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A B S T R A C T

In the last years, the habit of discussing healthcare issues with family and friends, even with unknown

people, in the context of social networks has increased and processing user generated content has become a

new challenge. This can help in on-line crowd surveillance for different applications (pharmacovigilance

and filtering health contents in blogs among others) as well as extracting knowledge from unstructured text

sources. In this article, a system that monitors health social media streams is described. It is based on several

text analytics processes supported, among others, by MeaningCloud, a commercial platform which

provides meaning extraction from texts in a Software as a Service mode. In this architecture, several domain

resources are integrated to detect drugs and drug effects such as CIMA (official information about

authorized drugs in Spain maintained by the Spanish Agency of Medicines and Health Products), MedDRA

(Medical Dictionary for Regulatory Activities) and the SpanishDrugEffectDB database that contains

relations between drugs and effects. Different ways of visualizing data considering time lines and

aggregated data have been implemented. In order to show performance, an evaluation has been carried out

over Named Entities Recognition (NER) and Relation Extraction (RE) tasks.
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1. Introduction

Current definitions of Social Media [17] include several sources of
user generated data, from Twitter to specialized blogs, through
Facebook. Users of these Web 2.0 applications share information
about any subject, including issues related to their health condition.
The number of people with Internet access seeking for health
information through the net ranges from 70% to 75% in the U.S.
Besides, 42% of them used social media to get information about
health issues. Moreover, mobile technology creates an ecosystem
where people are continuously accessing to the Internet and this
changes the way people interact with healthcare professionals.

In this context, there is an increasing volume of digital
interaction that produces a big stream of data with meaningful
information that companies and organizations need to access. In
networks and forums such as PatientsLikeMe1, DailyStrength2 or
Saluspot3 patients talk to each other about their feelings regarding
* Corresponding author. Tel.: +34916249454.

E-mail address: pmf@inf.uc3m.es (P. Martı́nez).
1 http://www.patientslikeme.com/.
2 http://www.dailystrength.org/.
3 https://www.saluspot.com/.
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a health problem, the way their bodies react to a given drug, how
they mix different drugs to fight against a specific disease they
have and many other issues related to their health condition. They
can access health-related content as well as connect and
collaborate with other patients looking for health issues.

As an example of the importance of Social Media interactions in
the health sector, according to a study developed by Price
Waterhouse Coopers, 45% of consumers said information from
Social Media would affect their decisions to seek a second
opinion4. Age distribution of social media users must also be
considered; there are surveys indicating that 89% of 18–29 year
olds use social media in contrast with the 43% of people aged 65+.
The difference of utilization by age groups will diminish over the
next years and decades as digital natives increase their involve-
ment and influence professionally and privately within their
networks.

In order to analyze this market, the heavily regulated
environment around health companies and prevention of direct-
to-patient interactions must be taken into account, especially in
4 PricewaterhouseCoopers, Social media ‘‘likes’’ healthcare, http://www.pwc.com/

us/en/health-industries/publications/health-care-social-media.jhtml.
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Europe. This prevents pharmaceutical companies to get involved in
social networks campaigns and only half of the top 50 pharmaceu-
tical companies in the world interact with patients through social
networks. It is also worth mentioning that, outside the U.S., there
are a lot of regulatory restrictions forcing pharmaceutical
companies to behave in a conservative way. Nevertheless, the
interest in listening patients’ opinions through social networks as a
first step through bidirectional communication with patients is
increasing.

Among all health issues, ADRs (Adverse Drug Reactions) are an
important health problem due to the fact that they are the 4th cause
of death in hospitalized patients [30]. Thereby, the area of
pharmacovigilance has captured special attention because of the
elevated and increasing frequency of drug safety events [4] along
with their high associated costs [28]. Medicine regulatory agencies
such as the US Food and Drug Administration (FDA) require clinicians
to report every suspected ADR due to the fact that many of them are
not spotted in the course of clinical trials. Nevertheless, studies such
as [20] claim that ADRs are under-estimated considering that they are
communicated by voluntary reporting systems.

Patients can report ADRs using Web-based spontaneous
reporting systems (SRS) implemented by medicines agencies such
as EMA (European Medicines Agency) and FDA. These SRS have
different structures and contents and almost all of them are based
on voluntary reporting, except for pharmaceutical companies,
which are required to report suspected adverse events once they
come to their attention. These companies report adverse drug
events to the FDA when there is an identifiable patient, reporter
and suspect drug. However, these requirements are not applied to
social media.

Patient reports often provide more detailed and explicit
information on ADRs than the ones from healthcare specialists
[16]. They usually offer a wider or complementary view of the ADR
and its possible impact on the patient. Another benefit of patient
reporting is that adverse effects caused by OTC (over-the-counter,
medicines that are sold without prescription) medications could be
analyzed. An important contribution of SRS is getting patients to
have a more central role in their treatments. However, despite the
fact that these systems are well-established, the rate of spontane-
ous patient reporting is very low probably because many patients
do not know them and may feel either confused when describing
their symptoms or even unable to describe them.

On the other side, every medicine is carefully monitored after it
is placed on the market, but there are some special drugs, labeled
with a black triangle5, that are intensively controlled. This is due to
the lack of information available about these medicines compared
to others, for example, because they are new in the market or there
are few data about its long-term use. In this context, it is therefore
essential that the safety of all medicines continues to be monitored
while they are in commercial use and that suspected ADRs are
reported in order to keep up to date drug packages inserts
corresponding to these drugs. Currently, this pharmacovigilance
work is carried out by domain experts on a manual basis, by
analyzing scientific literature as well as clinical trials documents
and spontaneous reports.

Harpaz et al. [14] remarked that new methods that integrate
data extracted from SRS narratives and knowledge extracted from
experimental preclinical discovery drugs sources are required.
Furthermore, patient-generated content concerns also discussions
about treatments and opinions about drugs that could lead to
valuable knowledge. Patients use Social Media to self-report
adverse drug events three times more than reporting to FDA [10]
and 90% is the estimated rate of ADRs that patients do not report
5 http://www.ema.europa.eu/ema/index.jsp?curl=pages/special_topics/docu-

ment_listing/document_listing_000365.jsp.
[23]. Thus, it is reasonable to think that health-related social media
can be used as a complementary data source to collect ADRs as well
as data about the incorrect use of drugs. In other words, monitoring
the abuse and misuse of medicinal products, for instance by people
who have problems understanding medical language.

Transforming health-related social media streams into useful
knowledge by extracting information from messages is not a trivial
issue and requires sophisticated tools to tackle challenges with the
overall objective of protecting public health. The two main
challenges are (1) to analyze patients sharing experiences and (2)
to manage highly informal patient-oriented language, something
difficult to deal with as there are barely any resources regarding it.

To cope with these information challenges, Natural Language
Processing (NLP) technology is a key aspect and should integrate
usable tools to deliver real-time insights to decision makers about
surveillance and pharmacovigilance tasks. In this context, this
contribution describes the application of text analytics processes
to extract information from these real-time Social Media streams
relevant for the healthcare sector and the challenges that must be
faced. The information to be extracted goes beyond drugs and
diseases mentions to show also relationships among medications
and ADRs and indications. It also covers trend evolution of those
named entities mentions and ADRs detected in patients’ con-
versations.

Text analytics processes to be applied for this purpose cannot be
generic, but adapted to the health domain. This requires specific
dictionaries and ontologies covering drugs, diseases, body part
names and other topics to be integrated in named entity
recognition processes and to cope with colloquial expressions
and laypeople terms for drugs, diseases and other entities with the
aim to discover what is being talked about.

The work presented in this article integrates different semantic
resources and processes in a complete framework to face real-time
text analytics on social media, in particular for monitoring drug-
related medical events (ADRs, indications, symptoms, diseases,. . .)
in online Spanish social networks about healthcare, being able to
process a large volume of data in real-time6 and to address the
abovementioned challenges. This system is a result of TrendMiner
European project.

Remainder of the article is organized as follows. Section 2 is
devoted to review the state of the art in drugs and ADRs entity
recognition in medical literature and social media. Section 3
describes the functionality of the proposed system, its architecture
and integrated semantic resources. Section 4 describes the
evaluation carried out and finally, conclusions and future work
are given in Section 5.

2. Related work

Due to the fact that users are active consumers and producers of
health-related contents in Internet, in the last years extracting
knowledge from unstructured contents (mainly texts) in health
domain has received a great attention. The main reason is these
sources could reveal important public health issues. Many efforts
have been devoted to the application of NLP techniques to gather
information about health issues, such as diseases, symptoms,
drugs, adverse events and others from texts. A comprehensive
overview of the application of text mining techniques to
biomedical knowledge extraction from scientific literature, clinical
narratives and on-line health web sites is given in [35].

Focusing on analysis of social media to mine data about
personal health, there are many works that use Twitter both to
detect pre-established health conditions and unknown trends.
Parker et al. [22] described a method to identify emerging public
6 The system can be accessed at http://trendminer.daedalus.es.
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health conditions that is based on using a set of frequent term sets
extracted from 1.6 million tweets and analyzed with time series to
show how prevalent a keyword is over time. These sets are then
connected to Wikipedia articles over a series of time windows to
show relevance.

In the topic of drugs and ADRs, there are works that use
different sources, mainly in the context of drug product labels [13–
19], biomedical literature [31], medical case reports [12] and
health records [27]. In recent years, there has been an increasing
interest in the extraction of ADRs from social media, although it has
been investigated to a limited extent

Different recent research works about mining the pharmacov-
igilance literature are included in [40]. We refer the reader to the
article [32] for an excellent survey describing research works that
use social media for pharmacovigilance. A relevant work is, for
example, Leaman et al. [18] where a system was developed to
automatically detect adverse effects mentions in user posts
focusing on four drugs that are known to cause ADRs. A corpus
annotated with indications and ADRs consisting on 3600 com-
ments extracted from the DailyStrength health-related social
network was used for developing and testing purposes. The system
obtained a precision of 78.3% and a recall of 69.9%. Nikfarjam and
Gonzalez [21] extended the Leaman et al.’s work by adding
association rule mining techniques to extract prevalent patterns
concerning patient opinions about drug treatments. In this case, a
precision of 70.01% and a recall of 66.32% were achieved. The main
disadvantage was that patterns were too domain-dependent but
this work allows detecting terms that are not included in
dictionaries.

Another proposal is Bian et al. [3], which describes the use of SVM
classifiers to recognize tweets about ADRs. The classifier is trained
on a corpus of tweets labeled with UMLS (Unified Medical Language
Systems) concepts using MetaMap tool [1]. The accuracy is low
because not only people use informal language to talk about their
medical condition but also Twitter has other challenges such as
slangs, poor language structures, URLs and emoticons among others.
This makes MetaMap inadequate to process this type of texts.

There is also an intensive work creating corpora labeled with
entities such as drugs, adverse events, diseases, etc., see [34] for a
complete review of corpora. The availability of such resources in
NLP community is very important to train and test text mining
algorithms. For instance, Benton et al. [2] made a corpus of posts
from different online blogs about breast cancer that was used to
extract potential ADRs from the four most common used drugs to
treat this disease. A lexicon was built from several websites and
databases such as Consumer Health Vocabulary (CHV)7 and
integrated in a co-occurrence based approach to detect significant
pairs of drug-ADR. To evaluate the system, ADRs from drug labels
were collected and precision and recall were calculated by
comparing the ADRs from drug labels and the ADRs obtained by
the system. The system obtained an average precision of 77% and
an average recall of 35.1% for all four drugs. An available corpus
created by extracting tweets related to 74 drugs and their variant
names is described in [11]. A total of 10,822 tweets are annotated
with the presence of ADRs, the span of the ADR mention and its
UMLS identifier. Other corpora have been focused on other
languages, such as the corpus described in [26], a Spanish corpus
of user comments extracted from a health forum that is annotated
with drugs and ADRs.

State of the art in drug NER shows performance on scientific
texts is around 85% in terms of F-score. The best system in the
BioCreative IV (2014) CHEMDNER (Chemical compound and drug
name recognition) task achieved an 87.39% of F-score working on
Pubmed abstracts, decreasing performance to 60% when informal
7 http://www.consumerhealthvocab.org/.
texts were considering [2]. Regarding ADRs detection in English
social media, systems are between 60% and 70%; the use of CHV
helps understanding lay terminology but new methods to collect
new terms used by patients are required. In the case of Spanish
language, there is no such resource and this makes ADRs even more
difficult recognition.

Regarding the state of the art in relation extraction tasks in the
biomedical domain, in recent years much effort has been devoted to
extraction of protein–protein interactions from biomedical litera-
ture; [36] reports 58% of F-score with a kernel method using the
AIMed corpus. Another important research area is extraction of drug–
drug interactions from texts (see [37] for a detailed analysis of
DDIExtraction 2013 participating systems). The best system achieved
a 53% of F-score over Medline abstracts and 82% of F-Score over
DrugBank texts. These works use mainly supervised machine
learning methods. Due to the fact that annotating corpora is a highly
cost task, unsupervised methods, which do not require annotated
data, are being developed. Recently, an alternative paradigm based on
distant supervision that uses unlabeled corpora extracted from a
patient’s blog has been proposed [25]. The distant supervision
hypothesis establishes that if two entities appear in a sentence, then
both entities might participate in a relation. The learning process is
supervised by a database, rather than by annotated texts. In this case,
the database used was the SpanishDrugEffectDB database, which
relates drugs to their ADRs and indications as is described in Section
3.2. This method achieved an F-score of 53%.

In a different vein, there are other works analyzing patient
opinion about drugs such as [6], which demonstrates the ability to
track trends in people’s positive or negative opinion regarding
particular drugs over time. Specifically, an experiment with Tysabri

drug, indicated for multiple sclerosis, is reported. This work shows
that changes in opinion are related to FDA announcements and
publicity.

Concerning research projects that cover initiatives for on-line
crowd surveillance, EU-ADR Project [8] focused on combining
spontaneous reports with electronic healthcare records (EHR) to
investigate adverse drug events in Europe. WEB-RADR project [29]
was funded by the Innovative Medicines Initiative (IMI) to address
the potential of the reporting of ADRs through mobile applications
and the recognition of drug safety signals from user comments in
social media. TrendMiner project8 explores Spanish social media
(Twitter and forums) to monitor medical events related to drugs
[25]. The website Healthmap9 delivers real-time intelligence on a
broad range of emerging infectious diseases for a diverse audience
including libraries, local health departments, governments and
international travelers by combining online informal sources
(online news aggregators, validated official reports, etc.).

Finally, there are companies and institutions that develop APIs
(Application Program Interface) that can be integrated in systems.
The OpenFDA10 project provides open APIs, data downloads, and a
developer community for high-value public datasets (medical
device reports, enforcement reports and drug adverse event
reports since 2004 annotated with entities). PatientOpinion11 is
a UK organization that gathers patients’ opinions about heath care
and treatments they have recently received and offers a read-only
API. Novartis company is developing a semantic API to access the
data for specific drugs and information about the indications and
usage of the drug, its dosage and administration—both for varying
patient populations, the known ADRs when taking the drug, known
interactions with other drugs and information about clinical
studies with the drug.
10 https://open.fda.gov/drug/event/.
11 https://www.patientopinion.org.uk/.



Fig. 1. Health monitoring system architecture.
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In summary, there is much room for improvement regarding
the analysis of drug’s safety and health trends in social media by
tracking people messages using NLP technology. Tools that help
recognizing patient oriented vocabulary are required in order to
understand what people are saying. Moreover, other languages
different from English are demanding this kind of tools. This is the
focus of the system introduced in this article.

3. System to monitoring health social media

The contribution of this article is a system that monitors patient
posts extracted from two Spanish health-related social media.
Fig. 1 shows the architecture of this system which is composed of
five main components. The central component is the data
warehouse, which acts as a core information repository. A set of
gatherer processes feeds the system with texts extracted from
different sources, while another set of concurrent inquirer
processes analyzes the collected texts using a pipeline-based
language processor. Finally, the visualization module provides an
interface to analyze the data and thus, help discover data insights.

3.1. Annotation flowchart

A set of concurrent inquirer processes uses the GATE12

Annotation Pipeline that is in charge of specific tasks of annotation
12 General Architecture for Text Engineering https://gate.ac.uk/.
and post-filtering (see Fig. 1). The system manages the semantic
annotation of the text and the control of concurrency required to
deal with such volume of data. There is the possibility to run
several annotation processes; the inquirer provides the exclusion
mechanisms among the different annotation processes assuring
avoiding data corruption and hence, assuring veracity. Each of
those processes seeks for the latest created and unlocked text,
reserves it by locking it, and then executes an instance of the GATE
Annotation Pipeline, which semantically annotates the user
comments and tweets. Finally, it stores the response given by
the pipeline back to the data warehouse.

MeaningCloud13 commercial tool is the core technology of this
annotation pipeline. It offers several Semantic APIs in SaaS
(Software as a Service) mode to extract elements of meaning
(topics, facts, opinions, relationships. . .) from all kinds of unstruc-
tured multimedia content. In particular, the functionality inte-
grated in this project has to do with:
� Topics extraction14: the term topic makes reference to named

entities and concepts. The algorithm implemented in Mean-
ingCloud to identify named entities is based on hybrid
approaches, i.e., the combination of machine learning processes
with linguistic ones supported by lexical resources. The ability to
customize these lexical resources in a comfortable way is one of
the main features of MeaningCloud. Thanks to this, it has been
13 http://www.meaningcloud.com/.
14 https://www.meaningcloud.com/developer/topics-extraction/doc.



Fig. 2. Example of tweet annotated after the post-filtering stage.
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possible to include of clinical and medical vocabulary allowing
the detection of drugs, diseases and others. MeaningCloud
provides the analysis capabilities needed to deal with different
desinences appearing when this vocabulary is used in regular
language. An easy example: in Spanish, ‘cáncer’ can be used in
plural, ‘cánceres’, but both make reference to ‘neoplasia maligna’.
� Syntactical parsing15: if a deep analysis of a sentence is needed,

algorithms for part-of-speech tagging and morphosyntactic
analysis of texts must be available. MeaningCloud provides this
technology for different languages, including English and
Spanish. These parsing algorithms combine statistical based
approaches and thesauri based ones to produce a deep parsing of
sentences.
� Language identification16: linguistic based techniques are lan-

guage specific so it is relevant to know in advance in which
language a text is written. This is the purpose of this Mean-
ingCloud API, based on a combination of n-gram analysis of text
chains and machine learning based classification algorithms.

Improving these Natural Language Processing capabilities was
not a goal for this research work. On the contrary, nowadays, NLP
technology is a commodity, so commercial products providing this
kind of analysis out-of-the-box can be found. The selection criteria
followed in this project has been customization capabilities, i.e.,
easiness in defining the application domain where the NLP
algorithms will be applied.

The GATE Annotation Pipeline is composed of six stages:

1 Language identification: stage that discards every text that is not
written in Spanish. The gatherer already asks to the Twitter API
for texts only in Spanish, but since this may sometimes fail,
another filtering step is performed while analyzing the docu-
ment. The identification is made by the MeaningCloud Language
Identification API, which uses statistical techniques based on n-
grams.

2 Morpho-syntactic parsing: it is performed by the MeaningCloud
Lemmatization, Part-of-speech (PoS) and Parsing API, described
above. This API provides morphological information (such as the
number and gender of a word) and also syntactic data, including
the syntactic category of a word (if it is a name, a verb, an article,
. . .) as well as the syntactic structure of the sentence (identifying
phrases acting as complements, subjects, objects, and so on). The
quality of this output depends on the source text type: Twitter
messages are written in a way that makes it very difficult to
extract a syntactic structure for the text but blog posts are
usually well-written from a grammatical point of view. Of
course, the output of this analysis is relevant for the semantic
disambiguation process, to be performed in a later stage, because
it can be useful to distinguish the sense in which a word has been
written. For example, ‘Motivan’ in Spanish is the present form for
the third person plural for the verb ‘motivar’, but it is also a name
15 https://www.meaningcloud.com/developer/lemmatization-pos-parsing/doc.
16 https://www.meaningcloud.com/developer/language-identification/doc.
of a commercial drug. To distinguish which use is being made in
a text, morphological information is relevant: if it is tagged as a
verb, it cannot make reference to the commercial drug.

3 Topics analyzer: Several health-related dictionaries were created
to adapt MeaningCloud Topics Extraction API to the health
domain. These dictionaries include drugs, diseases, ADRs, etc.
(see Section 3.2). Besides, this component integrates the
MeaningCloud topics Extraction API into the analysis process
implemented through the GATE pipeline. MeaningCloud pro-
vides a plug-in for the GATE platform that makes this integration
straightforward. Health related vocabulary is sometimes ortho-
graphically complex so it is very easy to make mistakes when
writing a drug or disease name. For this reason, this Topics
Analyzer uses word matching processes based on the Levensh-
tein similarity measure that calculates distances between words.
For two given words, this distance depends on the number of
letters changed, inserted or removed from one of them to obtain
the other one.

4 Medical events filter: It filters all the entities that have been
annotated by the Topics Analyzer and which are not from the
medical domain. Only drug, effect and disease entities are kept in
the system.

5 Disambiguation: A set of rules that uses linguistic features like
the morpho-syntactic information provided by the parser,
together with co-occurrence information of drugs and diseases,
is used to filter out terms that are not likely to be mentions of
medical events. If we look at the example shown in Fig. 2,
motivan is a drug name in the drugs dictionary (it is an
antidepressant whose active substance is paroxetina). However,
in this case the syntactical parser detects that it plays as a verb
(motivar17) and consequently it should not be annotated as a
drug entity. The rule that is applied in this example is ‘‘PoS
tag(tokeni) 6¼ NOUN AND Topic(tokeni) = DRUG ! delete DRUG
topic annotation of tokeni’’. In case that the token is a noun then
disambiguation process looks for any other domain-related term
in the sentence as is shown in the rule: PoS tag(tokeni) = NOUN
AND Topic(tokeni) = DRUGjADRjDISEASE AND Topic(tokenj) = -
DRUGjADRjCONTEXT WORD ! Keep DRUGjADRjDISEASE topic
annotation of tokeni (where j 6¼ i and 1 � i, j � N, N is the number
of terms in the message being processed and CONTEXT WORD18

is a medical domain related word different from drugs, ADRs or
diseases). These rules have been obtained by manual inspection
of a sample of posts.

6 Relations manager: this component annotates three types of
relations between drugs and diseases or effects, classifying them
into (1) adverse effects, (2) indications or (3) pairs that hold a
possible relationship. The two first classifications are relations
that were extracted from the SpanishDrugEffectDB database,
which has been built from several websites containing drug
package inserts as it is explained in Section 3.2. In contrast, the
17 to motivate.
18 Some examples are: to prescribe, to take, medication, effect, produce, pill, tablet,

. . ..



Fig. 3. Example of ATC system structure.
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latter group has been created to point out possible un-cataloged
or unknown relations that may be discovered due to situations of
high recurrence pointed out by the system. For instance, Fig. 6
shows an adverse effect between drug Taxotere (Taxotere) and
effect eritema cutáneo (cutaneous erythema).

3.2. Resources: Drugs, diseases and effects

There are several semantic resources integrated in the system
each of them intended to detect a different type of named entity or
relations as it is explained below.

3.2.1. CIMA

CIMA is a resource provided and maintained by The Spanish
Agency for Medications and Healthcare Products (AEMPS). It is an
application which includes all authorized drugs in Spain. The
application encloses the following information related to the
authorized drugs in Spain: drug’s name, active substance(s),
marketing authorization holder’s name, national code, drug’s data
sheet, drug’s package insert, authorization date, ATC (Anatomical
Therapeutic Chemical) code and others. The drug’s data sheet is a
document which includes the drug’s description, indications,
dosage, precautions and counter-indications, adverse reactions,
pharmaceutical information and properties. The package insert is
the document included inside the box of the medicine, and whose
goal is to inform the patient.

From CIMA files, 16,418 drugs, 2228 active substances and
3659 brand drugs were obtained. Additionally, 4817 drug related
terms were obtained from Vademecum19 (a guide of pharmaceutical
products that includes over 18,200 drugs) and from MedlinePlus20,
the National Institutes of Health’s (NIH) website intended for
patients. These terms compose the gazetteer DrugsGaz.

In order to relate brand names and active substances we use the
ATC system that consists on a set of alphanumeric codes developed
by the WHO for the classification of drugs and other medical
products organized in 5 levels (see Fig. 3). Level 1 represents the part
of the body where the drug performs its activity, level 2 represents
the therapeutic group, level 3 is about the pharmacological group of
19 http://www.vademecum.es/.
20 http://www.nlm.nih.gov/medlineplus/spanish/.
the drug, level 4 is the chemical group and level 5 concerns the active
substance group. Therefore, it is the key to obtain the relations
among drugs and brand names. Wikipedia has a complete and well-
structured article dealing with the ATC codes21 in Spanish that
has been crawled to obtain all the existing Spanish ATC codes
(4361 ATC codes).

All this knowledge is related to in a dictionary called
drugsATC. Each entry corresponds to a drug (brand name) followed
by those active substances that compose it as aliases. Table 1
shows an example of dalsy’s dictionary entry, whose id is 896. This
drug’s composition includes one active substance: ibuprofeno. The
ATC code associated with the drug dalsy is M01AE01. As it is
explained below, in the SpanishDrugEffectDB database the ATC
codes are also related to the active substances, but this information
is not included in the drugATC dictionary. In this example, the ATC
code of ibuprofeno is M01AE01.

Thanks to the information that the ATC provides (therapeutic
and chemical characteristics of the drug), the system is able to
relate the drugs to each other and is able to categorize them by
active substance, chemical group or pharmacological group. This is
possible due to the classification’s hierarchy. ATC codes are divided
in five levels. For example, the ATC code M01AE01 is divided into:
Anatomical main group (M), therapeutic main group (01),
therapeutic/pharmacological subgroup (A), chemical/therapeu-
tic/pharmacological subgroup (E) and the chemical substance
(01), forming the final M01AE01.

3.2.2. MedDRA

MedDRA is the adverse event classification dictionary approved
by the International Conference on Harmonization of Technical
Requirements for Registration of Pharmaceuticals for Human Use
(ICH), and therefore a very reliable resource for the adverse events.

MedDRA supports ten languages and is composed of a five
levels hierarchy which goes from more general to very specific. The
two lower levels from MedDRA PT (Preferred Terms) and LLT
(Lowest Level Terms) were extracted to implement the adrsMed-

DRA dictionary for ADRs detection. Each LLT is a single medical
concept for a symptom, sign, disease diagnosis, therapeutic
indication, investigation, surgical or medical procedure, and
medical social or family history characteristic. For example, dolor
21 http://es.wikipedia.org/wiki/C%C3%B3digo_ATC.



Table 1
Example of dalsy entry in the DrugATC dictionary.

Entry Drug Aliases Morphological tags Semantic tags ATC code

896 Dalsy Ibuprofeno NPUU-N-dalsy Sementity/class = instance@type = Top > Drug Semld_list/ATC = M01AE01

Fig. 4. Class diagram of Spanish drug effect database.

22 http://sideeffects.embl.de/.
23 http://www.hc-sc.gc.ca/dhp-mps/medeff/databasdon/index-eng.php.
24 http://jsoup.org/.
25 http://www.nlm.nih.gov/medlineplus/spanish/.
26 http://www.prospectos.net/.
27 http://prospectos.org/.
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de cabeza (Headache) is a LLT whose PT is the more general adverse
event cefalea (Cephalalgia). Thus, a relation between general and
specific adverse events can be depicted from layers 4 and 5 in
MedDRA, and therefore this relation can be used for entries of the
dictionary and its aliases. We decided not to include terms
corresponding to the Procedimientos médicos y quirúrgicos (Surgical
and medical procedures) and Exploraciones complementarias

(Investigations) categories since they do not represent drug effects.
Finally, the information we obtained from this resource is:

13,245 PT adverse effects and 35,259 LLT adverse effects.

3.2.3. UMLS-SNOMED CT

UMLS, developed by the National Library of Medicine (NLM), is
a comprehensive list of medical terms mainly focused on
developing computer systems suitable for understanding the
specific vocabulary which is normally used in biomedicine and
health care literature. One of the resources integrated in UMLS is
SNOMED CT (Systematized Nomenclature of Medicine—Clinical
Terms), a terminology accessible in Spanish whose content
consists of concepts, descriptions and relationships to represent
information and clinic knowledge.

UMLS is structured in several semantic categories (substances,
organisms, health care activity, etc.). Three of these categories
(‘Diseases or syndrome’, ‘Mental or Behavioral Dysfunction’ and
‘Neoplastic process’) have been chosen in order to create the
diseasesUMLS dictionary for diseases and symptoms. Some of the
extracted terms were PT and others Synonyms. The PTs were set as
canonical expressions in the dictionary, and the Synonyms for
these were considered as being the aliases.

An extra information field in the entries is the UMLS CUI
(Concept Unique Identifier), a code which relates a specific medical
term to a set of resources included in UMLS. As a matter of fact,
some terms are included in both the diseases dictionary and the
adverse effect one. This is the case of depresión (depression). In the
adrsMedDRA dictionary, it is related to its MedDRA code
‘10012378’0. Thus, if checking this code in the UMLS resource,
the CUI assigned to it is ‘C0011570’ (the code included in the
diseasesUMLS dictionary).

The information we obtained from UMLS Database is 42,548
main diseases and 23,677 diseases synonyms

3.2.4. The SpanishDrugEffectDB database

The last resource used in the annotation pipeline of Fig. 1 is a
semantic resource that stores relations between drugs and effects
(see Fig. 4). Although there are several English databases such as
SIDER22 or MedEffect23 with information about drugs and their
side effects, none of them are available in Spanish. Moreover, these
resources do not include drug indications. There are other
initiatives to build knowledge bases in English with ADRs from
drug package inserts that can be used to assess ADRs such as
[5]. SpanishDrugEffectDB [24] has been built automatically with
information about drugs, their indications and their adverse
reactions in Spanish. SpanishDrugEffectDB was populated with all
drugs and effects from adrsMedDRA and drugsATC dictionaries.

To obtain the relationships between drugs and their effects, several
web crawlers with jsoup24 parser were developed in order to gather
sections describing drug indications and adverse drug reactions
from drug package inserts contained in the following websites:
MedLinePlus25, Prospectos.Net26 and Prospectos.org27. Once these
sections were downloaded, their texts were processed using the same
annotation pipeline of Fig. 1 to recognize drugs and their effects. As
each section (describing drug indications or adverse drug effects)
is linked to one drug, the effects contained in the section were
considered as possible pairs in the relationships with this drug (as



Fig. 5. Datawarehouse index definition.
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indication or as adverse drug reaction). More details about this
database and a preliminary evaluation can be found in [24].

3.3. Gatherer processes

Two sources of user generated data related to health issues are
used: Twitter and Saluspot. From Twitter, tweets that contain
specific keywords and which are written in Spanish have been
selected. The prototype currently collects tweets containing
around 500 antidepressants and related drugs (some examples
of keywords are: Clonazepam, Alprazolam, Lorazepam, Rivotril,
Clonagin, Diocam, Karidium, . . .). The second data source is
Saluspot, a Spanish website that allows its users to address free
of charge and anonymously their doubts and information needs
about health, lifestyle and drugs to thousands of registered doctors.
Once a question is posted any of the registered, accredited doctors
can answer and even multiple answers are possible. Each question
contains information about the user’s gender and age, the date of
posting and one or more answers together with the identity of the
doctor who answered and a reliability measure based on the
number of doctors who accepted to tackle this particular question.

Two different subtypes of gatherer processes regarding the type
of data source they are querying have been deployed. On the one
hand, a process to query the Twitter APIs has been developed in
order to collect tweets compliant to the filter. These Twitter-
gatherer processes work in real time, feeding the system with new
tweets. In order to do so, the Twitter Streaming API28 is used.

On the other hand, a crawling process that collects posts from
Saluspot has been developed. However, due to the intrinsic
complexity of the crawling process and the lack of an API that
would have been able to alert our system, notifying that new posts
(or new answers to the already collected posts) are available, this
28 https://dev.twitter.com/overview/documentation.
Saluspot collection does not work in real-time, but collects posts as
a snapshot of the currently available information in this website.
Also, in this first version, only the most reliable answer was
collected.

3.4. Datawarehouse management

A data warehouse based on Elasticsearch29 is responsible for
efficiently storing the high volume of real-time data from social
networks that the system manages, as well as for providing
advance search functionalities that allow the visualization module
to generate complex analytics. Elasticsearch is a flexible, powerful,
open source, distributed and real-time search and analytics engine.
Some of the key factors that made us take the decision of choosing
this datawarehouse are: its distributed capabilities and the fact
that it can be easily and horizontally scaled when the system
growth starts affecting performance. There are valid Relational
Database Management System (RDMS) alternatives but Elastic-
search was preferred because it runs on top of Apache Lucene, so it
offers quite complex search capabilities, high-performance and is
trustworthy, due to its well-known reliability. Using a RDMS for
this application was not under consideration due to data type and
real-time processing requirements: millions of tweets must be
gathered and stored in real time, supporting real-time textual
queries; Elasticsearch provides good rates at insertion, scrolling
data sets and aggregations tasks.

Fig. 5 shows a graphical representation of the index created to
manage the datawarehouse. Documents are in JSON format, they
can be tweets or user comments and they are annotated with user
features (nickname, age and gender) and other metadata such as
geolocation, date, language and the text it contains. Entities can be
drugs (represented by ATC codes), diseases (represented by UMLS
29 http://www.elasticsearch.org/.



Fig. 6. Example of a comment tagged with drugs, effects and relations.

32 English translation of comment: hi lola, reading your post I identified myself with
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CUI), and ADRs (represented by their corresponding MedDRA
code). Moreover, ADRs and diseases can be related to drugs by
effect relations that could be indications, adverse effects and other
possible relationship. See Section 3.2 for more details about these
concepts and relations.

The index has currently30 a size of more than 2.5 million entries
(documents) that comprises about 1.3 GB of data. The system has
been collecting data starting from 17th July 2014 and is up right
now. Some statistics from the documents stored in the dataware-
house, at the moment of writing this article are presented next.

Regarding Saluspot source, 41,991 documents were extracted.
Every document has already been processed by the GATE pipeline.
Within this dataset the system achieves to annotate 1864 mentions
of unique drugs as well as 1581 of unique diseases and 2089 of
unique adverse effect mentions. Also, regarding the relations
extracted, 18,397 unique relations where annotated in this dataset
distributed as 1987 adverse effects, 459 indications and 15,951
uncategorized relations (possible relation).

In regards to the Twitter dataset, the system has around
2,760,628 tweets containing a total of 2428 unique drugs,
1681 unique diseases and 2200 unique adverse effects31. Also,
25,313 unique relations were extracted, distributed as 97 adverse
effects, 570 indications and 22,221 possible relations.

These statistics shows that specific sources for the medical
domain (like Saluspot) contain a much higher variability not only
regarding to the terminology, but also to the concepts mentioned,
as well as a higher number of mentions of medical related concepts
per document, when compared to general purpose streams like
Twitter. However, some of the drugs, diseases and adverse effects
detected in the Twitter stream where not present in the Saluspot
dataset, thus confirming the importance of this kind of massive
data streams as a source of knowledge.

3.5. Dashboard to visualize monitoring data

Finally, the Analytics Processing component performs the
calculations in order to display meaningful relations, patterns of
co-occurrence, and other data insights to the final user. The
interface provides several search modes based on the drugs ATC
code. Three search modes are built around level 3 (Pharmacologi-
cal Main Group), level 4 (Chemical Main Group) and level 5 (Active
Substance) of the ATC structure and they are based on grouping
30 By july 30, 2015.
31 By July 30, 2015.
mentions that share the same group at each corresponding level.
For example, Fig. 8 shows the result of searching Trankimazin drug
by Active Substance search mode where drugs that share the same
active substance (Alprazolam) are displayed as well as co-
occurrences of these drugs with effects.

Downwards Grouping search mode focuses on the element
searched to decide up to what level it should group. It basically gets
the element that defines the search, which actually is a node (or
several nodes) in the ATC structure tree, and groups together every
element below this node or nodes. Finally, Exact Match looks for
specific mentions of the terms regardless of the ATC code of the
mentions. It also includes a fuzzy matching based on the
Levenshtein distance to overcome misspelling errors.

The prototype allows viewing the annotated source texts that
match a specific search, focusing on their drug and disease
mentions and showing the discovered relations, like shown in the
example32 of Fig. 6.

In order to enhance usability, the search box is designed to
display every possible term in our vocabulary. The resources used
to build the different dictionaries are also compiled and indexed
into another Elasticsearch index, using an n-gram analyzer at index
time (using from 2 to 20 grams for each word indexed). In contrast,
at search time, standard tokenizer, lower case token and stopwords
filters are applied. By doing this, the system quickly responds to the
user with the hundred most likely terms that match the input
provided. Another advantage of this approach is that it allows
looking for both the canonical form and any of the synonyms or
alias that the term has in the database. See Fig. 7 for more details.

Individual bar graphs aggregating the number of mentions of
discovered relations for the texts that match the query are
presented, as well as drugs co-occurring with the search term and
diseases mentioned along with the search term. Fig. 8 shows
mentions of lorazepam active substance and brand names that
contain it (such as Orfidal and Donix). Furthermore, we can see their
corresponding indications in green (anxiety and insomnia), ADRs in
orange (depression, tremors) and unknown relationships in blue
(fear, stress). Fig. 9 shows mentions of drug–drug pairs and drug–
symptoms pairs.
you. I was prescribed taxotere and herceptin@ too. I will explain myself: March 2nd was

my first session, I debut in this whole world... I tolerated herceptin good enough but soon

after taxotere entered my veins it caused me a cutaneous erythema and immediately

they told me to stop taking it.



Fig. 7. Example showing search options using cáncer (cancer) query.

Fig. 8. Graph showing aggregated data about effects related to drug Lorazepam (indications, ADRs and possible relations).

Fig. 9. Graph showing entity pairs aggregated data for Lorazepam active substance.
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Finally, the system also presents information about the
evolution of mentions through a timeline graph with different
granularity (months, weeks and days) like the one shown in
Fig. 10. All graphs have been developed using Highcharts 33
33 http://www.highcharts.com/.
4. Experiments evaluating NER and RE

In order to evaluate the linguistic processor, we have used a
corpus extracted from ForumClı́nic34, an interactive web page
intended for patients to increase their degree of autonomy with
34 http://www.forumclinic.org/.



Fig. 10. Graph showing time-based evolution of entity mentions for Lorazepam query grouped by active substance.
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respect to health issues, using the opportunities given by the
newest Web technologies. Its target is to improve citizen’s
knowledge on health, diseases and their causes, as well as the
efficiency and safety of the preventive treatments and medicines,
so that they can get involved with the clinical decisions which
attain them.

ForumClı́nic users are from all over the world, but a significant
data is the fact that 46% of the webpage visits come from Spanish-
speaking countries in America. In total, the number of a million
users was reached in 2011, and it maintains a steady increase since
it was created, in 2007. See Fig. 11 for information about structure
and contents of this forum.

SpanishADR [26] is the first Spanish corpus annotated with
drugs and effects by two annotators expert in the field; it consists
of 400 user messages collected from ForumClı́nic. The size of the
corpus is 26,519 tokens, whereas each message contains an
average of 3.15 annotations (0.48 drugs, 1.42 effects and
1.25 relations). Moreover, it contains 189 drug annotations,
568 effect annotations and 164 drug–effect relations (the
extension of SpanishADR corpus with drug-effect annotations is
described in [24]). An assessment of the inter-annotator agreement
(IAA) revealed that while drugs showed a high IAA (0.89), their
effects pointed to moderate agreement (0.59). This may be due to
drugs having specific names and being limited in number, while
their effects are expressed by patients in many different ways due
to the variability and richness of natural language.

We have evaluated the performance of the annotation pipeline
described in Section 3.1 using the SpanishADR Gold standard.
Metrics used are precision (P) and recall (R). Precision measures
how many of the entities and relations that the system identified
Fig. 11. ForumClı́nic structure.
were actually correct and recall represents how many of the
entities and relations that should have been identified actually
were identified. F-measure is the harmonic mean of precision and
recall. P, R and F-measure are calculated according to two different
criteria: the strict matching considers as correct every response
where type entity and the spans are identical and the lenient

matching considers every partially correct response as correct, i.e.,
the entity type is correct and the spans are overlapping but not
identical.

A baseline has been defined using a system that integrates a
gazetteer built from the CIMA resource in the case of drug
recognition and a gazetteer created from the MedDRA database in
the case of effects detection.

Regarding NER, Table 2 shows P, R and F-measure evaluating
drug recognition and compared to the baseline defined. There is an
increase of 0.36 in F-measure in strict matching mainly due to the
fuzzy matched analysis done by the Topic recognizer. The main
source of false negatives for drugs seems to be the abbreviations for
drug families. For instance, benzodiacepinas (benzodiazepines) is
commonly used as benzos, which is not included in our dictionary.
An interesting source of errors to point out is the use of acronyms
referring to a combination of two or more drugs. For instance, FEC
is a combination of Fluorouracil, Epirubicin and Cyclophosphamide,
three chemotherapy drugs used to treat breast cancer. Related to
false positives some drug names such as alcohol (alcohol) or
oxı́geno (oxygen) can take a meaning different than the one of
pharmaceutical substance. Another important cause of false
positives is due to the use of drug family names as adjectives
that specify an effect. This is the case of sedante (sedative) or
antidepresivo (antidepressant), which can refer to a family of drugs,
but also to the definition of an effect or disorder caused by a drug
(sedative effects)

Table 3 shows P, R and F-measure evaluating effect recognition
as well as the performance obtained with the baseline. In contrast
to drug recognition, the difference with the baseline is smaller
because ADRs are usually multiword terms and fuzzy matching is
deactivated for them. The major source of false negatives was the
use of colloquial and lay expressions to describe an effect. Patients
Table 2
Evaluation measures in drug recognition.

Drugs NER system Baseline

R P F-measure R P F-measure

Strict 0.68 0.85 0.76 0.28 0.69 0.40

Lenient 0.68 0.85 0.76 0.32 0.77 0.43



Table 3
Evaluation measures in effect recognition.

Effects NER system Baseline

R P F-measure R P F-measure

Strict 0.41 0.85 0.56 0.43 0.75 0.54

Lenient 0.47 0.83 0.60 0.42 0.86 0.56
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used expressions such as tengo la cabeza como un bombo (my head
is ringing) or estoy destrozado (I am destroyed) in order to express
how they felt. These expressions are not included in our dictionary.
A possible solution could be to create a lexicon containing these
colloquial expressions. The second highest source of false
negatives for effects was due to the different lexical variations
of the same effect. For instance, estrés (stress) is a term included in
our dictionary, but its lexical variations, like for example estresado

(stressed), estresante (stressful), me estreso (I get stressed), me

estresa (it makes me feel stressed) are not, and therefore they were
not detected by our system. Nominalization may be used to
identify all the possible lexical variations of a same effect. The third
largest source of false negatives was spelling mistakes. We can see
an example with hurticaria, which is an incorrect way of writing
urticaria (urticaria). Many users have great difficulty in spelling
unusual and complex technical terms. Nevertheless, although a
fuzzy matching algorithm is used a more advanced matching
method capable of dealing with more spelling error problems is
required, mainly able to work with phrases. The last important
error source was the use of abbreviations (depre is an abbreviation
for depression), which also produces false negatives. Techniques
such as lemmatization and stemming may help to cope with this
kind of abbreviations.

False positives for adverse events were mainly due to the lack of
ambiguity resolution. Some medical events receive the name of a
common Spanish word, as it happens with Zona (Herpes zoster). Also
acronyms used for long-named adverse events sometimes match
with common words. For example, Infección Respiratoria Alta’s
(Upper Respiratory Tract Infection) acronym, IRA, has different
meanings in Spanish (past form of the verb to go or anger among
others). Furthermore, some effects such as anestesia (anesthesia)
share the name with the drug which drives patients to that state.

Table 4 shows P, R and F-measure evaluating relation extraction
taking in to account drug–effect pairs annotated in the corpus (the
objective is to evaluate relation extraction task regardless of NER
task). Regarding the false positives, a cause of error is Spanish-
DrugEffectDB could include incorrect relations due to the fact that
it was automatically obtained and it has not been manually
revised. Another source of errors is the lack of context resolution.
This means that, despite correctly detecting a drug and an effect
(according to the drug package information), the context of the text
did not fulfill the requirements to properly consider it a relation.
Moreover, the lack of co-reference resolution introduces another
important source of error for false positives; terms such as
enfermedad, efecto, tratamiento and other have to be solved. An
Table 4
Evaluation measures in relation extraction (over drug–effect annotated pairs in

Goldstandard corpus).

SpanishDrugEffectDB Drug–effect pairs

Window

size

R P F-measure R P F-measure

30 Strict 0.08 0.57 0.14 0.63 0.44 0.52

Lenient 0.13 0.96 0.24 0.88 0.61 0.72

100 Strict 0.10 0.34 0.16 0.74 0.26 0.38

Lenient 0.23 0.74 0.35 0.99 0.34 0.51

250 Strict 0.12 0.32 0.17 0.17 0.75 0.33

Lenient 0.24 0.67 0.36 1 0.29 0.45
interesting source of errors is the lack of negation resolution, which
means that despite the fact that the user specifies that he/she did
not experience an effect after taking a drug, the system annotates
the relation. Finally, the complex sentences (coordinated and
subordinated sentences) in a comment may mislead the system
into annotating a relation which is not correct.

Finally, concerning false negatives Table 4 shows that a great
number of drug–effect pairs appearing in the corpus are not
covered by the SpanishDrugEffectDB (recall is very low), that is,
this database does not include all drugs effects. Therefore, the
corpus has only 164 relations and it is difficult to conclude about
the database coverage. Other studies are reported in [25] where a
distant supervision method for relation extraction is analyzed
using the overall ForumClı́nic corpus (84,000 user comments) as
training and testing dataset.

5. Conclusions

In the healthcare scenario, there are three basic usages35 of
user-generated data that require special attention: (a) collecting
information concerning behaviors of consumers by social media
analytics, (b) diffusing messages and content to a wide audience
via social media channels as an addition to other media such as
web sites or news portals and (c) making people and organizations
aware of healthcare issues leading to a public dialogue that could
be viewed by anyone.

Focusing on the first one, many Internet health related sources
(such as blogs, forums, etc.) and others such as EHR or clinical
narratives contain a high volume of unstructured data mainly in
form of free text. It is not only patient generated content but also
clinician generated content. There is an increasing use of social
networks (platforms to exchange the latest medical advances) by
physicians [9].

This scenario poses several challenges and requires innovative
ICT (Information and Communications Technology) products and
services such as scalable NLP technology. Mining knowledge from
health unstructured data has different applications: (a) Curating
databases from free text sources (scientific articles, medical
records, etc.). Adequate NLP tools can help curators by highlighting
important sections of text (with relevant entities and relations) for
review or even proposing an automatic interpretation along with
an estimate of its accuracy. This prevents curators to analyze
overall records and focusing on relevant content. (b) Monitoring
specific healthcare items in social networks, for instance,
pharmacovigilance and surveillance activities that currently are
manually performed by domain experts, on-line monitoring
patients’ evolution or filtering contents to classify them. Medicines
agencies are interested in monitoring the evolution of specific new
drugs in the market, mainly drugs that could produce more adverse
effects or black triangle drugs. (c) Codification tasks, related to
entities annotation (drugs, diseases, symptoms among others)
with specific vocabularies identifiers in order to transform pieces
of text in structured knowledge, for instance, assign ICD codes
(International Statistical Classification of Diseases and Related
Health Problems) to diagnostics in clinical reports.

In this article, a system for monitoring medical events from
social networks (drugs, diseases, symptoms and adverse effects)
has been presented. It is based on a NLP pipeline built with
MeaningCloud, a commercial Software as a Service platform
providing customizable text analytics capabilities easy to integrate
in any software application. The system is able to process real-time
health related user generated content showing aggregated data
about the different entities in several visualization timelines.
35 Engaging patients through social media. Report by the IMS Institute for

Healthcare Informatics, January 2014.
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An evaluation has been also performed using a corpus
annotated with drug–effect pairs [26] and an analysis of errors
has been done with the aim of identifying future improvements.
Drug NER performance is higher than ADR NER one. One issue that
requires special attention is to manage patient oriented vocabu-
lary. Patients do not report about their treatments using clinician
terminology. Consumer Health Vocabulary36 is a terminology for
English language that contains lay terms but Spanish requires a
similar resource that could be (semi)automatically built using NLP.
Regarding the relation extraction task, as future work, we will first
concentrate on improving the quality of the SpanishDrugEffectDB
database. This database could be augmented from other websites
about drugs and their effects in order to increase the recall of our
system.

In addition, we will manually review the database in order to
remove false positives, which are generated by the automatic
process used to build the database. On the other hand, to improve
the real-time performance of our system, we plan to apply text
classification methods to automatically filter ADR related posts as
is reported in [38].

Concerning NLP approaches, dictionary and rule-based technol-
ogy has shown good performance in information extraction (IE)
tasks. Chiticariu et al. [7] described a comparative of 54 rule-based
products (including MeaningCloud) and concluded that only 1/3 of
vendors rely on machine learning approaches. We believe that both
approaches are complementary each other, for instance addressing
ambiguity understanding texts. Therefore, such approaches must
scale when they work with millions of records or tweets.

A fact that it is well known is that supervised learning methods
currently achieve the best results for both NER and relation
extractions tasks in any domain; but they require large, manually
annotated training corpora. In this line, emerging trends are
exploring the use of deep learning techniques applied to NER tasks
that do not require large amounts of labeled data. Work described
at Nikfarjam et al. [33] propose a sequence labeling method that
uses word embedding features to mine ADRs mentions from user
posts collected from DailyStrength and Twitter. They obtained
better results compared to a lexicon-based baseline as well as a
support vector machine (SVM)-based baseline. There are other
emerging proposals such as [39], which explores the use of Twitter
hashtags to extract hashtag-based networks that can help to
expand the search space when querying drug-related literature.
This means that social media can contribute with useful
knowledge in linking and searching resources.

From a business point of view, every company should be aware
of opinions and mentions about them given by their customers in
Social Media as well as understanding their customers and
businesses analyzing data in an adequate context to generate
valuable knowledge. The healthcare agents should also be aware of
this need. Health insurance companies and pharmaceutical
companies are very interested in not only knowing when
somebody talks about a brand or topic but also identifying if they
are doing it on a positive or negative way. The value of such data is
not entirely established mainly because mining and analysis of
social media is an emerging science. Sentiment analysis of tweets
or patient comments is a key aspect to detect consumer opinions
about drugs that could be linked to adverse effects. For instance, if
it is positive then the effect may be an indication or a beneficial
effect; if it is negative then the effect may be a side effect.
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