least PV panels) since the obtained LEC
while operating in parallel with the main utility grid at a retail price of 0.2e/kWh gives the residential
consumer of electricity a lower electricity price than buying it from the grid at all times. With the
current state of the technology however, it is not yet profitable for a residential consumer of electricity
in Belgium to go fully off-grid since they would then suffer from a higher overall cost. Contrary to the
results observed for Spain, in Belgium there is an important potential gain in combining both short-
term and long-term energy storage devices. This is due to the critical inter-seasonal fluctuations of PV
electrical production in Belgium.

We also investigate how the LEC evolves as a function of the price decrease of the elements in the
microgrid. Figure (8) shows the reported LEC as a function of a uniform price decrease of the elements
of the microgrid while assuming a value of loss load of 0.2e/kWh and a robust sizing. It is shown that
when the prices of constitutive elements of the microgrid are less than half of those given in Tables 1
to 3, the business case for a fully off-grid microgrid in Belgium may actually become cost-effective.

5 Conclusion
This chapter has proposed a novel formulation of electrical microgrids featuring PV, long-term (hydro-
gen) and short-term (batteries) storage devices. Using linear programming we managed to set up an
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Figure 7: LEC (r=2%) in Belgium over 20 years for different investment strategy as a function of the
cost endured per kWh not supplied within the microgrid.

Figure 8: LEC (r=2%) in Belgium over 20 years for a value of loss load of 2e/kWh as a function of a
uniform price decrease for all the constitutive elements of the microgrid.

algorithm for optimally sizing and operating microgrids under some (potentially robust) hypotheses on
the surrounding environment. The approach has been illustrated in the context of Belgium and Spain,
for which we evaluate the values of the LEC and compare it with the cost of electricity from traditional
electricity networks.

Future works will include relaxing the assumption that the future is deterministically known when
computing the optimal operation. In particular, we plan to investigate how to incorporate stochastic
weather forecasts in the optimization of the microgrid operation.
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